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Abstract. The following question has been studied: Under what conditions is every (DFN)-valued
meromorphic function on the dual space E* of a nuclear F_rechet space E of uniform type? Some

sufficient conditions are given in terms of the invariants (), (DN).

Let E, F be locally convex spaces and D an open subset of E. A holomorphic function
f : Dp — F on a dense open subset Dg of D with values in F is called meromorphic
on D if, for every z € D, there exists a neighborhood U of z and holomorphic functions
h:U — F,o : U —> Cwith ¢ # 0 such that

h

DoNU a

DU

By M(D, F), we denote the space of F-valued meromorphic functions on D. Write
M(D) for F = C. A function f € M(E, F) is said to be of uniform type if f can be
meromorphically factorized through a Banach space. This also means that there exists
a continuous semi-norm o on E and a meromorphic function g from E,, the canonical
Banach space associated to p, into F such that f = gw,, where w, : E —> E,, is the
canonical map.

Put M, (E, F) ={f € M(E, F)| f is of uniform type}.

The uniformity of holomorphic functions between locally convex spaces is defined
similarly as for meromorphic functions. In 1982, Colombeau and Mujica [1] have proved
that every Frechet-valued holomorphic function on dual spaces of Frechet—Montel spaces
(DFM-spaces for short) is of uniform type. Later, Meise and Vogt [9] have obtained an
important result of this type for scalar holomorphic functions on nuclear Frechet spaces
in an inter-relation with linear topological invariants. Let us note that a counterexample
for this problem was given by Narchbin [10]. Recently, Ha [3] has extended the above
results of Meise and Vogt for Frechet-valued holomorphic functions on Frechet-Schwartz
spaces having absolutely Schauder basis.



292 Nguyen Dinh Lan

Recently, the uniformity of meromorphic functions was considered by Hai [4] for
the dual Frechet—Schwartz case with an absolute basis in an inter-relation with linear
topological invariants. The aim of this paper is to consider this problem in the dual nuclear
Frechet case. To formulate the main result, we recall the definitions of such invariants,
which were introduced and investigated by Vogt [9, 12, 13].

Let E be a Frechet space with an increasing fundamental system of semi-norms {|| - || }.

For each subset B of E, we define a general semi-norm || - % on E*, the dual space of
E, by llullz = sup{|(x,u)| : x € B}.
We write
-1z =1+, where Uy ={x € E|lxlly <1}.

Note that E has the property

@) if VpIg Vk,d>03C >0 : |- <l 51137
ON) if 3pVg Ik, d,C >0 : |- I <Cll- [l - 14

Theorem. Let E and F be nuclear Frechet spaces. Then
M, (E*, F*) = M(E*, F*) if F < () and H(E*) € (DN).

The proof of the theorem is given in Sec.2. Some propositions, which are necessary for
this proof, are presented in Sec. 1. Finally, in Sec. 3, we give some examples about spaces
having (DN)-property.

1. Some Propositions

Proposition 1.1. Let E be a nuclear Frechet space and F a Frechet space. Then every
holomorphic function on E with values in F can be factorized holomorphically through
a Banach space if

E € (Q)and F € (DN).

Proof. Given f : E — F, a holomorphic function. {|| - ||¢}is a fundamental system of
semi-norms of E.
‘Choose p > 1 such that (DN) holds. Let & > 1 such that

sup {Il f@lp : z € Ua} < oc.

Consider the space £ /ker| - ||, €quipped with the quotient topology. By the Taylor
expansion of f at O € E, it follows that f can be considered as a holomorphic function
from E /ker|| - || into F. Thus, without loss of generality, we can assume || - ||, is a norm

on E. Since E € (5), by [12], there exists a bounded balanced convex set B in E and
B > 1 such that E(B) is a Hilbert space, E(B) is dense in E and

Vd>03Cs > 0: |- 5 < Call - 13- 12 ()

Letwy : E — Ey,wg: E — Eg, and wgy : Eg —> E, be the canonical maps.
Moreover, from the nuclearity of E, we may assume E,, is a Hilbert space for every .
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Put A = wy|g(B), then A is injective and of type s, because E is nuclear and || - | is
anormon E.

