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Abstract. Let (Q, F, p.) be a complete probability space, E a separable Banach space, and E'
the topological dual of E. Under an extreme point condition, we show that a sequence of Pettis
pr-integrable E-valued functions defined on Q, which converges in the topology of pointwise

convergence on /,ff(1r,) @ E/, converges in Pettis norm and in g-measure respectively. We also

give a version of Olech's lemma in Pettis integration.

1. Introduction

Throughout this paper, E will denote a separable Banach space, Et the topological
dual of E ,E s, the closed unit ball in Et and @ , F , trr) a complete probability space. The
symbol P; (O , f , D QIQ.o) for short) denotes the space of E-valued Pettis p-integrable
functionsJ : Q -+ E endowed with the Pettis norm llf llp" : sup .fo lk', f)ldt,

x teB B,

(see, for example, [10, 13,16-19,2I,22]). Strong convergence results in the space Lrr(W)

of Lebesgue-Bochner functions related to extreme point condition and sfrict convexity

have been studied extensively (see, for example, lI,3-6,8,9,I1,20,24-271)' The purpose

of this paper is to characterize convergence in Pettis norm and in g-measure for Pettis

integrable functions under extreme point condition (resp. denting point condition) and

to give a version of Olech's lemma in Pettis integration.

We will need the following definitions and notations. A subset 11 c PIQL) is Pettis

unifurmly integrable (PUI for short) if, for every e > 0, there exists 6 > 0 such that

p(A) <, - 
,r:fl 

l lraullp, < e.

If f e PLjr), the singleton {/} is PUI since the set {{x' , f} : llx'll < 1} is uniformly
integrable" [8, p. 82]. Let us mention a more general fact. If 'll is a subset of f[fu)
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t

_liry sup sup I l@' , f)ldp : O,
u_* f e1l , ,eEr, 

11qr,. ly1rol

then'll isPettisuniformlyintegrable.Recall l l laallp,: sup Iel@,,ulldp.Forany
x 'eB Br

x '  €  BB, ,onehas

f f f
l l l * ' , u71d1 t :  |  , , * ' , u ) l dp t - l  I  l \ * ' . u ) l dp .  ( x )

J J J
A Ar'l l(x,,u)l<aj Anll@',u)l>a\

Let abe large enough in order to ensure

yx '  eEs, ,  yu e ' t1 ,  t  l@,,u) ldp,  < e/2.
l l lx ' , 'u l l>a|

Thus,thelasttermof (*) is< e/2.Now,ifdissmallenoughinordertoensurea6 < s/2,
we obtain

f

J  
l@ ' ,u l l d1 t  <  ap (A )  <  e /2

AnIl@,,ull<al

as soon as pc(A) < 6.
By Lwc(E) (resp. cwk(E) and ck(E)), we will denote the set of all nonempty closed

convex locally weakly compact containing no line [14] (resp. weakly compact and norm
compact) subsets of E. If K is a convex subset of E, Aen(K) (resp. 0r"1(K)) is the set
of denting (resp. extremal) points of K. A multifunction f : Q -+ cwk(E) is scalarly
integrable if, for every xt e E', the scalar function

to r-+ 6*(x', f (ar)) :: sup{(x', x) : I e f (ar)}

is F-measurable and_pc-integrable. we denote uy SF' the set of all peuis integrable
selections of f . If sf is nonempty, the integral of I oue, a f -measurable set A is
defined by

[  ,  o * , :
t^

where /) f dp, is the Pettis integral of
A scalarly integrable multifunction:

{6*(r '

f : Q + cwk(E) is Pettis-integrable 1f the set

is uniformly integrable in Zfi(f).
A sequence (u) in P[fu) weakly converges to u e PLjD if un + u inthetopology

of pointwise convergence on lff(f) I E'.
A subset 11 in PijD is cwk(E)-tight (resp. cft(E){ight) if, for every a > 0,

there exists a cwk(E)-valued (resp. c/c(E)-valued) Pettis-integrable multifunction f"
satisfying

sup p.({o e Q : u(to) f f"(a;)}) < e.

We will summarize the following basic results.
The following result is a sequentially compact version of an analogous compactness

result given in Theorem V.13 in [13].

