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Abstract. Let (Q, F, 1) be a complete probability space, E a separable Banach space, and E !
the topological dual of E. Under an extreme point condition, we show that a sequence of Pettis
u-integrable E-valued functions defined on €2, which converges in the topology of pointwise
convergence on Li’{’ (1) ® E’, converges in Pettis norm and in @-measure respectively. We also

give a version of Olech’s lemma in Pettis integration.

1. Introduction

Throughout this paper, E will denote a separable Banach space, E’ the topological
dualof E, EE« the closed unit ballin E’ and (2, F, i) a complete probability space. The
symbol P (K, F, w (P () for short) denotes the space of E-valued Pettis p1-integrable
functions f Q) — E endowed with the Pettis norm || f||pe = sup fQ [, f)ldu
x'€B, E

(see, for example, [10, 13,16-19,21,22]). Strong convergence results in the space L}E (w)
of Lebesgue—Bochner functions related to extreme point condition and strict convexity
have been studied extensively (see, forexample, [1,3-6,8,9, 11,20,24-27]). The purpose
of this paper is to characterize convergence in Pettis norm and in ¢-measure for Pettis
integrable functions under extreme point condition (resp. denting point condition) and
to give a version of Olech’s lemma in Pettis integration.

We will need the following definitions and notations. A subset H C Pé (w) is Pettis
uniformly integrable (PUI for short) if, for every £ > 0, there exists § > 0 such that

mA) <8 = sup ITaulpe <.

ueH

If f e P1 (w), the singleton { f} is PUI since the set {(x', f) : [|x]] < 1} is uniformly
mtegrable [18, p. 82]. Let us mention a more general fact. If H is a subset of P! 7 (1)
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satisfying
tm sp sp [ 1 Hldu=o0,
TSN By isa)
then H is Pettis uniformly integrable. Recall || 141 p, = sup Ja 1{x’, u)| dp. For any

x'€Bp
x" € B/, one has

/ (', u)ldp = / [(x', u) dp + / (', u) | dpa. ()
A AN, w)|<a) AN}’ )] >a)

Let a be large enough in order to ensure

Vx' € Bg, Yu € H, |(x', u)|du < g/2.
{lx’,u)|>a}
Thus, the last term of () is < /2. Now, if § is small enough in order to ensure aé < £/2,
we obtain
[(x', u)ldp < au(A) < e/2
AN{{x',u)|<a} ‘

as soon as w(A) < 4.

By Lwc(E) (resp. cwk(E) and ck(E)), we will denote the set of all nonempty closed
convex locally weakly compact containing no line [14] (resp. weakly compact and norm
compact) subsets of E. If K is a convex subset of E, 8, (K) (resp. d..:(K)) is the set

of denting (resp. extremal) points of K. A multifunction I" : @ — cwk(E) is scalarly
integrable if, for every x’ € E’, the scalar function

o > 8 (x', T (@) := sup{{x’, x) : x € T'(w)}

is F-measurable and u-integrable. We denote by SF¢ the set of all Pettis integrable
selections of T". If Slf ¢ is nonempty, the integral of T over a F-measurable set A is

defined by
/l“dp, = [/fdu:fesll’f},
A

A

where [, f du is the Pettis integral of f over A.
A scalarly integrable multifunction: I' : Q — cwk(E) is Pettis-integrable if the set

"D ) = 1)

is uniformly integrable in L} (i).

A sequence (up) in P}(u) weakly converges tou € P} (u) if u, — u in the topology
of pointwise convergence on L (1) ® E’.

A subset H in Pé (u) is cwk(E)-tight (resp. ck(E)-tight) if, for every ¢ > 0,
there exists a cwk(E)-valued (resp. ck(E)-valued) Pettis-integrable multifunction T,
satisfying

sup u({w € Q : u(w) ¢ T'e(w))) <e.
ueH

We will summarize the following basic results.
The following result is a sequentially compact version of an analogous compactness
result given in Theorem V.13 in [13].
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Theorem 1.1. Suppose E is a separable Banach space andT" : Q — cwk(E) is a Pettis
integrable multifunction, then the set SI]‘:J ¢ is nonempty and sequentially compact for the
topology of pointwise convergence on Ly (1) ® E'. In particular, if T is ck(E)-valued,

then the integral
/qu:={/fdu:feSlfe]
Q

Q

is convex and compact in E.
Proof. (See [12, Theorem 4.2, Remark 1 of Theorem 4.4] and [13]).
Let us mention a useful fact.

