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Abstract. This paper deals with Dirichlet series with real frequencies that define holomorphic
functions in the half plane of C.

1.. Introduction

Dirichlet series with real frequencies which represent entire functions on the complex
plane C have been investigated by many authors. Several problems such as topological
structures, linear continuous functionals, bases, etc., have been considered. However,
there seems to be few papers on non-entire (holomorphic) Dirichlet series with real
frequencies. In this work, we are concerned with the last series.

Given a non-entire Dirichlet series

3 _ 1
Lon"-"" '

where a, e C and 0 . (f,) t f m. As is well known, there exists a number R" called the
abscissa of convergence, such that the sum of the series converges at all z with Rez > R"
and disconverges at all z with Rez < Rr. The abscissa of absolute convergence Ro is
defined similarly. Between these numbers, there is a relation:

0  <  R o  -  R r  5 I :  l i m r u p ! 9 n .
n+@ /u2

Inthecasel, :0,theabscissaofconvergenceandtheabscissaofabsoluteconvergence
of Dirichlet series coincide and can be defined bv the formula:
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loe lc. I
R r :  R o :  l i m S J p ;

This paper deals with Dirichlet series with real frequencies which represent holomor-
phic functions in the half plane of C. We describe briefly the content of our work. Section
2 deals with some auxiliary results concerning the convergence of Dirichlet series in a
space of holomorphic functions in the half plane. These results are obtained in the spirit of

14,71 for the case of holomorphic Dirichlet series with complex frequencies in bounded
convex domains of C" , n > 1. In Sec. 3, we study a sequence space of the coefficients
of Dirichlet series. Here, we follow the terminology in [5, 9]. We endow it, as was the
case for entire Dirichlet series, with some topological structures and compare them. In
particular, we show that the picture in the holomorphic case is quite different from the
entire one. Section 4 concerns various dualities ofthe sequence space introduced in the
previous section, namely, we study coefficient multipliers between spaces En and Ip
( o < p < m ) .

2. Sequence Space ofCoefficients

Consider Dirichlet series

f o,,-^^',
n : l

with0 < ( r , )  1+m.
Note that, since the sequence offrequencies is real, the series (2.1) has the uniqueness

of representation, i.e., different sequences of coefficient, (o,) represent different
functions. Due to this fact, we can always identify Dirichlet series (2. I ) with the sequence
(a,) of its Dirichlet coefficients.

Let R be a given real number. First, we make a characteization of the coefficients of
the series (2.1) when it converges for the topology of O(tlp), the space of holomorphic
functions in the half plane llp with the usual topology of uniform convergence on
compact subsets of flp, where flp : {z; Rez > R}.

Theorem 2.1. IfthemultipleDirichletseries(2.1)convergesforthetopologyof(2(tln)
and )-n -+ oo a,r n --> @, then

lim suo 
log la' | . *.

,*-^ L,

(2.r)

(2.2)

Corwersely, if the coefficients of (2.1) satisfy condition (2.2) and, in ad.dition, the
sequence (),r) satisfies the condition

lim
n + @

- 0 ,logn

)"n

then the seies (2.1) converges absolutely for the topology of O(TLil.

(2.3)
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Proof. Weconsiderafamily (Kn) of compactsubsetsof thehalf plane II4 of theform

t l  I
K r : l z ;  ^ * ;  < R e z <  R - l q ,  l l m z l  <  s l , O . 4  t + o o .  ( 2 . 4 )

Necessity. Suppose the series (2.1) converges for the topology of O(II4). Then for any
q e (0, *oo), there exists a positive constant Mq < @ such that

sup l lane- \ " ' l ;  z  e  Kn,  
" ,  

I I  .  Mq,

which, in view of (2.4), is equivalent to

r:EId 
=roq.Mn + R + !, vn, r.

L n L n q

Consequenfly,

l imsuPt t ' l " ; sR+1 '
,*-^ Ln q

Letting q tendto *oo, we obtain the inequality (2.2).

Sufficiency. Let conditions (2.2) and (2.3) hold. Take an arbitrary compact subset K of
flp. Then it is clear that K c Kn for some 4 e (0, *oo), where Kn is defined by Q.$.
We shall prove that

ilo,l"-'^(R+i) < oo'
N : I

By (2.2), for 0 < e < llq, there exists N1 such that Vn > N1

' j !d < R+e,
t\n

or

Hence,forn > N1

larl < sL'(R+e) '

lanls-^,(R+)) . 
"@-lx" 

.

By (2.3), there exists Nz such thatYn > N2

I
2 l o g n < 1 , ( - - e ) ,

q

,a- lw .  
L 

.