, - r

I  f d p :  f  e S { ' [ ,
J t

f over A.

f ) :  l l x ' l l  <  1 )
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Theorem l.l. Suppose E is a separable Banach space andl : I --> cwk(E) is a Pettis
integrable multifunction, then the set 3F" is nonempty and sequentially compact for the
topology of pointwise convergence on Lf (D 6 Et. In particulat: if I is ck(E)-valued,
then the integral

is convex and compact in E.

Proof. (See [12, Theorem 4.2, Remark 1 of Theorem a.a] and [13]).
Let us mention a useful fact.

Fqct 1.2. Suppose I : O -+ Lwc(E) is ameasurable multifunction, (un)nep a sequence
of scalarly integrable E-valued selections of L, and u i {2 --> E a scalarly integrable
function such that 

fim [ (r, , u,) d1" : I qr, , u1 d1,
n + 6 J  J

for every A e f and every x' e E', then u(rt;) e L(rt;) p' a.e.

Prool Suppose the conclusion is not true. Then by Lemma III. 34 in [14], there exist
x '  e  E ' ,Ae F wi th lc(A)  > 0suchthat

(xt , u(a)) , 6* (x' , L(r,t)) :: sup{(x', x) : x e L(a)}

for all ar e A. By integrating the above inequality, we obtain

l r a u , : I l f  d p : f  . s F " ]
o s ,

Since (.r/, unl converges o (Lr ,,Lm) to lxt , u) and the un ate Pettis selections of I, we
deduce that

f f

I  6* ( * ' ,L )d t t  <  |  (x ' ,u ldp t .
t ,J U

A A

f t f
I  6 * ( r ' , L ) d t r >  l i m  |  ( . x ' ,  u , ) d t t :  l ( x ' , u J d p ,

J  N ' 6 J  J
A A A

(1 .1 )

(r.2)

'which 
contradicts (1.1). r

Theorem 1.3. Suppose f : g -+ cwk(E) is a scalarly integrable mulffinction such
that Ef " is nonernpty, then

au,(3i1: s{"i,<ry.

Proof. Since the inclusion Si".1tn C A"*(SF1is obvious, it remains to prove the

inverse inclusion. Assume by contradiction that there is f e Arr,(S[") \ Sf ',., . Since
the graph of the multifunction 3",1(l) belongs to F @ 6(E) because E is separable [14,
Corollary IV.5l, the set

A : {a e Q : f (a) 4 O",t(l)ko)l
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is .F-measurable with p.(A) > 0. By the same construction as in Theorem IV.14 in [13],
there are two A fl f-measurable selections g and h of f such that

s@) * h(a) and f ko) : Ifrfrl * h(a)l
L

forallro e A. Since llglland llhllaref-measurable,wefinda > 0and B e AnFwith
tt(B) > 0 such thaL,Ya e B, sup{llg(ar)ll, l lh(ro)ll} < a. Set

g : I n S  * l o t a " f  m d  g z : l n h  * l o t r " f .

Theng; € SF' (t : l, 2), gr + g2and,f - 
l<sr+ tr>.Thisprovesth at f f a",t(SF),
L '

contradicting the extreme nature of /. I

We will need the following lemma which is borrowed from Lemma 3 inl3 p.l72l.

Lemma 1,4, Let (ur)ren be a sequence of real F-measurablefunctions converging in
meesure to a f -measurable function u on q F-measurable set A. If u(a) < 0 a.e. on A,
then, for every n > 0, there exist a < 0 and k1 e N such that

k > h a p.({at e A i ukkD) > al) < n.

2. Main Results

We will first present a version of the Lebesgue-Vitali theorem in PIQD.

Proof. Snppose the conclusion does not hold. There exists e > 0 such that, for a
subsequence still denoted by (un)n, Yn, llu, - u*llp" > e. Since (ur)neN is PUI,
thereexis ts6 > 0suchthat  p, (A)  < 6 impl iesVn e NU{m},  l l l7 lanl lp"  < e/3.
There exists a subsequence still not relabeled such that llur(.) - &- (.) ll -+ 0 almost
everywhere (a.e. for short). By virtue of Egorov's theorem, there exists B e F such that
/r(S2 \ B) < 6 and llu"(.) - r-(.) ll -+ 0 uniformly on B. Let n0 be such that yn 2 n0,
l lu"(a) - u*k't)l l  < e/3 on B. Then Yn > ns, and we have

l l un  -u* l lp ,  <  l l l n (u" -u* ) l lp "  *  l l l o t r (a ,  -u* ) l lp "

< e /3 - f  l l  1o\rz,  l l r ,  *  l l  le lsa6e l lps < €.

