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Abstract. We study the following nonlinear boundary value problem

- l

V '  
@ v . u ' ( x ) ) *  f ( x ' u ( x ) )  :  F ( x ) ,  0  < x  <  1 ,

I  l im xv/zu'1r) l  .  * ,  u '(r)  +h.u( l) :  g.
' r + 0 *

In Sec. 1, we prove by the Galerkin method the existence and uniqueness of the weak solution
of (x) in appropriate Sobolev spaces with weight. In Sec. 2, we study asymptotic behavior of the
solution depending on h as h --> 0a.

1.. Introduction

We consider the following nonlinear boundary value problem:

- 1  d
i '  d * @ ' ' u ' ( x ) ) +  f ( x , u ( x ) )  :  F ( x ) ,  0 < x  <  1 ,  ( l ' 1 )

I  l im y t /za ' ( r ) l  .  m ,  u ' (1 )  - lh .u ( l ) :  g  (1 .2 )
' x + 0 a

where y > O,h > 0,g aregivenconstants. f, F megivenfunctions.

(*)
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In [1], Tircsnak has considered the equation

Equation (1.3) has its motivation in the mathematical sense of the buckling of a
nonlinear elastic bar immersed in a fluid. We note that Eq. (1.3), with u'.M(x,u') >

crlutlp , p > l, Cr > 0 independent of x, had been considered by the authors in [2]. We
consider here Problem (1.1) with M(x, u') : xr .ttt, where C1 : C(x) - xv > 0.

In [3, 4], the authors have studied the following nonlinear Bessel differential equation

- i  
*o' ' ( ' ))  + ,2 - u: o, x > o.

(1 .3 )

(1.4)

In this paper, we use the Galerkin and compactness method in appropriate Sobolev
spaces with weight to prove the existence of a unique weak solution. This result slighfly
generalizes tl-41. We also study the asymptotic behavior of the solution a7, depending
on h as h --+ Oa. We also obtain that the function h r-> laQ)l is nonincreasing on
(0, *m).

2. Theorem of Existence and Uniqueness

Put S2 : (0, 1), we omit the definitions of usual function spaces c-(Q), lp(Q), and
H* ({2). We denote by FI the class of all measurable functions a, defined on Q, for which

xY lu (x )12  dx  <  +cr . . (2.r)

We identify in 11 functions that are equal almost everywhere (a.e. for short) on g. The
elements of H are thus actually equivalence classes of measurable functions satisfying
(2.1) , two functions are equivalent if they are equal a.e in g. Then 11 is also a Hilbert
space with respect to the scalar product

(u ,  u ) xY .u(x)  u(x)  dx. (2.2)

(2.3)

(2.4)(u, u) *  (u '  ,  u ' )

with derivatives in the sense of distributions [6].
The norms in 11 and V induced by the corresponding scalar products are denoted by

ll . ll and ll . llv, respectively. V is continuously and densely embedded in 11. Identifying
11 with H' (the dual of 11), we have V ,--> H ,--> V'; on the other hand, the notation
(., .) is used for the pairing between V andV'.

I,'

: IO,
We denote

V : { u e H : u ' e H )

the real Hilbert space with the scalar product



NonlinearBoundaryValue Problem 303

Remark 1. In defining the function space V with weight xr , we can also define V as
the completion of the space

s : {, € cr([o. rD: llullzv : [-' *,11u1x)12 + 1u'1x1f1ax < xl
JO

with respect to the norm ll.llv (see [6]).

We then have the following lemmas.

Lemma l. There exist tvvo constants Kr > 0 and K2 > O (depending only on y) such
that

l l u ' l l z  +uz ( l )>  h l l u l l ? ,  vu  e  c1110 ,  t 1 ; ;  Q .5 )

*r/z p@)l < Kzllul lv, va e c1(10, t l) ,  V.r e t0, 11. (2.6)

Lemma 2. The embedding V '--> H is compact.

The proof of Lemmas I and 2 can be found in [5]. .

Remark 2. We also note that

l im xY/2 u(x) : O, Yu e V. (23)
x-+0..