Therefore, Vn > max (Nr, lfz)

1an1e 
x, (R+i)  a 

l=.

n 2 '

So, we obtain

oo

l . lo, l ' -^ '(R+i) < oo,

which means that the ,"ri", tZ.f i"onverges absolutely for the topology of (?(IIa). r
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Corollary 2.2. If (2. 3 ) holds, then the s erie s ( 2. I ) c onv erge s for the topolo gy of O (ll p)
if and only if it converges absolutely for the topology of 0(17il.

Remark 2.3. When the frequencies (,1,r) are complex numbers, the domain of absolute
convergence of Dirichlet series, as is well known, is convex. In this case, this result
was proved for a bounded convex domain in [4] for one variable and in [7] for several
variables.

Denote by t(IIn) the class of functions / of the form

r / - \  -$ -  , -^, .I \z) : 
ko"' 

,

where (a,) satisfycondition (2.2).We seethat it f e t(lln), then / e (2(lln), and
moreover, the class t(lln) contains all entire functions represented by Dirichlet series
with frequencies (,1., ) . It is easy to verify that it forms a vector space with usual pointwise
addition and scalar multiplication.

As was noted above, due to the uniqueness of the representation of Dirichlet series with
real frequencies, we can indentify the class t(lln) with the class Ep of their Dirichlet
coefficients. Thus,

Ep:  l (a")  sat is f ies (2.2)1.

It is obvious that Ep is a vector space called a Dirichlet sequence space.
In the sequel, we study various properties of the space Ep.

3. TopologicalStructures

We shall show that the sequence space Ep can be endowed with some topological
structure. Before doing so, we would like to introduce the terminology we adopt in the
present paper: a Fr6chet space is any metrizable and complete locally convex topological
vectorspacelan (F)-spaceis metrizable andcomplete, butnotnecessarily locallyconvex.

A natural question arises: Is it possible to endow the space Ep with some topological
structure? Below, we see that there are different ways to do this.

So far, this problem was first considered by Kamthan and Shing Gautam in [3], namely,
for each o : (or) e E a, it can define norns on Ea as follows:

g  , - , , r  ,  \ , -
l l a l l r  :  \ l o , l e -o t ) " ,  ( "0 )  +  n .

Denote by zo the topology on ul'r"n".ated by the family of norms (ll . lli.). rn"n
(E *, t") is a Fr6chet space (i.e., the complete, metrizable locally convex space).

Furthermore, consider the family of pseudo-norms defining the compact-open
topology of the space O(nil. As a sequence of compact subsets converging to fla
from inside, we can take (^Kn) of the compact subsets of the half plane flp of the form
(2.4), i.e.,

1
q

r n : f z ;  R i < R e z <  R * q , l l m z l  <  n l , n : 1 , 2 , . . .
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Then for each a : (a") e Ep, we denote

@ @

lolq:Dstpl lane-x"l;  ze rnl: l lanle-(R+;)^',  q > t.
n :1 n : L

It is easy to see that | . lq is a pseudo-nonn on the space Ep. Denote by r0 the topology
generated by { | . lq }Pr . Thking into account (2.4), ft is easy to verify that the topology
16 is equivalent to the topology ro. So we have the following result.

Proposition 3,1. In the space Ep, two topologies ro and ro are equivalent.

On the other hand, for each a : (a") € ER, we can also define the following function:

llall n :sup 
{ 1o" ltl^' } 

. (3 .1)

Due to (2.2), function (3.1) is well defined and it is a paranorm (see, e.g., [5, 9]) on
Ep. Denote by z the topology given by ll . lls.

Before continuing, we make the following note. It is well known that for entire Dirichlet
series (with real frequencies), i.e., for the case R - -€, two topologies zo and z are
equivalent, which means that the space (Ep, r) is also a Fr6chet space (see, e.g., [3]).
However, for Dirichlet series with complex frequencies, the picture is quite different.
In this case, the topology z is no more locally convex and it is strictly stronger than
topology z" (see [8]).

It can be asked: What about our case of non-entire (holomorphic) Dirichlet series?
We are concerned with this question.

Denote

p(a, b) : l la - bl l  c : i : l  { '* 
- bnl ' t^^1, o : (o,), b : (b,) e E n.

It is easy to verify that p(a, b) is an invariant metric on Ep. As it was in [7], we can
prove the following result.

Theorem 3.2. (Ep,r) is a complete metrizable, non-Iocally bounded space, i.e., a
non-normable ( F ) - spac e.

Furthermore, we have the following result.

