On a Nonlinear Boundary Value Problem with a Mixed Nonhomogeneous Condition

Nguyen Hoi Nghia

Department of Mathematics and Computer Science College of Natural Science, University of Ho Chi Minh City 227 Nguyen Van Cu, Distr. 5, Ho Chi Minh City, Vietnam

Nguyen Thanh Long

Department of Mathematics and Computer Science College of General Studies, University of Ho Chi Minh City 268 Ly Thuong Kiet, Distr. 10, Ho Chi Minh City, Vietnam

> Received March 5, 1997 Revised May 5, 1998

Abstract. We study the following nonlinear boundary value problem

$$\begin{split} & \frac{-1}{x^{\gamma}} \cdot \frac{d}{dx}(x^{\gamma}.u'(x)) + f(x,u(x)) = F(x), \ 0 < x < 1, \\ & \Big| \lim_{x \to 0_+} x^{\gamma/2} u'(x) \Big| < \infty, \ u'(1) + h.u(1) = g. \end{split} \tag{*}$$

In Sec. 1, we prove by the Galerkin method the existence and uniqueness of the weak solution of (*) in appropriate Sobolev spaces with weight. In Sec. 2, we study asymptotic behavior of the solution depending on h as $h \to 0_+$.

1. Introduction

We consider the following nonlinear boundary value problem:

$$\frac{-1}{x^{\gamma}} \cdot \frac{d}{dx}(x^{\gamma}.u'(x)) + f(x, u(x)) = F(x), \quad 0 < x < 1, \tag{1.1}$$

$$\Big|\lim_{x \to 0_+} x^{\gamma/2} u'(x)\Big| < \infty, \quad u'(1) + h.u(1) = g \tag{1.2}$$

where $\gamma > 0$, h > 0, g are given constants. f, F are given functions.

In [1], Tucsnak has considered the equation

$$-\frac{d}{dx}M(x, u'(x)) + g(x)\sin u(x) = 0, \ 0 < x < 1.$$
 (1.3)

Equation (1.3) has its motivation in the mathematical sense of the buckling of a nonlinear elastic bar immersed in a fluid. We note that Eq. (1.3), with $u'.M(x,u') \ge c_1|u'|^p$, p > 1, $C_1 > 0$ independent of x, had been considered by the authors in [2]. We consider here Problem (1.1) with $M(x,u') = x^{\gamma}.u'$, where $C_1 = C_1(x) = x^{\gamma} \ge 0$.

In [3, 4], the authors have studied the following nonlinear Bessel differential equation

$$\frac{-1}{x} \cdot \frac{d}{dx}(x.u'(x)) + u^2 - u = 0, \quad x > 0.$$
 (1.4)

In this paper, we use the Galerkin and compactness method in appropriate Sobolev spaces with weight to prove the existence of a unique weak solution. This result slightly generalizes [1-4]. We also study the asymptotic behavior of the solution u_h depending on h as $h \to 0_+$. We also obtain that the function $h \mapsto |u_h(1)|$ is nonincreasing on $(0, +\infty)$.

2. Theorem of Existence and Uniqueness

Put $\Omega = (0, 1)$, we omit the definitions of usual function spaces $c^m(\overline{\Omega})$, $L^p(\Omega)$, and $H^m(\Omega)$. We denote by H the class of all measurable functions u, defined on Ω , for which

$$\int_0^1 x^{\gamma} |u(x)|^2 dx < +\infty.$$
 (2.1)

We identify in H functions that are equal almost everywhere (a.e. for short) on Ω . The elements of H are thus actually equivalence classes of measurable functions satisfying (2.1), two functions are equivalent if they are equal a.e in Ω . Then H is also a Hilbert space with respect to the scalar product

$$\langle u, v \rangle = \int_0^1 x^{\gamma} . u(x) \, v(x) \, dx. \tag{2.2}$$

We denote

$$V = \{ v \in H : v' \in H \}$$
 (2.3)

the real Hilbert space with the scalar product

$$\langle u, v \rangle + \langle u', v' \rangle$$
 (2.4)

with derivatives in the sense of distributions [6].