Fact 1.2. Suppose L : Q — Lwc(E) is a measurable multifunction, (u,)neN a sequence
of scalarly integrable E-valued selections of L, and u : Q — E a scalarly integrable
function such that

lim [ (x',un)dp = /(x’, u)du

n—»00
A A

forevery A € F and every x’ € E', then u(w) € L(w) u a.e.

Proof. Suppose the conclusion is not true. Then by Lemma III. 34 in [14], there exist
x' € E', A € F with u(A) > 0 such that

(x', u(w)) > 8*(x', L(w)) := sup{{x, x) : x € L(w)}
for all w € A. By integrating the above inequality, we obtain
/6*(x’,L)d,u, < [(x’,u)du. (1.1)
A A

Since (x’, u,) converges o (LY, L™) to (x’, u) and the u, are Pettis selections of L, we
deduce that

/ 5, Lydp = lim / iy el / ooty s (12)
A A
“which contradicts (1.1). ]

Theorem 1.3. Suppose I' : Q@ — cwk(E) is a scalarly integrable multifunction such
that Slf ¢ is nonempty, then
3ext(8r1?e) ST Sg:(ry

Proof. Since the inclusion Sg’ "’l @ C Bex,(Slf’ ¢) is obvious, it remains to prove the

inverse inclusion. Assume by contradiction that there is f € Oex; (81’3 P Sg: f @ Since
the graph of the multifunction 3., (") belongs to 7 ® B(E) because E is separable [14,
Corollary IV.5], the set

A={we: f(w) ¢ dex:(T)(w)}
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is F-measurable with ;4(A) > 0. By the same construction as in Theorem IV.14 in [13],
there are two A N F-measurable selections g and # of I such that

1
8(®) # h(w) and f(w) = 7[g(@) + h()]

forallw € A. Since ||g|| and ||/ || are F-measurable, we finda > 0 and B € A N F with
1 (B) > 0 such that, Vo € B, sup{|lg(@)|, [[A(@)]]} < a. Set

g1=1pg+1a\pf and g2 = 1gh + 1g\pf.

1
Theng; € Sf(i =1, 2),81 # g2and f = 5(81+gz)-ThiSPr0VeSthatf ¢ 005 (SE°),
contradicting the extreme nature of f. |

We will need the following lemma which is borrowed from Lemma 3 in [3 p. 172].

Lemma 1.4. Let (u)neN be a sequence of real F-measurable functions converging in
measure to a F-measurable function u on a F-measurable set A. If u(w) < Oa.e. on A,
then, for every n > 0, there exist a < 0 and kj € N such that

k>ki = p({w € A : ur(w) > a}) <.

2. Main Results
We will first present a version of the Lebesgue—Vitali theorem in Pé ().

Proposition 2.1. Suppose (u,)nen is a PUI sequence in PL',-{ L) converging in measure
t0 ttog € P(1), then |y — oo |l pe —> 0.

Proof. Suppose the conclusion does not hold. There exists ¢ > 0 such that, for a
subsequence still denoted by (u,)n, Vo, |4y — Usollpe > &. Since (u,)zen is PUIL,
there exists § > 0 such that ;(A) < § implies ¥n € N U {00}, [1aunllpe < &/3.
There exists a subsequence still not relabeled such that ||u,(.) — 4o (.)|| — O almost
everywhere (a.e. for short). By virtue of Egorov’s theorem, there exists B € F such that
1(\ B) < éand ||u,(.) — uoo ()| = O uniformly on B. Let ng be such that Vn > ny,
|2 (@) — too(w)|| < €/3 on B. Then Van > ng, and we have

ltn — toollpe < I115(un — Uoo)ll Pe + ||152\B(un ~ Uoo) |l Pe
<e/3+ |1la\Bunllpe + llo\BUccllPe < €.