By the spectral mapping theorem [11], there exist a complete orthonormal system
{yj}jen in E(B), an orthonormal system {z;}jen in E, and a decreasing sequence
A= (A))jeN € s (with A; > 0 Vj > 1) such that

o0
Ax =) X3 E®)T - M
j=1

We define x; € E;, given by xi(z) = (z, zk)E,, 2 € Ey, and obtain

lxell = sup [z, ze)E, | =1 Vk> 1. )
llzll=1

Then

IA* xicllg = uslllp lxx A)| = sup [(A(x), zx)| = sup |[Ae(x, v}l =Ac  (3)

lIxl=1 i<t

(by the Bessel inequality |(x, yx}| < |Ix]).
Let us now put ¢ = v* xx € E;; with v = wgq. By (%), we have

Vd >0 3C;>0: ||¢k||*1+d

= " xell5 < Call A% xell el
< Cak (by (2) and (3)).

Hence, 1
el < (Cd)\k)m Vk > 1. )
Put W = U, N E(B). Choose § € (0, 1) such that, for . = (uj := &/j);>1, the set
{u € E(B)|M_Z$—]y and || <u; Vj=> 1}
— )\' J I = M) =
j=

is contained in W.
Without loss of generality, we may assume

sup{[lwp f@)| lu € W} <1
(wp f is locally bounded, where @, : F — F), is the canonical map). We put
= {m = (m;) € N |m; # 0 only for finitely many j € N}.

For each m = (m1, ma, ...,m,,0,0...) € M, we define

am=(i)n f /‘ f wpf( A - +Ay")d,o,

2mi ,om+1

lo1l=p1 [02|=H2 [Onl=tn
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m+1 . mi+1 m2+1 my+1

where p 0y oy on" ", dp:=dp1dp;...dp, . Then

1
lam £, < o (where p™ = ui™" uy”...up").

Moreover, we have

1 ( 1 )n /’ / wpf(91y1+92y2+“'+9nyn)d9

wm gm+1

am = N
27

161|=r1 |62|=r2 16n =14

_ 1 ¢ 1y f@1y1 +6hys + - +6yn) d
L= r(g) gt
[1f=r1 [62]=r2 |6n|=r

b,eF
We have

Womllp = llwpOm)llF, = lamllF, < ; (5)

ng E
We also obtain

N(g.1t)

lomllg < Sl (6)

formeM,q>1,t>0,|ml =) mjand
J

NG, =sup{If@)llg |x = Y & and 11 < eay; V) = 1},
j=1

By the property (DN) of F,

Vgz13k>13C.d>0:(- I <Cl Il 124, @)

= 1
Now, for d =é6d, y = m (0 <8 < 1), we have

CTi= Y rmy, ||ql'[1||<p,||*'"’ < Zr'm'nbmnq]‘[ (Car)) ™ (by (4))
=

meM meM

< 3 rCa Y by = Y FM O b ”q)y(cd)‘)my 1B lly™
meM meM

L=y N ) m 144 (ll_yd)d
<cid Y0 omi( q ’)) () Vllbm|l [l by (6) and (7

meM
iy N, N, RN
e 3 m(REDY (M) F L) oy
meM

) mlymr=135) g2

e

1y = i
< CWi N(g, )Y Nk, 1)1ss ) (t”l_y

meM 1+d

73
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I =y , bzl AV—% cr\"
1+ v 1)1+ d .
T <Ci+ N(q,t)" N(k, 1)1+ Z(tﬁ'l—V) ( )

meM d K

I+d

L | . NIG%
Puto =y — =L > 0for0 <3 < L. Since A = (A;) € 5, we have { =2 ) e ¢l
1+d 2 / 2

o4 C2y 2 c¥
Hence, for R = _ ——°-, we obtain 2R > R > V. This implies
i
2
MG 1
< < = Vj.
TR U1 ul
By choosing
1
v=y+——=>0, t=%2Rr
1+d
we have

o0

This proves that the series Y by ] go;"’ (x) defines a holomorphic function /# on Eg
meM j=1

such that f|gp) = h o wg|r(p)- Since E(B) is dense in E, we have f = h o wg. |

Remark. The proposition for the (8, DN)-case was independently proved by Hai [5].

Proposition 1.2. Let E be a Frechet—Montel space and F a nuclear Frechet space.
Then every holomorphic function on E* with values in F* is factorized holomorphically
through a Banach space if

F e () and H(E*) € (DN).

