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Abstract. We study the following nonlinear boundary value problem

= i(x”.u’(x))-}- fx,u@x))=Fx), 0<x <1,
x¥ dx

: 1) ’ (*)
| 11n(1) 7%y (x)| <00, W ()+hu(l)=g.

In Sec. 1, we prove by the Galerkin method the existence and uniqueness of the weak solution
of (*) in appropriate Sobolev spaces with weight. In Sec. 2, we study asymptotic behavior of the
solution depending on h as h — 0.

1. Introduction

We consider the following nonlinear boundary value problem:

-1 d

= . E(x".u’(x)) + fx,ux)=Fx), 0<x <1, (1.1)
| lim M (x)| < 00, W(1)+hu(l) =g (1.2)

where y > 0, k > 0, g are given constants. f, F are given functions.
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In [1], Tucsnak has considered the equation
d . .
—d—M(x,u(x))+g(x) sinu(x) =0, 0<x <1. (1.3)
x

Equation (1.3) has its motivation in the mathematical sense of the buckling of a
nonlinear elastic bar immersed in a fluid. We note that Eq. (1.3), with «’.M(x, u’) >
c1|#'|?, p > 1, Cy > 0independent of x, had been considered by the authors in [2]. We
consider here Problem (1.1) with M (x, ') = x¥ ./, where C; = C1(x) = x¥ > 0.

In [3, 4], the authors have studied the following nonlinear Bessel differential equation

-1
7 . dii‘;(_x_u/(x)) + u2 —u=0, x>0. (1.4)

In this paper, we use the Galerkin and compactness method in appropriate Sobolev
spaces with weight to prove the existence of a unique weak solution. This result slightly
generalizes [1—4]. We also study the asymptotic behavior of the solution u#;, depending
on A as h — 0. We also obtain that the function 2 — |u,(1)| is nonincreasing on
(0, +00).

2. Theorem of Existence and Uniqueness

Put Q = (0, 1), we omit the definitions of usual function spaces ¢ (Q), L? (), and
H™(2). We denote by H the class of all measurable functions #, defined on €2, for which

1
/ xY [u@x)|? dx < +oo. (2.1
0

We identify in H functions that are equal almost everywhere (a.e. for short) on . The
elements of H are thus actually equivalence classes of measurable functions satisfying
(2.1) , two functions are equivalent if they are equal a.e in Q. Then H is also a Hilbert
space with respect to the scalar product

1
(u, v) = / x¥u(x) v(x) dx. 2.2)
0

We denote
V={veH:veH) 2.3)

the real Hilbert space with the scalar product
(u, v) + (u', V") 2.4)

with derivatives in the sense of distributions [6].

The norms in H and V induced by the corresponding scalar products are denoted by
|- |l and | - || v, respectively. V is continuously and densely embedded in H . Identifying
H with H’ (the dual of H), we have V < H <> V’; on the other hand, the notation
{., .} is used for the pairing between V and V’.
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Remark 1. In defining the function space V with weight x¥, we can also define V as
the completion of the space

1
S ={ueC(O,1]): llul}y = / x7 (Ju@)? + |w'(x)|P)dx < oo}
0
with respect to the norm |||}y (see [6]).
‘We then have the following lemmas.

Lemma 1. There exist two constants K1 > 0 and K, > 0O (depending only on y) such
that
/1 + u*(1) = Ky flully, Vu € C'([0, 11); 2.5)

"2 u@)| < Kz lully, Vu e C([0,1]), Vx € [0, 1]. (2.6)

Lemma 2. The embedding V — H is compact.
The proof of Lemmas 1 and 2 can be found in [5].

Remark 2. We also note that

lim x"?u(x)=0, YueV. 2.7

x>0,

(see [6, Lemma 5.40, p. 128]).
On the other hand, by Hle 1) — C%e, 1), 0 <& < 1, and

& ull e,y < llully, Vue vV, 0<e <1, 2.8)
it follows that
U|[e,1] € C%([e, 1]), Ve, 0 < < 1. 2.9
From (2.7) and (2.9), we deduce that

x"?u e (0, 1)), Yu e V. (2.10)

We shall make the following assumptions.

Hy) f : (0,1) x R —> R satisfies the Caratheodory condition, i.e., f(.,u) is
measurable on (0, 1) for every u € R, and f(x,.) is continuous on R for a.e.
x € (0, 1).

(H,) There exist positive constants Cq, Ci, C5 and p > 1 such that
(i) u.f(x,u) = CylulP —Cy; ‘
@) |f(x,u)) < Co(l + |ulP™h).

The weak solution of Problems (1.1) and (1.2) is formed from the following variational
problem.
Find u € V such that

W, v+ huv) + (f(x,u),v) =gv(l) + (F,v), YveV. (2.11)
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Remark 3. By (2.10), the terms #(1) and v(1) appearing in (2.11) are defined for every
u,v € V. We obtain (2.11) by formally multiplying both sides of (1.1) by v and then
integrating by part having conditions (1.2) and (2.7) in mind.