This contradicts the initial assumption. |
We begin with the following lemma formulated for simplicity in a special case.
Lemma 2.2. Let E be a separable Banach space, T : Q@ — ck(E) a Pettis integrable

multifunction, and (u,) a sequence in SI{J ¢ which weakly convergestou € S ;e. Suppose
U € Dxt (S{©), then |un — ullpe — 0.
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Proof. Without loss of generality, we may suppose ¥ = 0 so that, by Theorem 1.3,
0 € 9.5 (T' (w)) a.e. Since the sequence (1) is Pettis uniformly integrable, by Proposition
2.1, we need only to prove that ||u,(.)|| — O in measure. Suppose not. Then there exist
& > 0 and n > O such that

p(w € Q: un(@)|| = €}) =

for infinitely many n, namely, there exists an infinite subset S C N such that the preceding
inequality holds for all n € S. Let us consider the following Pettis integrable functions

Vp = lweQuu, (0)¢B(0,8)}Un

and wy, := u, —v,. By virtue of Theorem 1.1, the sequence (v, ) is relatively sequentially
a(Pé (w), LY (1) ® E’) compact. By extracting an appropriate subsequence, we may
suppose v, converges tov € Pé (w) for this topology. It follows that w, weakly converges
to —v. Since 0 € 3y (I'(w)) a.e. and u, weakly converges to 0, we obtain v = 0. Since
Boxt (T(@)) = 0gpn: (T'(w)) because I'(w) is convex norm compact, 0 € 94 (I'(w)) ae.
Hence, 0 ¢ co(T'(w) \ B(0, ¢)) a.e., where B(0, ¢) is the open ball of center 0 and
radius €. Now, we set A = {w € Q : '(w) \ B(0, ¢) # @}. Then the multifunction
T : w — co(F(w) \ B(0,¢)) from A to ck(E) has its graph in (A N F) ® B(E),
hence, the multifunction ¥ defined on A with nonempty values in Bz (thanks to the
Hahn—Banach theorem):

V(w) = {x’ € Bp : 8*(x/, T(w)) < 0}

has its graph in (A N F) ® B(Bg'), where By is endowed with the topology of compact
convergence on E’. Hence, ¥ admits a F measurable selection o : A By (see, for
example, [14, Theorem IIL. 22]). Since B is compact metrizable for the topology of
compact convergence, there is a sequence (o) of simple F-measurable mappings from
A to B such that oy, pointwise converges to o for the compact convergence. It follows
that

lim 8*(or(w), T{w)) = §*(0(w), T(w)) <0

k—00

for every w € A. Then applying Lemma 1.4 to the sequence (8* (0% (.), X(.)))x provides
a < 0and k; € N such that

Vk > ki, p({w € A : 8 (or(w), Z(w)) > a}) < g g

Let k > k; be fixed and set
Ar = {w e A: 8 (or(w), T(w)) <a} and By = A\ A

Then we have
lim sup{ox (@), vp(@)) < 0
n—>0Q
for all € Ay. Since oy is a simple function with values in Bz and v, converges
o (PL(w), LP (1) ® E') to 0, ({ok, vn))n converges o (Ly(Ar), L¥(Ar)) to 0. From
Théoréme 26 in [15, p.44], it follows that ({o%, vs)), converges to O in measure on Ay.
Consequently, there exists Ny such that

Vn > N1 = u({w € Ap : {or(@), vp(@)) < a)) < g ;
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‘We have

{we A:v(w) #0} = {w € Ar : v(w) # 0} U {w € By : vy(w) # 0}
C {w € A : vp(w) 0} U By
C {w € A : (0k(®), vn(w)) < a} U By.