The norms in H and V induced by the corresponding scalar products are denoted by $\|\cdot\|$ and $\|\cdot\|_V$, respectively. V is continuously and densely embedded in H. Identifying H with H' (the dual of H), we have $V \hookrightarrow H \hookrightarrow V'$; on the other hand, the notation $\langle \cdot, \cdot \rangle$ is used for the pairing between V and V'.

Remark 1. In defining the function space V with weight x^{γ} , we can also define V as the completion of the space

$$S = \left\{ u \in C^1([0,1]) : \|u\|_V^2 = \int_0^1 x^\gamma (|u(x)|^2 + |u'(x)|^2) dx < \infty \right\}$$

with respect to the norm $\|.\|_V$ (see [6]).

We then have the following lemmas.

Lemma 1. There exist two constants $K_1 > 0$ and $K_2 > 0$ (depending only on γ) such that

$$||u'||^2 + u^2(1) \ge K_1 ||u||_V^2, \quad \forall u \in C^1([0, 1]); \tag{2.5}$$

$$x^{\gamma/2} |u(x)| \le K_2 ||u||_V, \quad \forall u \in C^1([0, 1]), \quad \forall x \in [0, 1].$$
 (2.6)

Lemma 2. The embedding $V \hookrightarrow H$ is compact.

The proof of Lemmas 1 and 2 can be found in [5].

Remark 2. We also note that

$$\lim_{x \to 0_{\perp}} x^{\gamma/2} u(x) = 0, \quad \forall u \in V.$$
 (2.7)

(see [6, Lemma 5.40, p. 128]).

On the other hand, by $H^1(\varepsilon, 1) \hookrightarrow C^0([\varepsilon, 1]), 0 < \varepsilon < 1$, and

$$\varepsilon^{\gamma/2} \|u\|_{H^1(\varepsilon,1)} \le \|u\|_V, \ \forall u \in V, \ 0 < \varepsilon < 1,$$
 (2.8)

it follows that

$$u|_{[\varepsilon,1]} \in C^0([\varepsilon,1]), \ \forall \varepsilon, \ 0 < \varepsilon < 1.$$
 (2.9)

From (2.7) and (2.9), we deduce that

$$x^{\gamma/2} u \in C^0([0,1]), \ \forall u \in V.$$
 (2.10)

We shall make the following assumptions.

- (H₁) $f:(0,1)\times R\longrightarrow R$ satisfies the Caratheodory condition, i.e., f(.,u) is measurable on (0,1) for every $u\in R$, and f(x,.) is continuous on R for a.e. $x\in(0,1)$.
- (H₂) There exist positive constants C_1 , C'_1 , C_2 and p > 1 such that
 - (i) $u.f(x, u) \ge C_1 |u|^p C_1'$;
 - (ii) $|f(x,u)| \le C_2(1+|u|^{p-1}).$

The weak solution of Problems (1.1) and (1.2) is formed from the following variational problem.

Find $u \in V$ such that

$$\langle u', v' \rangle + h.u(1) v(1) + \langle f(x, u), v \rangle = g.v(1) + \langle F, v \rangle, \quad \forall v \in V.$$
 (2.11)

Remark 3. By (2.10), the terms u(1) and v(1) appearing in (2.11) are defined for every $u, v \in V$. We obtain (2.11) by formally multiplying both sides of (1.1) by v and then integrating by part having conditions (1.2) and (2.7) in mind.

Then we have the following result.

Theorem 1. Let h > 0, $g \in R$, $F \in V'$ and (H_1) , (H_2) hold. Then there exists a solution u of the variational problem (2.11) such that

$$u \in V$$
 and $x^{\gamma/p} u \in L^p(\Omega)$. (2.12)

Furthermore, if f(x, u) is nondecreasing with respect to u, i.e.,

(H₃)
$$(f(x, u) - f(x, v)).(u - v) \ge 0 \ \forall u, v \in R$$
, a.e. $x \in (0, 1)$,

then the solution is unique.