Proof. Given f : E* —> F* a holomorphic function where F € (Q) and H(E*) €
(DN). Consider the continuous linear map f : H(F*) — H(E™) induced by f and
given by f((p)(u) = @(fu)) for ¢ € H(F*) and u € E*. Since F € (Q) and is
contained in H (F*) as a subspace and H(E*) € (DN), by Preposition 1.1, we can find
a zero neighborhood V in F such that f (V) is bounded. Then, for every bounded set B
in E*, we have

sup {|f)»)|:ueB, yeV)=sup{lfO)Wl:ueB yeV}<oo.

Thus, f : E* — F};, where Fy is the Banach space associated with V/, is bounded and
Gateaux holomorphic. Hence, f : E* —> Fy; is holomorphic. By [1], f is factorized
holomorphically through a Banach space. @
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2. Proof of the Theorem

Given f : E* —> F*, a meromorphic function. By Og-+ (resp. Mg-), we denote the
sheaf of germs of holomorphic (resp. meromorphic) functions on E*.

Let o
O3 = {o € Og+ : 0 is inverse}

M}. = Mg+ \ {0} and Dg- = M- [ o=

Then we have the two exact sequences on E™:
€X]
0— Z —> Op 25 04 — 0

0—)(’)2*—>ME*—">DE*—>0

where exp(c) = 7% and 7 is the canonical map. By [2], H!(E*, Og:) = 0. On the
other hand, since H*(E*,Z) = 0, the exact cohomology sequences associated to the
above exact sheaf sequences give that, for every divisor d € H O0(E*, Dg»), there exists
a meromorphic function € H°(E*, M) such that n(r) =

By the meromorphicity of f, for every z € E*, we can choose a neighborhood
V1 of z and holomorphic functions 2 : Vi — F*, 0 : Vi — C, o # 0 such that
fly, = f—,’ .Writeo = 0" 0}’ 2...0;," ¥ in a neighborhood V5 of z in V; such that the germs
Olg, 02z, ..., Op; at z are irreducible [6]. Without loss of generality, we may assume #,
cannot be divisible by o1, 02, ..., 0p;. This yields a neighborhood U of z in V» such
that fly = g and codimZ(h, o) > 2in U (where Z(h, o) = h~'(0) N o ~1(0)). Thus,
we can find an open cover {U;} of E* and holomorphic functions h; : U; — F¥,
gj : Uy —> Csuch that f|y, = 3 and codimZ (h;, ;) = 2 for j > 1.

Now, we need the following lemma.

Lemma. Let 8 and o be holomorphic functions on an open set D in a locally convex
space, and g a holomorphic function with values in a locally convex space. Assume ’i—g

is holomorphic on D and codimZ (g, o) > 2. Then g is holomorphic on D.

Proof. Given zg € D. Since the local ring O, of germs of holomorphic functions
at zo is factorial [6], we can write ¢ = 0,"'0y"...0," in a neighborhood U of

zo such that oy,,, 024, ..., Opz, are irreducible. By the hypothesis and the equality
bg _ ’3 g m—l a;,n ? it follows that ’Z—‘lg is holomorphic at zg. On the other hand, from the

a; 1

p

hypothesis codimZ(g, 0) > 2and Z(c) = |J Z(03), it follows that codimZ (g, 0;) > 2
i=1

fori = 1, ..., p. Hence, by the irreducibility of o1,,, we infer that Z(01),, S Z(B),.

This again 1mp11es B = B0 at 2p.

Continuing the process we infer that ﬂ is holomorphic at zg. ]
We continue the proof of the theorem
Since = h =2 onU;NUjforalli,j > 1, the above lemma implies that the form

Z > (aj)Z Er s for z € U; defines a divisor d on E*. Thus, there exists a meromorphic

function B on E* such that 8 # 0 and g; € Of. , forz € E*. These relations imply that
B is holomorphic on E* and hence # = Bf is holomorphic on E*. From Proposition
1.2, we infer that k, B are of uniform type, and hence, so is f. The theorem is proved.m
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3. Examples

Proposmon 3.1. Let E be a nuclear Frechet space and F a Banach space. Then
Hp(F®-E*) € (DN) if E € (DN) and E has a Schauder basis. Here, Hy(F&, E*)
denotes the Frechet space of holomorphic function on F&, E* which are bounded on
every bounded set in F®, E*.

Proof. Let {e;} be a Schauder basis of E and {¢}} the dual basis of E*. Write the Taylor
expansion of each f € Hy(F®,E*) at0 € F®, E* as

f@) =3 Paf(@), where P f(@) = 5— ’; (nﬁ“f)

n=0 {Al=r>0

dh.