This contradicts the initial assumption.

We begin with the following lemma formulated for simplicity in a special case.

Lemma 2.2. Let E be a separable Banach space, | : O -+ ck(E) a Penis integrable
multifunction, and (ur) a sequence in S{' whtchweakly converges to u e Sl". Suppose
u e 0",,(E!'), then l lun - ullp" --> 0.
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Proof. Without loss of generality, we may suppose u = O so that, by Theorem 1.3,
0 e O"*y(l (a)) a.e. Since the sequence (a,) is Pettis uniformly integrable, by Proposition
2.l,we need only to prove that lla"(.)ll -+ 0 in measure. Suppose not. Then there exist
e > 0 a n d 4 > 0 s u c h t h a t

p ( [w  eA  :  l l z " (a r ) l l  >  s ] )  >  4

for infinitely many n, namely, there exists an infinite subset S C N such that the preceding
inequality holds for all n e S. Let us consider the following Pettis integrable functions

U, i : I lae;z:u, (o) f B (0, e))u n

and w, i: trn -'un. By virtue of Theorem 1.1, the sequence (ur) is relatively sequentially
oeLQD,z,ff(r) I E/) compact. By extracting an appropriate subsequence, we may

suppose u, converges to u € P iQ-L) for this topology. It follows that u.r, weakly converges
to -u. Since 0 e 0"r7(l Qts)) a.e. and un weakJy converges to 0, we obtain u : 0. Since
O"^t(lkt)) : Drnt(lfut)) because f (a;) is convex nonn compact,O e O"nt(l (a;)) a.e.
Hence, 0 I co(f (ar) \ B(0, e)) a.e., where B(0, e) is the open ball of center 0 and
radius e. Now, we set A : {ar e O : f(ar) \ B(0, e) I Al. Thenthe multifunction
E : a --> co(F(a) \ B(0,e)) from A to ck(E) has its graph in @ n n A B@),
hence, the multifunction V defined on A with nonempty values in 86, (thanks to the
Hahn-Banach theorem):

V(a.r )  :  {x '  eEs'  :3*(x ' ,  E(ar) )  < 0}

has its graph in (A n F) e B1E 6,1 , whereE 2' is endowed with the topology of compact
convergence on E'. Hence, X admits a .F measurable selection o : A r+ BE, (see, for
example, [14, Theorem nI.22l). Since 86, is compact metrizable for the topology of
compact convergence, there is a sequence (o;r) of simple f-measurable mappings from
A to B s, such that dft pointwise converges to o for the compact convergence. It follows
that

l im 6*(or(ar), X(ar)) :3*(o(to)' E(ar)) < 0
k+oo

for every @ e A. Then applying Lemma 1.4 to the sequence (6*(or(.), t(.)))t provides
a  < 0 a n d k r  € N s u c h t h a t

Yk > k1,  tL({o € A:8*(op(o) ,  t (ar) )  > a l )  <

Letk> ftr befixedandset

Ap : {a e A : 6* (op(t't), )(ar)) < a} and Bt : A\ An .

Then we have
limsup(or(ro), u"(ar)) < 0

for all ar e A7.. Since op is a simple function with values in Bs, and un converges
oe;QD,rff@) I Et) to 0, ((or, u,)), converges o(rf,(Ar), rff(Ar)) to 0. From
Th6orbme 26 in lI5 , p. 441, it follows that ((on , u, ) )n converges to 0 in measure on Ap .
Consequently, there exists Nr such that

n
2

q

2 '
Vn > N1 a p. ( {at  e Ap:  \op(a) ,u"(a))  < o})  <



328 Allal Amrani, Charles Castaing, and Michel Valadier

We have

{o e A : un(a) * Ol : {o e At : u"(ro) + O}U {o e & : u"(to) I 0}

C ko e Ar : v"(to) + OlU Bk

C {a e At : @*(ro), v"(a)) < a} U Bp .