For n > Nji, we have

p({w e A vy(w) #0}) < u({w € Ag : {(or(@), (@) < a}) + u(By)

n.,n_
<2+2—’)

Hence, for n > N1, n € S, we obtain the contradiction

p{w € Q:un() ¢ BO,e)}) = ulw € A: vp(w) #0}) <. n

Remark. It is worthy to mention an alternative proof of Lemma 2.2 via a new notion of
K -convergence developed by Balder [6], which we include in the following for the sake
of completeness.

Since the sequence (1) is Pettis uniformly integrable, by Proposition 2.1, we need
only to prove that ||u,(.) — u(.)|| — O in measure. Balder captures Theorem 2.5 in [6,
pp. 29-30] the case of scalarly integrable functions. We reproduce here his arguments.

Since E is separable, the functions u, are strongly measurable and the associated
Young measures g,, are unambiguously defined. The set they form {e,, : n € N} is
norm tight (E being equipped of its norm) because I'(w) € ck(E) for every w € Q. By
Theorem A.5 in [6, p.41], there exists an infinite subset S of N and a Young measure 6.,
such that the subsequence (ey, }mes K-converges to &, which is written as

K

.

m

Because §.(w) is carried by I'(w), it has a barycenter bar é,(w). Let (xj’-)j be a
o (E', E)-dense sequence in Bg. Since {8*(x, ['(.)) : x' € Bp}isuniformly integrable,
S0 is {(xj’., up () : m € S}. Asin [6, p.27], the number depending on m, which is defined
for any B € F and j € N by

/ /(x x)é‘um(dx) pldw) = /(13 ® xj, um)dp = (13 ® X}, um),

Q

converges both to (1 ® x, u) fB u)dp and to
/ / (x], 2)8.(dx) | do) = / (x], bar 5, (w)) u(dw).

Hence, baré, (w) = u(w) a.e. Now, the remainder of the proof is the same: The whole
sequence (i), converges in measure to u (E being equipped of its norm). [ |

By combining Theorem 1.1 and Lemma 2.2, we obtain a version of Olech’s lemma in
Pettis integration.
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Theorem 2.3. Suppose E is a separable Banach space, T' : Q — ck(E) is a Pettis
integrable multifunction, and (u,)neN is a sequence in Slf ¢ satisfying:

(@) lim fQ un(w) du = e for the weak topology o (E, E’);
n—o0
(®) € € dext  f (@) 1(de)).
Then there exists a unique Pettis integrable selection u of T' such that

g 2 / u(o hEy ES L uip. 0.
Q

Proof. We will proceed in three steps.

Step 1. There exists a unique u € SII-) ¢ such that e = [, u dp. Suppose not. Then there
exist u; € Slfe (i = 1, 2) such that

U1 # uy ande=/u1du=/u2du. 2.1)
Q Q-
Hence, there exist x’ € E’ and A € F with u(A) > 0 such that
(x', uz(@) — u1(@)) >0 (2.2)

for all w € A. Now, we write

e=l(/u1du+/uzdu)

Q Q

[\

1
=5 /(1Au1 + 1Q\Au2)dﬂ /(1Q\Au1 + 1Auz)du) 2.3)

Note that the functions 1 4114 Lo\ a2 and 1 g\ a1 41 415 are Pettis integrable selections
of I'. Then by (b) and (2.3), we deduce that

[uldu+/u2du=/u1du+/u2du. 2.4)

A Q\A Q\A A
From (2.1) and (2.4), it follows that
/uldu:/ urdu 2.5)
A
A

which contradicts (2.3).

Step 2. u(w) € 0ex(I'(w)) a.e. Suppose not. Since the graph of the multifunction
0ex: (I'(.)) belongs to F ® B(E) [14, Corollary IV.5], the set

={w e Q: uw) ¢ 3x:(T'(w)}
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is F-measurable with u(A) > 0. This allows us to repeat the arguments in Theorem 1.3
providing two Pettis integrable selections g and % of I' such that

’ 1
g #h and u=§(g+h).

Let us consider a F-measurable set B C A of positive measure such that

/gdméfhdu
B

B

and set
g1=1pg + la\pu and g2 = 1gh + lg\pu.