Given p > 1. Choose g > p such that

M =" llefl} llejll, < oo

izl

With B = {u € F : |lu|| < 1}, it follows that

sp{ Y PIES 1 @€t ® € e e,
J1rJ2se a1

= sup[ Z

JiJzyejnz1

e* e*
D J
P Pnf<u1® e Un ® ’*N
”ejl ”q ”ejn ”q

<5 1% N el I les I ul,...,uneB,nzo]

n n

p
= ”f”convr(B@qu) Sllp{ PYP M":n> O} =C(p,M,r) ”f”convr(B@qu),

where

n n
C(p, M,r) =sup {n 'pn in > O] < oo for r > 0 sufficiently large.
nlr
Thus, for each p > 1, the formula

Il =swp {p" > 1Baf @1 ® €., un ® €l -l

S

ul,...,uneB,n20]

defines a continuous seminorm || - ||, on Hy(F &= E*).
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On the other hand, since

If lconvr (o V) = SUP “f(PZ)»kuk ® Uk)‘ ug € B, v eV, Y [hel < 1]

k>1 k>1
SsuP[an Yol Y Paf G ®e, ..., u, @)
n=0 ki ke>1 P
X llesllp -l llp | € B
P n
<Y (B) sp{ X Bhalo
. n20 ki,onky>1
xsup{ Z q"|Pnf(uk1®e;,...,ukn®e;)|
jl ----- ]nzl
X Nl - lesla - oun € B} | el < 1]

k>1
<Al X (7)

n>0

for f € Hp(F®E*), we infer that the topology of Hy,(F&, E*) can be defined by
-}

Choose p > 1 such that

3p Vg 3k,d,C >0 : |lejl;™ < llejlix lejl%, ¥j>1
and ¢'*? < kp?. We have

|||f|||,1,+d=sup{p" Y 1Bfui®e, ..., un®el) llesllg- . llej,llg :

jlv---vjnzl
1+d
Uly,..., U, € B, nzO}

A 1 i
< sup {k" P Y Pf el .. un @D e lliT - lle, I
jl‘---rjnzl

d_ -
x llej 15 - Nlei 157 | ur, ... un € B, n > 0}
<sip (k' D 1PFG1 @] un @) llesle - eyl

1'1,---,]';.21
Ui,..., Uy € B, n20}

x sup{p" S Bfmeet. .. un®ed el Nl :

jl,--~,jn21

d
ul,...,uneB,nEO}

= Il N £ forall f € Hy(FQE®).
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Hence, Hy(F®, E*) € (DN). ]

Let A(A) be a nuclear Frechet—Kother space and B a Banach space with the unit ball
V. For each a = (a;) € A(A), a > 0 (e, a; = Oforall j > 1), we define an open
polydisc D} in B&, A’(A) by

={e=Yx®%&¢ : GV, @ eD},

izl

where D, = {(§;) € A'(A) : supl§jla; < 1}.
J
"By Hp (DX ), we denote the Frechet space of holomorphic functions on D} which are
bounded on the subsets W (r, K) of DX given by

Wo K ={o=Y yoye sup Il <7, &) € K},
jz1

where K cC D, and 0 < r < 1.

Proposition 3.2. If A(A) has (DN), then 'Hb(D)X has also (DN).

Proof. Itisknown in [9] that H(D,) € (DN). Thus, we can find an increasing exhaustion
sequence of compact sets (K;) in D, such that (DN) holds on H(D,;) for the system of

sup-seminorms on K. It is easy to check that the topology of H} (DX) can be defined
by the system of semi-norms {||| . |||(r,q)}0<r<1,q21 with

(in ®€i87)

i>1

1 = sup {7 L () C V. (&) € Kq, n 2 0.
Given g > 1. Choose k, d, C > 0 such that (DN) holds on H(D,). We have
1+d n(1+d) £\ |1+
I = sup {040 P f (Do xi @ ief )|+ @) € V. &) € Ky, m 2 0}
i>1
Lo 1+d
= sup {r”( + )sup”Pnf(in ®§,~e§k)’ (&) e Kq], x)CcV,n> 0}

ool (Suo )| [ (Sro s vonz)

< Cllf gy NFNE,,, forall £ e Hp®DY).

Consequently, H, (DX) € (DN). [ ]
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