Proof. Denote by $\{W_j\}$ the infinite orthonormal base in the separable Hilbert space V. We find u_m of the form

$$u_m(x) = \sum_{j=1}^{m} c_{mj} W_j(x), \qquad (2.13)$$

where c_{mj} satisfy the following nonlinear equation system:

$$\langle u'_m, W'_j \rangle + h u_m(1) W_j(1) + \langle f(x, u_m), W_j \rangle$$

= $g W_j(1) + \langle F, W_j \rangle, \quad 1 \le j \le m.$ (2.14)

By Brouwer's lemma (see [7, Lemma 4.3, p. 53]), it follows from the hypotheses (H_1) and (H_2) that the system (2.13) and (2.14) has a solution u_m .

Multiplying the jth equation of system (2.14) by c_{mj} , then adding these equations for j = 1, 2, ..., m, we have

$$\|u'_m\|^2 + h u_m^2(1) + \langle f(x, u_m), u_m \rangle = g u_m(1) + \langle F, u_m \rangle. \tag{2.15}$$

By using the inequalities (2.5) and (2.6) and by the hypothesis (H₂)(i), we obtain

$$C_0 \|u_m\|_V^2 + C_1 \int_0^1 x^{\gamma} |u_m(x)|^p dx \le (|g|K_2 + \|F\|_{V'}) \|u_m\|_V + \frac{C_1'}{\gamma + 1}, \quad (2.16)$$

where $C_0 = K_1 \cdot \min\{1, h\}$.

Hence, we deduce from (2.16) that

$$\|u_m\|_V \le C,\tag{2.17}$$

$$\|x^{\gamma/p} u_m\|_{L^p(\Omega)} \le C. \tag{2.18}$$

C is a constant independent of m.

By means of (2.17) and (2.18) and Lemma 1, the sequence $\{u_m\}$ has a subsequence still denoted by u_m such that

$$u_m \to u \text{ in } V \text{ weakly,}$$
 (2.19)

$$u_m \to u \text{ in } H \text{ strongly and a.e. in } \Omega,$$
 (2.20)

$$x^{\gamma/p} u_m \to x^{\gamma/p} u$$
 in $L^p(\Omega)$ weakly. (2.21)

On the other hand, by (2.20) and the hypothesis (H_1) , we have

$$f(x, u_m) \to f(x, u)$$
 a.e. in Ω . (2.22)

We also deduce from the hypothesis (H₂)(ii) and from (2.18) that

$$\|x^{\gamma/p'} f(x, u_m)\|_{L^{p'}(\Omega)}^{p'} \le C_2^{p'} 2^{p'-1} (1 + \|x^{\gamma/p} u_m\|_{L^p(\Omega)}^p) \le C, \tag{2.23}$$

where p' = p/(p-1). C is a constant independent of m.

We shall need the following lemma, the proof of which can be found in [7].

Lemma 3. Let Q be an open bounded set of R^N and

$$G_m, G \in L^q(Q), 1 < q < \infty$$
 such that $G_m \to G$ a.e. in Q

and $||G_m||_{L^q(Q)} \leq C$, with C being a constant independent of m. Then $G_m \to G$ weakly in $L^q(Q)$.

Applying Lemma 3 with N=1, q=p', $Q=\Omega$, $G_m=x^{\gamma/p'}f(x,u_m)$, $G=x^{\gamma/p'}f(x,u)$, we deduce from (2.22) and (2.23) that

$$x^{\gamma/p'} f(x, u_m) \to x^{\gamma/p'} f(x, u)$$
 weakly in $L^{p'}(\Omega)$. (2.24)

Passing to the limit in Eq. (2.14), we find without difficulty from (2.19) and (2.24) that u satisfies the equation

$$\langle u', W_i' \rangle + h u(1)W_i(1) + \langle f(x, u), W_i \rangle = g W_i(1) + \langle F, W_i \rangle. \tag{2.25}$$

Equation (2.25) holds for every $j \in N$, i.e., (2.11) holds.