Proposition 3.3, In the space Ep, the topology defined by the metric p is not torotty
cotwex. In other words, this space with the metric p is never a Frdchet space. Moreover,
the topology t is strictly stronger than the topology ro.

Proof. Suppose (d0)) C Enand,a(i) -+ 0withrespecttothetopologyr.Weshowthat

the sequence (atl)) tends to 0 under each norm ll . llr, k : l, 2,.... Take an arbitrary

number k e N and let e > 0 be given. Then for s e N with T2e-L'logs = 6e, there
exists N1 : Nr(s) such that V"/ > Nr

. .  r  . . . t 1 / ) , "  
a  

I  _ " _ t o B ,l latrr l l  :  sun la)r '  |  . ,
(3.2)
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On the other hand, by condition (2.3), there is a number Nz : Nz(s) such that
Yn > N2. We have

),"n >
).1 logs * 2logn

oft + logs '

which implies that
),1logs ]-2lorn < ),n(ot * logs).

Combining (3.2)-(3.3), we have that Vj > N - max{N1, N2}

(3.3)

llou ) ll* : D V:i) le-or)'^ < | e-r, {toc'+o*)

n : l  n : l

@

1 e-L,t"tt f 
1= 

: 
"-trr 

logs . ,.
- n -
n : l

So we have proved that in the space Ep, the convergence of a sequence with respect
to the metric p implies its convergence with respect to the topology ro.

Now,weassume qU)  -+  aunde reachno rm l l  . l l t ,  t  : l , 2 , . . . .Weshowtha t i n
general, the sequence (dU)) n not tend to a with respect to the topology z.

Thke an arbitrary elernent a (ar) of the space Ep. Then for eacho > R, the series

DZt ane-" \' converges, which implies

i lo,l"-"^' ) o, "l -+ oo. (3.4)
n:  j+L

Consider a sequence (aU)) in the space En with

( , )  I o " ,  i f n <  j ,
oi' : 

I o, otherwise.

Then. since

t ta;>-al-:Dl"Y,-o,1" :  D l"yr-o,1"
n=1 n: j+ l

(3.4) shows that a\J ) -+ a with respect to the topology zo.
On the other hand, concerning the convergence of this sequence in the topology p, we

consider
p(ou)  ,a)  :  sup lanl / lx '1 .

n Z l

The sequence (p@<i, ,a)) need not tend to 0 as "l 
-+ oo. For this claim, it is enough

to give an example.
Indeed, if we take the sequence (a,) defined as follows:

c l n : g - o L n , n : 1 , 2 , . . . ,  ( 3 . 5 )
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then a : (a") e Ep. For this sequence (3.5), we have

l o ' l ' / ^ " : s - o ' Y n > l '

Thus, the topology defined by metric p is strictly stronger than the Fr6chet topology ro
and therefore cannot be locally convex. Indeed, if it were, we would have two topologies
making Ea into a Fr6chet space. These topologies would then be equivalent by the
Banach homomorphism theorem: a contradiction. r

4. Dual Spaces

Given two sequence spaces A and B, we denote by (A, B) the sequence space of
"multipliers" from A to B,

(A, B) - 
lu 

- (u"); (u"a") e B, v(a,) e Al.

A sequence space A is said to be normal [5] (or solid []) such that, whenever A
contains (an),italso contains (br) with lb,l < la^lfor n: 1,2,... . Equivalently,
A is normal if ,oo C (A, A). For a sequence space A, there always exists the largest
normal subspace denoted by s(A) that is contained within it, and the smallest normal
superspace denoted by S(A) that contains it. More precisely, s(A) : (/-. A) and S(A)
is the intersection ofall the normal spaces that contain A [1].

Various concepts of duality for sequence spaces are given in12,5l.Let D be a fixed
sequence space. Then the D-dual ofa sequence space A, denoted by AD, is defined to
be (A, D), the multipliers from A to D. The K0the dual is obtained when D : /1, and
will be denoted by As (itis also denoted by AK). The Abel dual is obtained when D is
the space of Abel-summable sequences, that is, the space of sequences (dr) for which

ti- ia,,'
' ' t  

/=-t

exists. We denote the Abel dual of A by A" . Note that when dn > 0, the existence of
this limit is equivalent to ld" < *oo. It is clear that A" c Aa. The inverse inclusion
is true if space A is normal [1]. Spaces A" and Ao were studied in],2,5,61.

In this section, we study some dual spaces of the space Eiq.
We note that if the sequence (lr) satisfies condition (2.3), then

i .^' < *oo, vr e (0, 1). (4.1)
n : l

It is obvious thal En is a normal space. Then Efr : Eft.
Beside Eft,the Kdthe dual of the space Ep,we introduce the following space:

zP*: [(r,); iu,o,converges, v(a,) e nnl.
n : l

It is clear that Eft c Efl.