For n > N1, we have

p ( {o  e  A :u " (a ; )  #0 } )  =  LL ( {@ e  A* :  ( onko ) , v "ko ) l  <a } ) I  p (Bn )

4 . 4'  t *  r : ' ? '
Hencb, for n > N1, n € S, we obtain the contradiction

p({(D e S2 : u"(a) e B(O,s)}) : tt({a e A : u"Qo) # 0}) < n. r

Remark. It is worthy to mention an alternative proof of LemmaZ.2via a new notion of
K-convergence developed by Balder [6], which we include in the following for the sake
of completeness.

Since the sequence (u) is Pettis uniformly integrable, by Proposition 2.1, we need
only to prove that llu"(.) - ll (.) ll + 0 in measure. Balder captures Theorem 2.5 in [6,
pp.29-301the case of scalarly integrable functions. We reproduce here his arguments.

Since E is separable, the functions ,rn are strongly measurable and the associated
Young measures Eu, atre unambiguously defined. The set they form {eu. : n e N} is
norm tight (E being equipped of its norm) because f (ro) e ck(E) for every @ e Q. By
Theorem A.5 in [6, p.41], there exists an infinite subset S of N and a Young measure 6*,
such that the subsequence (eu)^as K-converges to 6*, which is written as

eu^  1  6 * .

Because 6*(ar) is carried by f (ar), it has a barycenter bar 6*(ar). Let (xj)1 be a

o (Et, E)-dense sequence in B s,. Since {6* (x', f (.)) : x/ e E e'l is uniformly integrable,
sois {(xj, u*(.)) : m e S}.Asin [6,p.27],thenumberdependingonla,whichisdefined
fo rany  B  eF  andT  eNby

f r f 'r f
|  |  |  

( . j , x l e u . ( d x ) l u @ a )  :  
|  ( I n  I  x j , u ^ ) d p :  ( 1 s  I  * j , u ^ ) ,

J  L J  J
B E 9

converges both to $n A xi, ul : In@',, uld p. and to

f r f t f

I I I t-',, x)s.(dfl] tt@o) : I Uj,bar6*(ro)) rr(da).
J  L J  J  J  J
B E B

Hence, bar6*(a.r) : u(co) a.e. Now, the remainder of the proof is the same: The whole
sequence (ur), converges in measure to u (E being equipped of its norm). I

By combining Theorem 1.1 and Lemma 2.2, we obtain a version of Olech's lemma in
Pettis integration.
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Theorem 2.3. Suppose E is a separable Banach space, | : Q -+ ck(E) is a Pettis
integrable multfunction, and (un)ray is a sequence in 3{" satisfying:

(a) lim /., un@t) d 1,t : e for the weak topology o (E, Et);
n + m J J Z  

'  -

/ ^  \
(b) e e 0*, ( Jo f fut) 1t(dot) ).
Then there exists a unique Pettis integrable selection u ofl such that

, : 
I u(a) tt(do) and llu, - ullp" --> O.

o

Proof. We will proceed in three steps.

Step 1. There exists a unique u e S{" such that e : Iaa dg.. Suppose not. Then there
exist z; € Si' (, : l, 2) such that

I I

r r  *  u z  a n d  e :  I  u t d p :  I  u 2 d p . .  ( 2 . 1 )

* *

Hence, there exist x' e E' and A e .F with p,(A) > 0 such that

\x t ,u2(a;)  -u(ro) l  > 0 (2.2)

for all ar e A. Now, we write

I r  f  f  r

" :  ; (  I  , r a p +  |  u z d l t )
L ' J  J  /

a o
1 r  f  . .  \  l t  f  .  \  - -:  
, \  J 

( Ieur t  rc, lnu)d1t)* 
Z\ J 

( la\ear * Iau)d1t).  (2.3)

O O

Note that the functions I au 1 * | s1au2 and I gia z 1 * 1 1u2 are Pettis integrable selections
of f . Then by (b) and (2.3), we deduce that

r f f r
l u l d p . l  l u 2 d p :  l u t a p * l u 2 d p .  ( 2 . 4 )

J J J J
A A\A f2\A A

From (2.1) and (2.4), it follows that

I I

I  u r d p :  I  u 2 d p .  ( 2 . 5 )
to to

which contradicts (2.3).

Step 2.u(a) e 8",t(lko)) a.e. Suppose not. Since the graph of the multifunction
3-r(f (.)) belongs to f I B(E) tl4, Corollary IV.5l, the set

A : {a e I : u(ro) f O"y(l (a>)}
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is F-measurable with p(A) > 0. This allows us to repeat the arguments in Theorem 1.3
providing two Pettis integrable selections g and h of f such that

I
g l h  a n d  u :  

r ( S - t h ) .