Proof of Uniqueness. Let u_1 , u_2 be two solutions of the problem (2.11) and let $u = u_1 - u_2$. Then u satisfies

$$\langle u', v' \rangle + h u(1) + \langle f(x, u_1) - f(x, u_2), v \rangle = 0.$$
 (2.26)

Taking v = u in (2.26) and using (2.5) and (H₃), we have

$$C_0 \|u\|_V^2 \le \|u'\|^2 + h u^2(1) + \langle f(x, u_1) - f(x, u_2), u \rangle = 0.$$

Then this inequality implies u = 0, i.e., $u_1 = u_2$.

This completes the proof of Theorem 1.

Remark 4. In [3], we have proved that the nonlinear Bessel differential equation (1.4) associated with the boundary condition u(0) = 1, $u(+\infty) = 0$ has at least one solution. There, the nonlinear term $u^2 - u$ is non-monotonic. One of the solutions above is established from the boundary value problem (1.4) in the interval a < x < b associated with the boundary condition u(a) = 1, u(b) = 0, wherein, $x_i < a < b < x_{i+1}$ and x_i , x_{i+1} are two consecutive zeros of the first order Bessel function $J_0(x)$. Formation of a counterexample for the function f(x, u) not satisfying the assumption (H₃) so that the solution of (2.11) is not unique is an open problem.

3. Asymptotic Behavior of the Solution as $h \to 0_+$

In this section, let (H_1) – (H_3) hold. The variational problem (2.11) according to Theorem 1 admits a unique solution $u = u_h$, h > 0. We shall study asymptotic behavior of solution u_h as $h \to 0_+$.

We make the following additional assumption on the function f.

(H₄) There exist constants $p \ge 2$, $C_3 > 0$ such that

$$(f(x,u) - f(x,v)).(u-v) \ge C_3 |u-v|^p, \ \forall u,v \in R, \ \text{a.e.} \ x \in (0,1).$$

We have the following result.

Theorem 2. Let (H_1) – (H_3) hold and $F \in V'$, $g \in R$. Then Problem (2.11) with h = 0 has a unique solution u_0 such that

$$u_0 \in V$$
 and $x^{\gamma/p} u_0 \in L^p(\Omega)$.

Furthermore.

$$||u_h - u_0||_V + ||x^{\gamma/p} u_h - x^{\gamma/p} u_0||_{L^p(\Omega)} \le C.h^{1/p-1},$$

with h > 0 small enough, where C is a constant depending on γ , p, C_1 , C'_1 , C_2 , C_3 , g, $||F||_{V'}$ only.

Proof. First, we prove that the solution u_h of (2.11) is bounded by a constant independent of h > 0.

Taking $v = u_h$ in (2.11) and using (H₂)(i) and (2.6), we obtain

$$\|u_h'\|^2 + C_1 \|x^{\gamma/p} u_h\|_{L^p(\Omega)}^p \le C_1 \|u_h\|_V + \frac{C_1'}{\gamma + 1}, \tag{3.1}$$

where $C_1 = |g| K_2 + ||F||_{V'}$.

On the other hand, using Hölder's inequality, we obtain

$$||u_h||^2 \le \frac{1}{(1+\gamma)^{(p-2)/p}} ||x^{\gamma/p} u_h||_{L^p(\Omega)}^2 \le ||x^{\gamma/p} u_h||_{L^p(\Omega)}^2.$$
(3.2)

It follows from (3.1) and (3.2) that

$$\|u_h'\|^2 \le \beta_1 \|u_h\|_V^2 + \frac{1}{4\beta_1} C_1^2 + \frac{C_1'}{\gamma + 1}, \ \forall \beta_1 > 0.$$
 (3.3)

$$||u_{h}||^{2} \leq \left(\frac{C_{1}}{C_{1}}||u_{h}||_{V} + \frac{C_{1}'}{C_{1}(\gamma+1)}\right)^{2/p}$$

$$\leq \frac{1}{p}\left(\beta_{2}||u_{h}||_{V}^{2/p}\right)^{p} + \frac{1}{p'}\left(C_{4}/\beta_{2}\right)^{p'} + \left(\frac{C_{1}'}{C_{1}(\gamma+1)}\right)^{2/p}, \quad \forall \beta_{2} > 0$$
(3.4)

where $C_4 = (C_1/C_1)^{2/p}$.