(see [6, Lemma 5.40, p.128]).
ontheotherhand,byFl l (e,  t )  -> CO([e,  1] ) ,  0  < e < 1,  and

e v / z 1 1 u 1 1 s ' 6 , 1 < l l a l l v ,  Y u e V , 0 < e < 1 ,  ( 2 . 8 )

it follows that
u l l e g e c o ( [ e , t ] ) ,  v e , 0 < e  <  1 .  ( 2 . 9 )

From(2.7) and (2.9), we deduce that

,Y/2 u e co( [0,  r ] ) ,  Yu e v.  (2.10)

We shall make the following assumptions.

(Hr) 
"f : (0, 1) x R --+ R satisfies the Caratheodory condition, i.e., f (.,u) is
measurable on (0, 1) for every u e R, and f (x,.) is continuous on R for a.e.
x e (0,  1) .

(Hz) Thereexistpositiveconstants Ct, C't, Czandp > l suchthat
( i )  u . f  (x .  u)  > Ct  l " l '  -  C ' t i

( i i) l /(x, u)l < Cz!'t lulP-').

The weak solution of Problems (1.1) and ( 1.2) is formed from the following variational
problem.

F indaeVsuch tha t

{u '  ,  u ' l  *  h .u( l )  u(1)  + ( f  (x ,  u) ,  u)  :  g .u( l )  + ( .F ' ,  u) ,  Yu e V.  (2.11)
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Remark 3. By (2.10), the terms u(I) and u(1) appearing in (2.11) are defined for every
u, u e V. We obtain (2.tI) by formally multiplying both sides of (1.1) by u and then
integrating by part having conditions (1.2) and (2.7) in mind.

Then we have the followins result.

Theorem l. Leth > 0, g e R, F e V' and (H),(H) hold.Thenthere exists a
solution u of the variational problem (2.1 1) such that

u e V and xY /P u € LP (tZ). (2.12)

Furthermore, if f (x , u) is nondecreasing with respect to u, i.e.,

( H : )  ( , f ( r , u ) -  f  ( x , v ) ) . ( u -  u )  > 0  Y u , u e  R ,  a . e . . r  €  ( 0 , 1 ) ,

then the solution is unique.

Proof. Denote by {tVi} the infinite orthonormal base in the separable Hilbert space V.
We find u^ of theform

g
up(x) : 

Lt^, 
W1@), (2.13)

where c*i satisfy the following nonlinear equation system:

1u ' ^ ,w j )  i  hu^ ( l ) \O )  +  ( f  ( x ,u^ ) ,w1)
: g W 1 0 ) * ( F , W 1 ) ,  l .  j < m .  ( 2 . 1 4 )

By Brouwer's lemma (see [7, Lemrrn4.3, p.53]), it follows from the hypotheses (H1)
and (Hz) that the system (2.13) and (2.14) has a solution 2,,.

Multiplying the jth equation of system (2.I$by c*i,then adding these equations for
j  :  I ,2 ,  . . . , f f i ,  we have

l l uh l l2  +  nu)61+ U@,u^) ,u^ l  :  g  u^ ( l )  t  (F ,u^J .  e . Is )

By using the inequalities (2.5) and (2.6) and by the hypothesis (Hz)(i), we obtain

^ f t c i'  Col lu^ l l j ,  +Cr I  xv lu^(x) lp  d* .  ( ls lKz+ l lF l lv , )  l lu , l lv  + -+,  Q.r6)'  J o  y + l

where C6 : Kr. min{1, ft}.
Hence, we deduce from (2.16) that

llu*llv < C, (2.17)

ll*Y/P u*llz,tol < C. (2.18)

C is a constant independent of m.
By means of (2.17) and (2.18) and Lemma l, the sequence {u*} has a subsequence

still denoted by a- such that

ttm --> u in V weakly, (2.19)
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trm --> u in FI strongly and a.e. in Q,

xY/P um --> xYlpu in LP(S2) weakly.

On the other hand, by (2.20) and the hypothesis (H1), we have

305

(2.20)

(2.21)

f  (x,u*) --> f  (x,u) a.e. in O.

We also deduce from the hypothesis (HzXii) and from (2.18) that

(2.22)

llxv /e' f @, u.)llpr' ,, <a> = cer' zo'-r, + p' to u*llp/ra) 3 c, (2.23)

where p' : pl(p - 1).C is a constant independent of rn.
We shall need the following lemma, the proof of which can be found in [7].