265
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Proposition a.l. If (u,) e EP*, then the following condition holds:

limsup+f4 < -R. (4.2)
n--+@ ftn

Conversely, if the sequence (u,) satisfi.es condition (4.2) and, in addition, the sequence

(),,) satisfies condition (2.3), then (u,) e Eft.

Proof. Let(u,) . rf,. Assume

.. loglurl
hmzup 

T 
> -R,

the value of the left-hand side can be finite as well as *oo. In any case, for a sequence
(ro) .1. O, there exists an increasing sequence (n7.) of positive numbers such that

l o g l u " )  > - R -  e 1 r , Y k > r ,
Lno

which is equivalent to
tog(tf lu"r) < (R + en))'no.

Define a sequence (a") as follows:

o'=1.'o!,'^' :lil";ft 
k: t' 2' '

Then we have

,. loglanl - r! -- ---,- logla"ol
lim sup 

' 

"t 

5 lim sup 
T 

= ttflty {(R * et)} : R'

which means that (a") is in Ea.
However, since lanurl: 1, for n : nk (k : I, 2, . . .), it follows that anun does not

tend to 0 as n -> oo. So the series lpt anu, does not converge, a contradiction.

Conversely, assume there exists a constant M such that (4.2) holds, i.e.,

l imsup tJ€ l f  :M  < -R ,
n+6 h71

and also condition (2.3) is satisfied.
Then for e > 0 (satisfying2e < -R - M), there exists Nt such that Vn Z N1

' : 3 ! f<M*e ,
h 2

or, equivalently,
lu' l < s(M+"))"^ '

On the other hand, for each (a") e Ep, there exists N2 such thatYn > N2

la'1 < s@+e)x"

Hence, for alln > max{N1, N2},

lanurl < e(M+R+zeD'",

which implies that the series lp1 lanunl convetges due to (4.1). I
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Corollary 4.2. If (2.3) is satisfied, then (u,) e nP^ i7 and only if (u,) e Eft, i.e.,

nB^: Zi. In this case, these spaces can be defined as follows:

EH: Eft: l("") satisfies (4.D1.
It is clear that En c Uff. We shall prove that with condition (2.3), the inverse

inclusion is true.

Proposition 4.3. Suppose condition (2.3) holds. Then the space Ep is perfect, i.e.,

Eff : Ep.

Proof. Suppose (a,) ( Ep. This means that

l im sup 
loq lan I t ^'

,--^ ),"n

the value of the left-hand side can be finite as well as *oo. In any case, there exists
M > R > 0 such that, for a sequence (to) J O, there exists an increasing sequence (n i.)
of positive numbers such that

l o g l a " o l  
> M - e 1 r , Y k / 1 ,

Lh

log (I I 1a"rl) < (er - M)Lno.

Define a sequence (a,) as follows:

u,={, : ! , '^ '  'o ' . ; ; f t  k: t '2 '  '

Then we have

los. lu . l
l imsup':+y < tmsup < l imsup (to - m): -M { -R,

n+& / \n k+oo k+m

which means that (u") is in Eft.
However, since jan'unl: 1, for n = nk (k : l, 2, . . .), the series lf:ranun does

not converge. Hence, (a") # nT. The proof is complete. r

From now on, the sequence ().r) satisfying condition (2.3) is considered to be given.

Thking into account Proposition 4.L, we study a question about linear continuous
functionals on the space En with the metric p.In a similar way, as was in [7], we can
prove the following result.

Proposition 4.4. IEt o : (on) e Ea. Then every linear continuous functional F from
the dual space Efihas theforrn

F(a) : fo ,u , ,
n: l

where (un) satisfies condition (4.2), i.e., (u") e Eft.

As noted above, the K0the dual of a sequence space is in fact the sequence space of

multipliers from this space to the space ll. A question arises: What about multipliers

fuom Ep to lP?



268

Theorem 4.5. The following assertion holds:

( n * , P ) : U f t , Y 0 < p < o o .

Ii Hai Kh6i

Proof.  Let("") .(no,Io),0 < p < oo.Assume ("")  f  Eft ,whichmeansthat

.. loglu"l
limsup -T > -R:

the value of the left-hand side can be finite as well as *oo. In any case, for a sequence
(ro) .1, O, there exists an increasing sequence (n p) of positive numbers such that

log-lu") > -R - e1,,Yk > r,

which is equivalent to
tog(tf lu"il < (R + st)L,*.