Choosing $\beta_1 + \frac{\beta_2^p}{p} < \frac{1}{2}$, we have from (3.3) and (3.4) that

$$||u_h||_V^2 \le \frac{1}{2\beta_1} C_1^2 + \frac{2}{p'} (C_4/\beta_2)^{p'} + \widetilde{C}_2(C_1, C_1')$$

$$\le C_5 = \widetilde{C}_1(p, C_1) \cdot \max \left\{ C_1^2, C_1^{2/p-1} \right\} + \widetilde{C}_2(C_1, C_1'), \tag{3.5}$$

where

$$\begin{cases}
\widetilde{C}_{1}(p, C_{1}) = \frac{1}{2\beta_{1}} + \frac{2}{p' \beta_{2}^{p'} C_{1}^{2/p-1}}, \\
\widetilde{C}_{2}(C_{1}, C'_{1}) = \frac{2C'_{1}}{\gamma+1} + 2\left(\frac{C'_{1}}{C_{1}(\gamma+1)}\right)^{2/p}.
\end{cases} (3.6)$$

 C_5 is a constant independent of h > 0.

Now, let u_h (resp. $u_{h'}$) be the solution of Problem (2.11) with the parameter h (resp. h'). Let $v = u_h - u_{h'}$, $\widetilde{h} = h - h'$. Then v satisfies

$$\langle v', w' \rangle + h v(1) w(1) + \langle f(x, u_h) - f(x, u_{h'}), w \rangle = -\widetilde{h} u_{h'}(1) w(1), \ \forall w \in V.$$
 (3.7)

Proceeding as in the proof of the first part, we deduce from (2.6), (3.5) and (H₄) that

$$\|v'\|^2 + C_3 \|x^{\gamma/p} v\|_{L^p(\Omega)}^p \le |\widetilde{h}| K_2^2 \sqrt{C_5} \|v\|_V. \tag{3.8}$$

Applying (3.1), (3.5), and (3.6) with $C_1 = C_3$, $C_1' = 0$, $C_1 = |\widetilde{h}| K_2^2 \sqrt{C_5}$, we deduce from (3.8) that

$$\|v\|_{V}^{2} \le \widetilde{C}_{1}(p, C_{3}). \max \left\{ \left(|\widetilde{h}| K_{2}^{2} \sqrt{C_{5}} \right)^{2}, \left(|\widetilde{h}| K_{2}^{2} \sqrt{C_{5}} \right)^{2/p-1} \right\}.$$
 (3.9)

We note that, if $p \ge 2$, then

$$\left(|\widetilde{h}| K_2^2 \sqrt{C_5}\right)^2 \le \left(|\widetilde{h}| K_2^2 \sqrt{C_5}\right)^{2/p-1}$$

as $|\widetilde{h}|$ is small enough.

Hence,

$$||u_h - u_{h'}||_V = ||v||_V \le C_6 |h - h'|^{1/p - 1},$$
 (3.10)

where

$$C_6 = C_6(\gamma, p, C_3, C_5, g, ||F||_{V'}).$$
 (3.11)