Lemma 3. Let Q be an open bounded set of RN and

G*,G e Lq(Q),1 < q < x suchthat  G^ + G a.e.  in  Q

and llG^llrn<a> < C,withC beingaconstantindependentofm.Then G^ -+ Gweakly
in Lq (Q).

Applying Lemma 3 with N : 1, Q : p', Q : 9, G* ? *r/n' 71x,u^),
G - xv /p f (x, u), we deduce from (2.22) and, (2.23) that

xv / p' 
f (x , u*) --+ ,r I o' f (x , z) weakly in Lp' (g). (2.24)

Passing to the limit inBq. (2.14), we find without difficulty from (2.19) and (2.24)
that a satisfies the equation

(u ' ,wj l  - fhu(r )wi [ )  - l  ( f  (x ,u) ,wj )  :  gw10)  a @,w1).  Q.25)

Equation (2.25) holds for every j e N,i.e., (2.1 l) holds.

Proof of Uniqueness. Let u1, u2 be two solutions of the problem (2.11) and let
t4: LtL - u2.Then z satisfies

( u ' , u ' )  * h u ( l ) +  ( f ( x , u ) -  f ( x , u 2 ) , u )  : Q .  ( 2 . 2 6 )

Taking u : u in (2.26) and using (2.5) and (Hg), we have

Co l lu l l ?  . l l u ' l l 2  +hu21 t1+  f f@,u )  -  f  ( x ,u2 ) ,u )  -  0 .

Then this inequality implies u : O, i.e., Lr1 : 11.2.

This completes the proof of Theorem 1.
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Rem.ark 4. Inl3l, we have proved that the nonlinear Bessel differential equation (1.4)
associated with the boundary condition u(0) : 1, a(*oo) : 0 has at least one solution.
There, the nonlinear Ierm u2 - u is non-monotonic. One of the solutions above is
established from the boundary value problem (1.4) in the interval a < x < b associated
with the boundary condition u(a) : l, u(b) : 0, wherein, xi I a < b < x;a1 and
xi, xi+r are two consecutive zeros of the first order Bessel function J6(x). Formation
of a counterexample for the function f (x, u) not satisfying the assumption (H3) so that
the solution of (2.I1) is not unique is an open problem.

3. Asymptotic Behavior of the Solution as ft -+ 0-'

In this section, let (Hr)-(H:) hold. The variational problem (2.11) according to Theorem
1 admits a unique solution z : Lth, h > 0. We shall study asymptotic behavior of solution
up as h -+ 0+.

We make the following additional assumption on the function /.

(Ha) There exist constants p > 2, Cz > O such that

( f  ( x ,u )  -  f  ( x ,u ) ) . ( u  -  u )  >  Cz lu  -  v l p ,  Yu ,v  e  R ,  a .e .  r  e  (0 ,  l ) .

We have the following result.

Theorem 2. Let (H)-(Hil hold and F e V',9 € R. Then Problem (2.1:,)withh : O
has a unique solution uo such that

uo e V onL ,r /n uo e LP (Q).

Furthermore.

lun -  uol lv  *  pr /n uh -  xv/p uol l r ,@' t  3 C.h1/p-r ,

with h > 0 small enough, where C is a constant depending on y, p, Ct Ci, Cz, Cz, g,
llFlly, only.

Proof. First, we prove that the solution al, of (2. 1 1) is bounded by a constant independent
o f h > O .

Taking u : uh in (2.11) and using (Hz)(i) and(2.6), we obtain

l l rL l l2  + c l l lav/n un(r ,<at  < cr l lun l lv  + i r - ,
r - T L

where C1 : lgl Kz + llr' l lv,.
On the other hand, using Hrilder's inequality, we obtain

llunll2 < 
G;r-* 

ll*v/p unll2,op1 < llxv/p unll2rou,)'

It follows from (3. 1) and (3 .2) that

(3 .1 )

(3.2)

1u'n12 < tulun& + rtc? * h, vfr > o. (3.3)
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.. ..a r Cr .. Cl t2/P
l l un l l '  <  (O l t r r l l v  +  c fu  +  D)

= !(prluht\p)p + lrco/prl i + (;:+\'/o , yflz > 0-  p , ' -  "  " , , ,  ,  p ,  \ c r ( z  +  t ) z  Q . 4 )

where C4 : (QlC)zlt.