Let us consider a f-measurable set B c A of positive measure such that

and set

Then we have

with /| il dp + Ia Bzdpe , thus contradicting the extreme nature of e.

Step3. l lur-ullp, -+ 0.ByTheoreml.l,thereexistsasubsequence(un)of (4")which

weakly converges to an element u € SF'. By (a), it follows that e : [nu dp'.lJsing
Step 1, we deduce that u : z. By Step 2, we may apply Lemma 2.2 to the sequence
(r,r,o) providing

)yy l lu " r -u l lp " :o '
From what has been proved, any subsequence (ur) of (u") admits a subsequence (w")

such that llw, - ullp" -+ 0. So we may conclude that llu, - ullp" --> 0. r

Now, we proceed to a generulizeLernma22.

Theorem 2.4, Suppose E is a separable Banach space, Q : O -+ Lwc(E) an
Lwc(E)-valued rneasurable multifunction, (un)nay1 a Pettis unifurmly integrable and
ck(E)+ight sequence in PIQ) which weakly converges to u e P[fu) witn un(a) e
A@) fu eN) and u(a) e \ '*t(Q(ot)) a.e., then l lun - ullp" --> 0.

Proof. Wemaysupposea :0and0 e O(ar)forallar e Qbecauseco(<D(a;)U{0}) sti l l
belongs to Lwc(E). So we have 0 e \rr1(QQ't)) for almost anywhere (a.a. for short)
ar e O. Let e. > 0. Since (rrr)ren is Pettis uniformly integrable, there exists 6 > 0 such
that

p(A) < | 4 s,up lllaunllps < s.
neN

(2.6)

By the tightness hypothesis, we find a ck(E)-valued Pettis integrable multifunction f5
such that

sup pc({r,r e {2 : u"(at) f fa (ar)}) < 6.
neN

U n i: t lareiiz:u,(a) el 5 (o)l u n,

u) n i: I lo,ee:u, (a) 4l ild)u n,

I  saw+ |  naw
B B

g :  l B g  *  l e 1 s a  ^ d  8 r :  I B h  *  l o \ r a .

f  l r  f  f  r, :  
J  " d p : ; \ J  t , o u +  J n s z a w )
o o

For every n e N. we set

(2.7)
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and

A(a;) :: O(a.t) n co(f5(ar) U {0})

for all a-l e Q. Then it is clear that the multifunction A has nonempty convex compact
values and is Pettis integrable because

Yx' e E', 0 < 6*(r/, A) < 6*(x/, f6 u {0}),

so that {6*(x', A) : llx/ll < 1} is uniformly integrable. Thus, u, e S'o" where 5{'
denotes the set of Pettis integrable selections of the c/c(E)-valued Pettis integrable
multifunction A. By Theorem 1.1, we may suppose un weakly converges to u e 9Pn",
by extracting a subsequence ifnecessary. Hence, we have

0 : weak_ 
,\r": 

we?k_ 
,$[r, I wrl _ u * w

with ru e 5f" using Factl.2. Since 0 e 0"*t(Q(a)) a.e., it follows that u : ?, : 0
a.e. and 0 e O",s(A,Q,t)) a.e. This allows us to apply Lemma 2.2 to the sequence (ur),
showing that llu,llp, -+ 0. Since

l lu" l l  p"  < l lu" l l  p"  *  l lw" l l  p"  < l lu" l l  p"  I  t

for all n e N, using (2.6) and (2.7), and e is arbitrary > 0, llu,llr, -+ 0. r

Remarks. (1) Assume the hypotheses of Theorem 2.4 arc satisfied. Then )(ar) ::
co({u"(rtt) : n e N}) e Lwc(E) for all ar e 9, u(to) e O",t(E(a)) a.e., and thanks to
Fact 1.2, u e E$' .

(2) If O : Q -+ cwk(E) is a scalarly integrable multifunction, (zn)n.11 is a
scalarly integrable sequence of selections of O which weakly converges to a scalarly
integrable E-valued function z, thanks to the measurability of cow-Ls(un(,)) and the
weak compactness of O(ar) (see, for example, [3, Lemma 2]), we obtain more

uko) e cow-Ls(ur(a)) a.e.