It follows from (3.8) and (3.10) that

$$\|x^{\gamma/p} u_h - x^{\gamma/p} u_{h'}\|_{L^p(\Omega)} = \|x^{\gamma/p} v\|_{L^p(\Omega)} \le C_7 |h - h'|^{1/p - 1}, \tag{3.12}$$

where

$$C_7 = (K_2^2 \sqrt{C_5} C_6 / C_3)^{1/p}. \tag{3.13}$$

Thus, we obtain from (3.10) and (3.12) that

$$\|u_h - u_{h'}\|_V + \|x^{\gamma/p} u_h - x^{\gamma/p} u_{h'}\|_{L^p(\Omega)_{\epsilon}} \le C |h - h'|^{1/p - 1}.$$
(3.14)

Let us consider the space

$$W = \{ v \in V : x^{\gamma/p} \ v \in L^p(\Omega) \}.$$

W is a Banach space with the norm

$$||v||_W = ||v||_V + ||x^{\gamma/p} v||_{L^p(\Omega)}.$$

Let h_m be a sequence such that $h_m > 0$, $h_m \to 0$ as $m \to \infty$. It follows from (3.14) that $\{u_{h_m}\}$ is a Cauchy sequence in W. Hence, there exists $u_0 \in W$ such that

$$u_{h_m} \to u_0$$
 strongly in W . (3.15)

By passing to the limit as in the proof of Theorem 1, we deduce that u_0 satisfies the following variational equation:

$$\langle u_0', w' \rangle + \langle f(x, u_0), w \rangle = g w(1) + \langle F, w \rangle, \ \forall w \in V.$$

The uniqueness is proved in a standard manner as in the proof of Theorem 1. Then, letting $h' \rightarrow 0_+$ in (3:14), we have

$$\|u_h - u_0\|_V + \|x^{\gamma/p} u_h - x^{\gamma/p} u_0\|_{L^p(\Omega)} \le C h^{1/p-1}.$$

Therefore, Theorem 2 is proved completely.

Theorem 3. Under the assumptions of Theorem 2, we have that

- (i) The function $h \mapsto |u_h(1)|$ is nonincreasing on $(0, +\infty)$;
- (ii) $|u_0(1)| = \sup_{h>0} |u_h(1)|$.

Proof. Let 0 < h < h', $\widetilde{h} = h - h' < 0$. Then $v = u_h - u_{h'}$ satisfies (3.7). Taking $\widetilde{w} = v$ in (3.7), we obtain

$$-\widetilde{h} u_{h'}(1) (u_h(1) - u_{h'}(1)) \ge 0.$$

Hence.

$$|u_{h'}(1)|^2 \le u_{h'}(1) u_h(1).$$

Therefore.

$$|u_{h'}(1)| \le |u_h(1)|,\tag{3.16}$$

and (i) is proved.

Letting $h \to 0_+$ in (3.16), we obtain (ii). Theorem 3 is completely proved.

Acknowledgement. The authors wish to thank the referees for their constructive and useful remarks.

References

- 1. M. Tucsnak, Buckling of nonlinearly elastic rods immersed in a fluid, *Bull. Math. Soc. Sci. Math. R. S. Roumanie* 33(81)(2) (1989) 173–181.
- 2. N.T. Long and T.V. Lang, The problem of buckling of a nonlinearly elastic bar immersed in a fluid, *Vietnam J. Math.* **24**(4) (1996) 131–142.
- 3. N.T. Long, E.L. Ortiz, and A.Ph.Ng. Dinh, On the existence of a solution of a boundary value problem for a nonlinear Bessel equation on an unbounded interval, *Proc. Royal Irish Acad.* **95A**(2) (1995) 237–247.
- 4. N.T. Long, E.L. Ortiz, and A.Ph.Ng. Dinh, A nonlinear Bessel differential equation associated with Cauchy condition, *Computers Math. Appl.* **31** (1996) 131–139.
- 5. N.T. Long and A.Ph.Ng. Dinh, Periodic solutions for a nonlinear parabolic equation associated with the penetration of a magnetic field into a substance, *Computers Math. Appl.* **30**(1) (1995) 63–78.
- 6. R.A. Adam, Sobolev Spaces, Academic Press, New York, 1975.
- 7. J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires, Dunod, Gauthier-Villars, Paris, 1969.