1
e=fudu=§(/g1du+fgzdu)
Q
Q

Q

Then we have

with [, g1 du # [, g2 du, thus contradicting the extreme nature of e.

Step 3. ||u, —u] pe = 0.By Theorem 1.1, there exists a subsequence (u,, ) of () which
weakly converges to an element v € Slf ¢. By (a), it follows that ¢ = [, vdu. Using
Step 1, we deduce that v = u. By Step 2, we may apply Lemma 2.2 to the sequence
(u,,) providing

lim |u,, — ullpe =0.

k— 00

From what has been proved, any subsequence (v,) of (1,) admits a subsequence (wy)
such that ||w, — u|| pe — 0. So we may conclude that |Ju, — u|| p. — O. [

Now, we proceed to a generalize Lemma 2.2.

Theorem 2.4. Suppose E is a separable Banach space, ® : Q — Lwc(E) an
Lwc(E)-valued measurable multifunction, (4,)neN a Pettis uniformly integrable and
ck(E)-tight sequence in Pé (i) which weakly converges to u € Pé (w) with uy(w) €
D (w) (n € N) and u(w) € 9ex: (O (w)) a.e., then |u, — ullpe — 0.

Proof. We may suppose u = 0and 0 € ®(w) for all w € Q because co(P (w) U (0}) still
belongs to Lwc(E). So we have 0 € 9gx; (P (w)) for almost anywhere (a.a. for short)
w € Q. Let & > 0. Since (#,)nen is Pettis uniformly integrable, there exists § > 0 such
that
u(A) < 8 = sup |[1aunllpe < &. (2.6)
neN

By the tightness hypothesis, we find a ck(E)-valued Pettis integrable multifunction I's
such that

sup u({w € Q : up(w) ¢ I's(@)}) < 4. 2.7

neN
For every n € N, we set

Vn 1= lweQu, (@)els(@)} 4n;

Wy 1= Liweu, ()¢l (@)} ¥n;
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and
A(w) := ©(w) Neco(Ts(w) U {0})

for all w € Q. Then it is clear that the multifunction A has nonempty convex compact
values and is Pettis integrable because
Vi' € E', 0 <8*(x', A) < 8 (', Ts U{0}),

so that {§*(x’, A) : ||x']| < 1} is uniformly integrable. Thus, v, € SE¢ where SF¢
denotes the set of Pettis integrable selections of the ck(E)-valued Pettis integrable
multifunction A. By Theorem 1.1, we may suppose v, weakly converges to v € ST¢,
by extracting a subsequence if necessary. Hence, we have

0 = weak- lim u, = weak- lim [v, + wy] =v+w
n—>00 n—o0

with w € Sge using Fact 1.2. Since 0 € 9.x:(P(w)) a.e., it follows that v = w = 0
a.e. and 0 € 9,5;(A(w)) a.e. This allows us to apply Lemma 2.2 to the sequence (v,),
showing that ||v, || pe — 0. Since

lunllpe < llvnllpe + lwnllpe < llvnllpe + €

for all n € N, using (2.6) and (2.7), and ¢ is arbitrary > 0, ||u,| p. — 0. [ |

Remarks. (1) Assume the hypotheses of Theorem 2.4 are satisfied. Then T (w) :=
co({uy(w) : n € N}) € Lwe(E) forall € Q, u(w) € 9.:(E(w)) a.e., and thanks to
Fact 1.2, u € Sfe.

QI ®: Q — cwk(E) is a scalarly integrable multifunction, (#,)seN is a
scalarly integrable sequence of selections of & which weakly converges to a scalarly
integrable E-valued function u, thanks to the measurability of cow-Ls(u,(.)) and the
weak compactness of ® (w) (see, for example, [3, Lemma 2]), we obtain more

u(w) € cow-Ls(u,(w)) a.e.

So it is natural to pose the question of the validity of Theorem 2.4 under the sole extremal
condition
U(w) € Oex: (COw-Ls(u,(w))) a.e.

This is an open problem (compare Theorem 14 in [26]).