Then we have the following result.

Theorem 1. Leth > 0, g € R, F € V' and (H1), (Hy) hold. Then there exists a
solution u of the variational problem (2.11) such that

ueV and x"'Pyc LP(Q). (2.12)
Furthermore, if f(x, u) is nondecreasing with respect to u, i.e.,
Hz) (f(x,u) — f(x,v)).(u—v) >0 VYu,veR, ae. x €(0,1),
then the solution is unique.

Proof. Denote by {W;} the infinite orthonormal base in the separable Hilbert space V.
We find u,, of the form

um(x) =Y _ cmj Wj(x), 2.13)
j=1

where ¢, satisfy the following nonlinear equation system:

(U, W) + Rt (1) Wi (1) + (f (x, up), W;)
=g W;()+ (F, W), 1<j=<m. (2.14)
By Brouwer’s lemma (see [7, Lemma 4.3, p. 53]), it follows from the hypotheses (H;)
and (H3) that the system (2.13) and (2.14) has a solution u,,.

Multiplying the jth equation of system (2.14) by ¢y, then adding these equations for
j=1,2,.., m,wehave

g 12+ Bud (1) + (f X, Um), Um) = & tim(1) + (F, tim). (2.15)

By using the inequalities (2.5) and (2.6) and by the hypothesis (H;)(i), we obtain

’

! C
-+ Co llumlly +C1/0 xV lum ()P dx < (Ig1K2 + [ Fllv) lumlly + ) _; 7 (216)

where Cp = K. min{l1, h}.
Hence, we deduce from (2.16) that

lumlly < C, ’ 2.17)

1x7"P umlze@) < C. 1o

C is a constant independent of m.
By means of (2.17) and (2.18) and Lemma 1, the sequence {u,,} has a subsequence
still denoted by u,, such that

Um —> u in V weakly, (2.19)
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U, — u in H strongly and a.e. in 2, (2.20)
xV/P Uy — x¥/Pu in LP () weakly. (2.21)

On the other hand, by (2.20) and the hypothesis (H;), we have
f&x, um) = f(x,u) ae.in Q. (2.22)
We also deduce from the hypothesis (H)(ii) and from (2.18) that
777 F G, umI Dy g < €5 27T A+ 18P w0 < €, (2.23)

where p’ = p/(p — 1). C is a constant independent of m.
We shall need the following lemma, the proof of which can be found in [7].

Lemma 3. Let Q be an open bounded set of RY and
Gn,GeL1(Q),1 <g < o0 suchthat G, —» G a.e.in Q

and ||Gmllze(gy < C, with C being a constant independent of m. Then G, — G weakly
in L1(Q).

Applying Lemma 3 with N = 1, ¢ = p/, Q = Q, Gn = x¥'?7 f(x,up),
G = xv/P f(x, u), we deduce from (2.22) and (2.23) that
x"'? f(x,upm) — x?'? f(x,u) weaklyin L? (). (2.24)

Passing to the limit in Eq. (2.14), we find without difficulty from (2.19) and (2.24)
that u satisfies the equation

@, W)) + hu(HYW;(1) + (f (x, u), W)) = g Wi(1) + (F, W)). (2.25)
Equation (2.25) holds for every j € N, i.e., (2.11) holds.

Proof of Uniqueness. Let u1, up be two solutions of the problem (2.11) and let
u = uy — us. Then u satisfies

W, VY +hu) + (f(x,u1) — f(x,uz),v) =0. (2.26)
Taking v = u in (2.26) and using (2.5) and (H3), we have
Collull? < u/'I1® + hu(1) + (f (x, u1) — £(x, uz), u) = 0.

Then this inequality implies u = 0, i.e., u1 = u.
This completes the proof of Theorem 1. ]
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Remark 4. In [3], we have proved that the nonlinear Bessel differential equation (1.4)
associated with the boundary condition #(0) = 1, u(4+00) = 0 has at least one solution.
There, the nonlinear term u% — u is non-monotonic. One of the solutions above is
established from the boundary value problem (1.4) in the interval @ < x < b associated
with the boundary condition u(a) = 1, u(b) = 0, wherein, x; < a < b < x;,1 and
Xi, Xi41 are two consecutive zeros of the first order Bessel function Jy(x). Formation
of a counterexample for the function f (x, u) not satisfying the assumption (H3) so that
the solution of (2.11) is not unique is an open problem.

3. Asymptotic Behavior of the Solution as 7 — 0,

In this section, let (H; )—(H3) hold. The variational problem (2.11) according to Theorem
1 admits aunique solution ¥ = uj, h > 0. We shall study asymptotic behavior of solution
upash — 0.

‘We make the following additional assumption on the function f.

(Hy4) There exist constants p > 2, C3 > 0 such that
(f(x,u) — f(x,v)).(u —v) > C3lu—vl?, Yu,ve R, ae.x € (0,1).