So it is natural to pose the question of the validity of Theorem 2.4 under the sole extremal
condition

u(a) e 0",t(cow-Ls(u"(a))) a.e.

This is an open problem (compare Theorem A in126l).
It is worthy to mention two useful properties of Pettis uniformly integrable sequences

in P[(D, namely, we have the following.

(3) If (2"),6N is Pettis uniformly.integrable and cwk(E)-tight (resp. ck(E)-tight),

then, for every A e F,the sequence (1o", O*),.*is relatively weakly compact (resp.

nonncompact). ItisenoughtoprovethisfactwhenA: g.Lete > 0.Aneasyinspection

of the proof of the preceding theorem shows that Lt n : n n { ur, where (ln r, d p) 
r.^

is relatively weakly compact (resp. norm compact) by Theorem 1.1 and llw,llp" < e

for all n € N. It follows that the sequence 
Un", 

d p),.*is relatively weakly compact

(resp. norm compact) too. Even in the Bochner integration, the norm compactness of
/ "  \
\l a", dF),.* is useful in several places. See, for example, [7] in which the authors

state the Pettis-norm convergence via Bocce criteria and the preceding compactness
result.
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(4) If (a,),6y is a sequence in Pi],L) satisfying

(i) {(r', u,) : llx/ll < l; n e N} is uniformly integrable in l, l(g.)l
(ii) U l[o"" dp.] is rclatively weakly compact, for every A e F,

n e N

then there is a subsequence (ao1n;) such that [o1x' , uo6;dp converges in R for every
A e F and every x' € E' . We refer to l2,l3l for proof.

So_by combining these remarks, we obtain a "conditionally weakly compact" criteria
in PL1D, namely, suppose (u)nev is a cwk(E)-tight sequence in P)@) such that

{(x',u) : ll.r'll < l, n e N} is uniformly integrable in Zft(f), then there exists a
subsequence (u,p6) such that [o{x',ur61ldp converges in R for every A e F and
every x' e E'. See [9, 17] for other related results.

The following result shows that Pettis-norm convergence is implied by strict convexity.

Theorem 2.5. Let g : I x E -->l - oo, ool be a ? I B(E)-measurable integrand
such that q(a,.) is convex lower semicontinuous on E for every fixed ro € 52. Let
(u,),eN be a Pettis unifurmty integrable and ck(E)-tight sequence in Pi}r.). Suppose
epig. e Lwc(E) for every at e 9, un weakly corwerges to u e P[(D, the

functions q(.,u,(.)) andg(, u(.)) are integrable, andg(.,unO) corwerges o(Lr, L@)
to 9(, u(.)) with

(u(t 't), p@;, ukt)) e \r 'y(epig(a, .)) t-t-a.e.,

then llu, - ullp" --+ 0.

Remark. If 7Qo,.) is strictly convex, (x,q(a,x)) is always an extremal point of
epigQtt,.) for all x e E.

Proof. Since e(.,u,(.)) converges o(Lt,L*) to q(.,2(.)), applying Theorem 2.4 to
the Pettis uniformly integrable E x R-valued functions

(un,  e( ,  u"( . ) )  and (u,  q( . ,  u( . ) )

and to the multifunction O(ar, .) : epigko,.) yields the desired result; the details are
left to the reader. r

It would be interesting to address the question: What happens if one replaces ck(E)
by cwk(E) in Theorem 2.4? This leads to the following variant.

Theorem 2.6. Suppose E is a Banach space with strongly separable dual, | : O -->

cwk(E) a Pettis integrable multifunction, (ur) a sequence in E!" whtchweakly converges
tou eSf"  wi thu e a"n(S!) ,  andg:9x E -+ R+ anintegrandsat is fy ing

(1) q is ? I B(E)-measurable;
(11) for every @ e Q, qQt, .) is (Et, E) continuous on E;

(i11) for every a e Q, p@,0) : 0;

then g(., u,(.) - u(.)) --> O in measure.
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Proof. We may suppose u : 0 and we will repeat the arguments of the proof of Lemma
2.2 with appropriate modifications. Suppose the conclusion is not true. Then there are
e > 0 a n d n > 0 s u c h t h a t

p ( {@ e  9 :9 (a ,u " ( t o ) )  >  e } )  >  r y (2.8)

for infinitely many n, namely, there exists an infinite subset S C N such that (2.8) holds
for alln e S. For eYery @ € S2, set