It is worthy to mention two useful properties of Pettis uniformly integrable sequences
in Pé (1), namely, we have the following.

(3) If (un)nen is Pettis uniformly integrable and cwk(E)-tight (resp. ck(E)-tight),
then, for every A € F, the sequence ( / AlUnd u)neN is relatively weakly compact (resp.
norm compact). Itis enough to prove this fact when A = Q.Lete > 0. Aneasy inspection
of the proof of the preceding theorem shows that u,, = v, + w;,, where ( fQ v, d ,u)neN
is relatively weakly compact (resp. norm compact) by Theorem 1.1 and |w, | p. < €
for all n € N. It follows that the sequence ( fg Upd ,u)neN is relatively weakly compact
(resp. norm compact) too. Even in the Bochner integration, the norm compactness of
< Saund u)neN is useful in several places. See, for example, [7] in which the authors

state the Pettis-norm convergence via Bocce criteria and the preceding compactness
result.
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(4) If (u,)neN is a sequence in Pé (w) satisfying
1) {(x,u,) : |x']| <1; n € N}is uniformly integrable in L%{(N);
(i) U {/, un du} is relatively weakly compact, for every A € F,
neN
then there is a subsequence (#q(n)) such that [, (x', ue(n))dp converges in R for every
A € F and every x' € E’. We refer to [2, 13] for proof.
So by combining these remarks, we obtain a “conditionally weakly compact” criteria

in Pé (u), namely, suppose (un)neN 1S a cwk(E)-tight sequence in Pé (i) such that
{(x",uy) : ||Ix'|| < 1, n € N} is uniformly integrable in L%{(,u), then there exists a
subsequence (#y(,)) such that f 4 (x", upmy)dp converges in R for every A € F and
every x’ € E’. See [9, 17] for other related results.

The following result shows that Pettis-norm convergence is implied by strict convexity.

Theorem 2.5. Let ¢ : @ x E —] — 00, 00] be a F @ B(E)-measurable integrand
such that ¢(w, .) is convex lower semicontinuous on E for every fixed w € Q. Let
(un)neN be a Pettis uniformly integrable and ck(E)-tight sequence in Pé (). Suppose
epig, € Lwc(E) for every o € K, u, weakly converges to u € Pé (wn), the
Sunctions ¢(., u,(.)) and ¢(., u(.)) are integrable, and ¢(., i, (.)) converges o (LY, L®)
to @(., u(.)) with

(), p(w, u(w)) € dex (epip(w, .)) u-a.e.,
then ||u, — u| pe — O.

Remark. If ¢(w,.) is strictly convex, (x, ¢(w, x)) is always an extremal point of
epig(w, .) forallx € E.

Proof. Since ¢(., u,(.)) converges o (LY, L) to ¢(., u()), applying Theorem 2.4 to
the Pettis uniformly integrable E x R-valued functions

(tn, (., un()) and (u, (., u(.))

and to the multifunction ®(w, .) = epi¢(w, .) yields the desired result; the details are
left to the reader. u

It would be interesting to address the question: What happens if one replaces ck(E)
by cwk(E) in Theorem 2.4? This leads to the following variant.

Theorem 2.6. Suppose E is a Banach space with strongly separable dual, T" : Q —
cwk(E) a Pettis integrable multifunction, (u,) a sequence in SI{) € which weakly converges
tou € SII‘)e withu € 8ex,(815e) ,and ¢ : Q x E — R an integrand satisfying

(1) ¢ is F @ B(E)-measurable;
(ii) for every w € Q, p(w, .) is (E', E) continuous on E;
(iii) for every w € Q, p(w, 0) = 0;

then (., u, () — u(.)) — 0 in measure.
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Proof. We may suppose u = 0 and we will repeat the arguments of the proof of Lemma
2.2 with appropriate modifications. Suppose the conclusion is not true. Then there are
€ > 0 and n > 0 such that

(o € Q:gplw,uy(w)) > ¢€)) =1 (2.8)

for infinitely many 7, namely, there exists an infinite subset S C N such that (2.8) holds
forall n € S. For every w € €, set