(l) In the case O < p < oo, consider a sequence

o' : f'o!,'"rl :l:";ft .k: 
t' 2' "' '

Then we have

rim suo 
log lc' | : fim sup 

logla"ol

,--' )., t--^ )un*

: lim sup 
log(rllu,,rl) 

< [m sup (R + e7') : n'
f t+oo Ln* k+m

whichmeans that(a1r) e Ep.

However,  s ince lanounol  = 1,  (k  = 1,2, . . . ) ,  we have L| t lor r r lo  :  oo and
(a "un )  1P .
(2) ln the case p = @, consider a sequence

o' : fnoo,'l"rl' :T";ft 
2' "' '

Then we have

uffJn'*#=,fl,y'+:'ffJn t4#4

< lim sup 
to,t'n 

* lim sup (R + e1) : n,- 
ft*oo' Lno k*oo^ 

' ' '

which means that (a1,) e Ep.

However, since lanounol : nt --> *oo as k --+ oo, it follows that (arur) f t*.
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So in both cases, we have that ("") f (n*,P), a contradiction. Thus, (np,V) c
E f t , 0 . p < o o .

Conversely, let (u") e Eft.Then for some M < -R, there exists N1 such that
Yn>  N t

lunl  s  eML".

Take an arbitrary (o") . Ep. Then for e e (0, -n - M), there exists N2 such that
Y n >  N z

la; < s(R+e)L^ '

Consequently, for all n > fy' - max{Nr, N2}, we have

lanunl  < e(M+R+€)L ' .

(1) In the case 0 < p < oo, we have

i lo,u,lo =irt '**+e)PL' < 6,
n :N  n :N

due to (4.1), as M *R * e < 0, which means that (anun) e In.

(2) In the case p : @,we have larunl < e(M+R+e)^" < l, Yn > N, which shows that
(anun) e I* .

Thus, in both cases (u") . (n*,p) nd Eft C (E*,lo),0 . p < @. The proof is
complete. r

The next result concems the sequence space of multipliers fromlp to Ep.

Theorem 4.6. The following assertion holds:

( t o , n * ) = E R , v o < p < o o .

Proof. Let (u") . (to, n*),0 < p < oo. Assume ("") f Ep, which means that

loplu.l
I t m s u p  - ,  ^ ,

the value of the left-hand side can be finite as well as *oo. In any case, there exists
M > R such that, for a sequenc" (rr) J 0, there exists an increasing sequence (ny.) of
positive numbers such that

log-lu"ol 
> M - e1,, Yk / !,

which is equivalent to
1 

. e),,k@t 
_M) 

.
lu" , l  

-

Define a sequence (f,) ur follows:
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(1)  In thecaseO = p < oo,

-  t  r ( M - e r v ) L " r , 1 l u n o l ,  i f n : n k ,  k  : 1 ,  2 , . . . ,
f ' : to ,  o therwise,

where u e (0, M - R). Then we have

oo @ e ^o) , " ,  (M-er -v )  oo

I f + ; r - \ - r t  
r p - F e ' ' K '  

-  
< 5 1  e - P v i " " r < + o o ,

n:t ?--u'tno' 

- 

?o lunolP 
- 

?--,-

due to (4.1), which shows that (8") e lp.

However,

l imsup 
logl .Enunl  

= f imsuplogl€,ounol :  hmsup(M -  €k -v) :  M- u > R.
n--^ )t"n i.-m^ )tn, ft+oo

(2) In the case p : oo,

€ , : I ' t r u t - e * ) ) " ^ * 1 l u n o l '  
i f  n = n k '  k = l ' 2 ' " '  '

I o, otherwise.

Then we have 16, | < !, Yn Z 1, which implies that (f,) e /@'

However,

lim sup 
logl€,unl : lim sup 

loglinou"ol : hm sup(M - er) : M > R.
n-*' ^., ft+oo )unt k+oo

So in both cases, we have (Snun) f En, a contradiction. Thus' (to,z*) c En,
0 < p < o o .

Conversely, let (u") e Ep, which means that

lim sup 
log- lun | . ^.

n+@ lrn

Take an arbitrary (€") . to,O < p < oo. Inboth cases, there exists a constant M > O

such that l€"1 < M, Yn > l. Then we have

timsup rosl€"u"| < tmsup +f&f * fimsup +f4

A.+d;+:;;; +=.
which shows that ($,un) e En.

Thus, En c (tp , ER),O < p < oo. The theorem is proved completely. I

Aclmowledgement. Tlte author thanks the referee for useful remarks.
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