‘We have the following result.

Theorem 2. Let (H;)(H3) holdand F € V', g € R. Then Problem (2.11) withh =0
has a unique solution ug such that

uo €V and x?'Pug e LP(Q).
Furthermore,
lur, — wollv + 1x7/? wp — x"/P uollLr (@) < C.HY/P71,

with h > 0 small enough, where C is a constant depending on y, p, C1, C{, Ca, C3, g,
I Fllv: only.

Proof. First, we prove that the solution i, of (2.11) is bounded by a constant independent
of h > 0.
Taking v = uy, in (2.11) and using (Hy)(i) and (2.6), we obtain

/

C
g I + Cy 15777 unllf, ) < Ci lunllv + ﬁl—l 3.1)

where Ci = |g| K2 + || Fllv-.
On the other hand, using Holder’s inequality, we obtain

lunll? < 1Y/ w7y < 15772 upllo - (3.2)

1
(14 p)p=2/p
It follows from (3.1) and (3.2) that

1 C
— —11 V81 > 0. (3.3)

uh1? < Br lunl? +
)1 < B1 llunll% 5 -
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C] " 2/p
2(22 — 1
o _(C luaslly + =t )

!

2/p\P i C P Cl 2/p
(ﬂzuuhn Y+ €t + (o) V>0 ol

I/\

where Cy = (C1/C1)¥P.
P

1
Choosing 81 + '3—2 < 2 we have from (3.3) and (3.4) that
P

2 ;o ~
2 2 I
—C —(C P 4+ Cy(Cy, C
lurlly < 25 p/( 4/B2)¥ + Ca(C1, Cy)
< Cs = C1(p, C1). max {C}, CIZ/P_I} +Ca(C1, CY), (3.5)
where | -
Ci(p, C1) = 7 R
P8y C (3 6)
20, e \¥P i
Ca(C1, CY =24 +2(F|_{y_+ﬁ)

Cs is a constant independent of & > 0.
Now, let uy, (resp. up) be the solution of Problem (2.11) with the parameter 4 (resp.

K').Letv = up, — uw, h = h — i’ Then v satisfies
W', w)+h o) w@)+ (Fx, up) — F(x, uw), w) = —hup (D w(l), Yw e V. (3.7)
Proceeding as in the proof of the first part, we deduce from (2.6), (3.5) and (Hy) that

112 + Cs 127/ w2, ) < 18] K3 V/Cs lIvllv. (3.8)

Applying (3.1), (3.5),and (3.6) with C; = C3,C| = 0,C; = |Z| K22 +/Cs, we deduce
from (3.8) that

lvli3 < €1(p, C3).max {(1F| k3 /Cs)*, (K1 K3/C5)*" 7). (3.9

We note that, if p > 2, then

(IR K3 v/C5)? < (IRI K3 /Cs)*7!

as |ﬁl is small enough.
Hence,

lun — uwlly = |vlly < Celh — K |1/P71, (3.10)

where
C6=C6(% p, C39 C5, 8 ”F”V’) (311)
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It follows from (3.8) and (3.10) that

12777 up, — x¥/P uplloey = 6P vliLe@) < Cr b — B'|V/P7L, (3.12)
where
C7 = (K3 +/CsCs [ C3)!/P. (3.13)

Thus, we obtain from (3.10) and (3.12) that
lew —unlly + 15772 up — x¥/P up | Lo, < C |h = W'M/P71, (3.14)
Let us consider the space
W={veV:x'PveLP(Q).
W is a Banach space with the norm
lollw = lvlly + X772 v]ze (.

Let k,, be a sequence such that s, > 0, h,, = Oas m — oo, It follows from (3.14)
that {u, } is a Cauchy sequence in W. Hence, there exists ug € W such that

up, — up stronglyin W. (3.15)

By passing to the limit as in the proof of Theorem 1, we deduce that u satisfies the
following variational equation:

(ug, w') + (f(x, uo), w) = gw(l) + (F,w), Yw € V.

The uniqueness is proved in a standard manner as in the proof of Theorem 1. Then,
letting h* — 0y in (3.14), we have

lun — wollv + Ix7/7 up — x7/P ug|lLr(@) < C K771,
Therefore, Theorem 2 is proved completely. [
Theorem 3. Under the assumptions of Theorem 2, we have that

(1) The function h — |uy(1)| is nonincreasing on (0, +00);
) [uo(1)| = :ulgluh(l)l-
>

Proof. LetO < h < K, h =h —h < 0. Then v = up, — uy, satisfies (3.7). Taking
w = v in (3.7), we obtain

—Rup (1) (p(1) = up (1)) > 0.

Hence,
luw (DI < e (1) un ().
Therefore,
lup (D] < un(D], (3.16)
and (i) is proved.
Letting 2 — O in (3.16), we obtain (ii). Theorem 3 is completely proved. |
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