Wy(0,¢8) :={x € E: plw,x) < ¢&}. 2.9)

Then by (ii) and (iii), W, (0, ¢) is a weakly open neighborhood of 0, and by weak
compactness of I'(w), we have 0 ¢ co(I"(w) \ W, (0, )) [3, Lemma 1']. Moreover, by
(1), the multifunction w — W,,(0, ¢) has its graph in 7 ® B(E) and (2.8) is equivalent
to

Vnesl, u{we Q:u,(w) ¢ Wy(0,8)}) > n. (2.10)

Set
A={weQ:T(w)\Wy0,e) #0)}.

As in Lemma 2.2, let us define v, and w,, in Pé (u) by

U = lweQu, ()¢ W, (0,6)} Un

and wy, := u, — v,. By Theorem 1.1, the sequence (v,,) is relatively sequentially weakly
compact. Hence, we may suppose v, weakly convergesto v € Pé () for this topology.
It follows that w, weakly converges to —v. Since 0 € 9,,,(I"(w)) a.e. and u, weakly
converges to 0, we obtain v = 0. Now, we can repeat the arguments of the proof of
Lemma 2.2 invoking the separability of the strong dual of E to finish the proof. |

Remark. Itis also possible to reproduce the arguments involving the K -convergence for
Young measures in the second proof of Theorem 2.3 which provide a better result since

_the strong separability hypothesis on the dual can be relaxed. The details are left to the
reader who is familiar with this concept.

3. Convergence in Pettis Norm Under Denting Point Condition

In light of the preceding results, it would be interesting to address the following question:
What happens if one replaces “extreme point condition” by the denting point condition?
This leads to following partial analog.

Theorem 3.1. Let E be a Banach space, K a closed convex subset of E, e € 3ns(K),
and (p)neN a Pettis uniformly integrable sequence in Pé () suchthatVn € N, Vo € Q,
un(w) € K. Suppose I|fQ uydu —e|| — 0, then |u, — e||p. — O.
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Proof. Without loss of generality, we may suppose e = 0. By virtue of Proposition 2.1,
it is sufficient to prove that ||u,(.)|| — O in measure. We will follow the arguments in
Theorem 15 in [25]. Suppose not. Then there are € > 0 and n > 0 such that

p({w € Q: |luy(@)|| = &}) = n (*)

for infinitely many n, namely, there exists an infinite subset S C N such that (x) holds
foralln € S. Set
Q= {weQ: u(@)| = e}

If £(£2,) = 1 for infinitely many n € S, there exists an infinite subset S; of S such that

fun du € co(K \ B(0, €))
Q

for all n € S, hence, fQ un du does not converge to 0 because 0 ¢ co(X \ B(0, ¢)). If
{n €S :u(Q,) = 1)} is finite, there exists an infinite set Sz C S such that ©(2,) < 1
for all n € S5, then fs’z updp = () ¥y + (1 — u(§2,)),, where

1 1 N
— u,dp and & = — [ un dit.
v u(xzn)/ pad o= @, ] e
Q Q\Q,

Note that ¢, € co(K \ B(0, £)). Then either ¢, — 0 and fQ u, dp cannot converge to
0 or there exists @ > 0 such that ||, || > o for infinitely many n € S. Since we may
suppose ¢ < g, we have

¥y, € co(K \ B(0,)) and ¢, € co(K \ B(0, @)).

Hence, we obtain again a contradiction

/un du € co(K \ B(0, o))
Q

for infinitely many n € S. u

Comments.

(1) In Bochner integration, the results we present above are valid under fairly general
conditions (see, for example, 3,5, 6, 8,24,26,27]).

(2) Theorem 3.1 is a partial analog of the results stated in [20,24] in the Bochner
integration.

In the context of this paper, it should be mentioned that the main results are original
and focus on the difference between Bochner and Pettis integration.

References

1. A. Amrani, Entaillabilité et convergence dans 1’espaces L', Bull. Polish Acad. Sc. 42 (1994)
229-236.



Convergence in Pettis Norm Under Extreme Point Condition 335

2.