Choosing flt + fl. l, *" have from (3.3) and (3.4) that
p z

llunll?- = 
hrl 

* lcolBrtP' + ezGr, c't)

< cs : E(p, ci.maxlc2r, c?/e-\ + ez(Cr, c'), (3.5)

where

I 
c'(P' c')

|  =  ,^  ^ ,  t2 tp 
(3.6)

I  e2Q1,c l  ) - ' ' .
C5 is a constant independent of h > 0.

Now, let uy (resp. u7,,)be the solution of Problem (2.11) with the parameter /z (resp.

ht).Let u : trh - u7,,i : h - ht.Then u satisfies

( v ' , w ' ) * h u ( l ) u ( 1 ) +  ( f  ( x , u i l -  f  @ , u 1 , ) , w ) :  - T u n , ( l ) r u ( 1 ) ,  V u  e V .  ( 3 . 7 )

Proceeding as in the proof of the first part, we deduce from (2.6), (3.5) and (FI+) that

l l r ' l l2 + czl lxv/p ul l l . ,s  s l i lK?Jct l l r l lu.  (3.8)

Applying (3.1), (3.5), and (3.6) with Cr : Cz, C't :0,Ct : 1i1X] , we deduce
from (3.8) that

as ;E'1 is small enough.
Hence,

where

l lul l? s er@,c).^ l( l i tx? 1', l l^lxlJQ\zrn-rr. (3.e)

We note that,if p > 2,then

(tit KZ E')' = (tit xl Js)z/o-r

l l un  -  un , l l v  :  l l u l l v  <  Ce lh  -  h t f  /n - r  ,  (3 .10)

Ce : Ce(y, p, C3, Cs, s, l l r l lv,). (3 .11)
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It follows from (3.8) and (3.10) that

l l*v/p un - xv/p u1,,l lp1521 : l lyr/t ull7,r1o1 < Ct lh - htf/t-r, G.I2)

where
c j : (KZJc tcu lc r l r tn .  (3 .13)

Thus, we obtain from (3.10) and (3.I2) that

l lun -  un, l lv  *  l lxv/p u1,  -  xr / t  u1, l l7 tp1.< C lh -  tu t f  /o- r .  Q. l4)

Let us consider the space

W : { u e V :  x Y / P u e L P ( Q ) 1 .

I4l is a Banach space with the norm

l l u l l w  :  l l u l l v  +  l l x Y / P  u l l y , p 1 .

LeI h* be a sequence such that h* > O, h* --> O as m -+ oo. It follows from (3. 14)
that {u6} is a Cauchy sequence in }7'. Hence, there exists us e W such that

uhn --+ uo strongly in W. . (3.15)

By passing to the limit as in the proof of Theorem 1, we deduce that u6 satisfies the
following variational equation :

(u'o, , ') + (f (x, uo), w) : g w(l) I (F, w), Yw e V.

The uniqueness is proved in a standard manner as in the proofofTheorem L. Then,
lettinght -+ 0a in (3:14), we have

l lun -  uol lv  t  l lvv/n u; -  vr /n uol l r rg. ;2t  < C hr lp- t .

Therefore, Theorem 2 is proved completely. r

Theorem 3. Under the assumptions of Theorem 2, we have that
(1) The function h t-> lun!)l is nonincreasing on (0, {a);

( i i )  las(1) l  :  sup lar(1)1.
h>0

Proof. LetO < h . h',i - h - hl < 0.Then u : trh u7,, satisfies (3.7). Taking
di = u in (3.7), we obtain

-Eun,Q) @n(fr) - u1,,Q)) > 0.

Hence,

l un ,0 )12  <  un , ( I )  un (D .

Therefore,

l un ,O) l  <  l unQ) | ,  ( 3 .16 )

and (i) is proved.

Letting h --> 01in (3.16), we obtain (ii). Theorem 3 is completely proved. r
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