W. (0 ,e )  : -  { x  e  E  :  g (a , r )  <  s } . (2.e)

Then by (ii) and (iii), I4l,(0, e) is a weakly open neighborhood of 0, and by weak
compactness of f (ro), we have 0 # co(f (ar) \ I4l,(0, e)) [3, Lemma 1']. Moreover, by
(i), the multifunction a r+ W,(0, e) has its graph in F I B(E) and (2.8) is equivalent
to

Vn e S,  pt ( {a e Q:  u"(a)  4 W,(0,  e)} )  > r l . (2.r0)

Set

A : ko e (2 : f(ar) \ W,(0, €) + g].

As in Lemma 2.2,letus define un and w" in P[(W) by

D n i :  I  l6 ,efz:u,  (o)  4W.(0,  e) lu n

andwn i: un - ur. By Theorem 1.1, the sequence (un) is relatively sequentially weakly
compact. Hence, we may suppose un weakly converges to u e Pj (l) for this topology.
It follows that w, weakly converges to -u. Since 0 e 8"rt(l@)) a.e. and un weaKy
converges to 0, we obtain u : 0. Now, we can repeat the arguments of the proof of
Lemma 2.2 invoking the separability of the strong dual of E to finish the proof. r

Remark. It is also possible to reproduce the arguments involving the K-convergence for
Young measures in the second proof of Theorem 2.3 which provide a better result since

. the strong separability hypothesis on the dual can be relaxed. The details are left to the
reader who is familiar with this concept.

3. Convergence in Pettis Norm Under Denting Point Condition

In light of the preceding results, it would be interesting to address the following question:
What happens if one replaces "extreme point condition" by the denting point condition?
This leads to following partial analog.

Theorem 3.1, Let E be a Banach space, K a closed convex subset of E, e e 8"ny(K),
and (u,)na.11 a Pettis unifurmly integrable sequence in PltD such thatYn e N, Va.r e O,
unQo) e K. Suppose llfau"dlr - ell --> 0, then llu, - ellp" --> O.



334 Allal Amrani, Charles Castaing, and MichelValad.ier

Proof. Without loss of generality, we may suppose e : 0. By virtue of Proposition 2. 1,
it is sufficient to prove that llu"(.)ll -+ 0 in measure. We will follow the arguments in
Theorem 15 in [25]. Suppose not. Then there are e > 0 and 4 > 0 such that

p({@ e 9:  l lu"(co) l l  >  €})  > t t  @)

for infinitely many n, namely, there exists an infinite subset S C N such that (x) holds
for all n e S. Set

{2n : :  { t t  e  Q :  l l u " (a ) l l  >  e } .

If lr,(O") : 1 for infinitely many n € S, there exists an infinite subset Sr of S such that

[  , ^ape  co (K  \  B (0 ,  e ) )

{

for all n € 51, hence, Iau,dll doep not converge to 0 because 0 # co(I( \ B(0, e)). If

{n  e S i  F(Q") :1} is f in i te , thereexis tsaninf in i teset52 C Ssuchthatpc(Qr)  < I
for all n e Sz, then Iau, dtt : lr(Q)r\n + (1 - tr^r(f,2n))(n, where

I f | 
' f

V":  ,ue. ,  J  
u"o*  Md (n:  r -  ^W J 

u,d&'
o\o,

Note that lrn e co(K \ B(0, e)). Then either (n --+ 0 *d /o urd1.t' cannot converge to
0 or there exists cv > 0 such that ll(nll > a for infinitely many n e S. Since we may
suppose d 1 €, we have

tt" e co(K \ B(0, cy))  ̂ d (" € co(K \ B(0, cv)).

Hence, we obtain again a contradiction

f
I u, a* € co(K \ B(0, a))
6

for infinitely many n e S. I

Comments.
(1) In Bochner integration, the results we present above are valid under fairly general

conditions (see, for example, 13, 5, 6, 8, 24, 26, 27 l).
(2) Theorem 3.1 is a partial analog of the results stated in 120,241in the Bochner

integration.

In the context of this paper, it should be mentioned that the main results are original
and focus on the difference between Bochner and Pettis integration.
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