3.

[« )]

10.
11.
12.
13.
14.
15.
. J. Diestel and J.J. Uhl, Vector Measures, American Mathematical Society, Providence, 1977.
17.
18.
19.
20.
21.
22.
23.
. C. Olech, Existence theory in optimal control, in: Control Theory and Topics in Functional

25.

26.

217.

A. Amrani and C. Castaing, Weak compactness in Pettis integration, Bull. Polish Acad. Sc. 45
(1997) 139-150.

A. Amrani, C. Castaing, and M. Valadier, Méthodes de troncatures appliquées & des problémes
de convergence faible ou forte dans L', Arch. Rational Mech. Anal. 117 (1992) 167-191.

. A. Amrani, C. Castaing, and M. Valadier, Convergence forte impliquée par la convergence

faible. Méthodes de troncature, C.R. Acad. Sci. Paris, Ser. 1, 314 (1992) 91-94,

. Z. Arstein and T. Rzezuchowski, A note on Olech’s lemma, Stud. Math. 98 (1991) 91-94.
. E.J. Balder, On equivalence of strong and weak convergence in L'-spaces under extreme point

condition, Israel J. Math. 75 (1991) 21-47.

. E.J. Balder, M. Girardi, and V. Jalby, From weak to strong types of L}-convergence by the

Bocce-criterion, Stud. Math. 111(3) (1994) 241-262.

. H. Benabdellah, Extrémalité, stricte convexité et convergence in L, Séminaire Anal. Convexe

Montpellier 21 (1991) 4.1-4.18.

. 'J.M. Borwein and A. S. Lewis, Strong rotundity and optimization, SIAM J. Optimization 4(1)

(1994) 146-158.

J. K. Brooks and N. Dinculeanu, On weak compactness in the space of Pettis integrable
functions, Adv. in Math. 45 (1982) 53-58.

C. Castaing, Convergence faible et sections extremales, Séminaire Anal. Convexe Montpellier
(1988) 2.1-2.18.

C. Castaing, Weak compactness criteria in set-valued integration, Université Montpellier II,
1995 (preprint 1995/03).

C. Castaing, Weak compactness and convergence in Bochner and Pettis integration, Vietnam
J. Math. 24(3) (1996) 241-286.

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes
in Mathematics, Vol. 580, Springer-Verlag, Berlin, 1977.

C. Dellacherie and P. Meyer, Probabilités et Potentiel, Hermann, Paris, 1975.

G. Emmanuelle and K. Musial, Weak precompactness in the space of Pettis intergrable
functions, J. Math. Anal. Appl. 148 (1990) 245-250.

R. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981) 81-86.

R. Huff, Remarks on Pettis integration, Proc. Amer. Math. Soc. 96 (1986) 402—404.

B. L. Lin, P. K. Lin, and S. L. Troyanski, Characterizations of denting points, Proc. Amer.
Math. Soc. 102 (1988) 526-528.

K. Musial, Vitali and Lebesgue theorems for Pettis integral in locally convex spaces, Atti. Sem.
Mat. Fis. Modena 25 (1987) 159-166.

K. Musial, Topics in the theory of Pettis integration, Rendiconti dell’instituto di matematica
dell’ Universita di Trieste, School on Measure Theory and Real Analysis Grado (Italy), 14-15
October 1991, pp. 176-262 (lecture).

J. Neveu, Bases Mathématiques du Calcul des Probabilités, Masson, Paris, 1964.

Analysis, IAEA, Vienna, Vol. 1, 1976, pp. 191-228.

T. Rzezuchowski, Impact of dentability on weak convergence in L', Boll. Un. Mat. Italy 7
(1992) 71-80.

M. Valadier, Différents cas o1 grice a une propriété d’ extrémalité une suite de fonctions inté-
grables fajiblement convergente, converge faiblement, Séminaire Anal. Convexe Monitpellier,
1989, 20 pp.

M. Visitin, Strong convergence results related to strict convexity, Comment. Partial Diff.
Egquation 9 (1984) 439-466.



