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Abstract. This paper deals with Dirichlet series with real frequencies that define holomorphic
functions in the half plane of C.

1. Introduction

Dirichlet series with real frequencies which represent entire functions on the complex
plane C have been investigated by many authors. Several problems such as topological
structures, linear continuous functionals, bases, etc., have been considered. However,
there seems to be few papers on non-entire (holomorphic) Dirichlet series with real
frequencies. In this work, we are concerned with the last series.

Given a non-entire Dirichlet series

o0
E ane 7,
n=1

wherea, € Cand0 < ()»,,) 4 +00. Asis well known, there exists a number R, called the
abscissa of convergence, such that the sum of the series converges at all z with Rez > R,
and disconverges at all z with Rez < R.. The abscissa of absolute convergence R, 1s
defined similarly. Between these numbers, there is a relation:

1
0<R,— R, <L =limsup ogn.

n—>00 n

Inthecase L = 0, the abscissa of convergence and the abscissa of absolute convergence
of Dirichlet series coincide and can be defined by the formula:
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R, = R, = limsup M-
n—>oQ n

This paper deals with Dirichlet series with real frequencies which represent holomor-
phic functions in the half plane of C. We describe briefly the content of our work. Section
2 deals with some auxiliary results concerning the convergence of Dirichlet series in a
space of holomorphic functions in the half plane. These results are obtained in the spirit of
[4, 7] for the case of holomorphic Dirichlet series with complex frequencies in bounded
convex domains of C*, n > 1. In Sec. 3, we study a sequence space of the coefficients
of Dirichlet series. Here, we follow the terminology in [5, 9]. We endow it, as was the
case for entire Dirichlet series, with some topological structures and compare them. In
particular, we show that the picture in the holomorphic case is quite different from the
entire one. Section 4 concerns various dualities of the sequence space introduced in the
previous section, namely, we study coefficient multipliers between spaces Er and [?
(0 < p <00).

2. Sequence Space of Coefficients

Consider Dirichlet series

[o.¢]
> ane™, 2.1
n=1

with 0 < (A,) 1 +o0.

Note that, since the sequence of frequencies is real, the series (2.1) has the uniqueness
of representation, ie., different sequences of coefficients (a,) represent different
functions. Due to this fact, we can always identify Dirichlet series (2.1) with the sequence
(an) of its Dirichlet coefficients.

Let R be a given real number. First, we make a characterization of the coefficients of
the series (2.1) when it converges for the topology of O(I1g), the space of holomorphic
functions in the half plane ITz with the usual topology of uniform convergence on
compact subsets of I1g, where [1g = {z; Rez > R}.

Theorem 2.1. Ifthe multiple Dirichlet series (2.1) converges for the topology of O(I1g)
and ), - o0 asn — 00, then

. log |a
lim sup M <
n—>oo n

R. 2.2)

Conversely, if the coefficients of (2.1) satisfy condition (2.2) and, in addition, the
sequence (A,) satisfies the condition

1
T = (O 2.3)

n—>00 Ay

then the series (2.1) converges absolutely for the topology of O(I1Rg).
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Proof. We consider a family (K, ) of compact subsets of the half plane Iy of the form

1
K, ={z R+ <RezsR+q mz| < g}, 0<qt+oo. 4

Necessity. Suppose the series (2.1) converges for the topology of O(I1g). Then for any
g € (0, +00), there exists a positive constant M; < oo such that

—AnZ

sup {|ane ;z€ Kgon =1} < My,

which, in view of (2.4), is equivalent to

log |a,| <10qu+R+l Vi > 1
An T 2% 7

Consequently, logla] .
lim sup Sl <R+ -—.
n—>00 n q

Letting g tend to +00, we obtain the inequality (2.2).

Sufficiency. Let conditions (2.2) and (2.3) hold. Take an arbitrary compact subset K of
I1g. Then it is clear that K C K, for some g € (0, +00), where K, is defined by (2.4).
We shall prove that

2 1
Z Ia,,le_)"‘(R“L?) < o0.
n=1

By (2.2), for 0 < ¢ < 1/q, there exists N1 such that Vn > N

lo_gM<R+8

n
or

lan| < g (R+e)

Hence, for n > Nj
1 1
— A (R+1 = Ly
lanle A(REg) < gl6=g)hn

By (2.3), there exists N such that Vi > N>
1
2 logn < An(= — &),
q
or
DM < X

3
n
Therefore, Vn > max (N1, N2)

~ha(R+D) _ 1
2

lanle
So, we obtain

o 1
3 lanle ™+ FH < oo

n=1

which means that the series (2.1) converges absolutely for the topology of O(I1z). =
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Corollary 2.2, If(2.3) holds, then the series (2.1) converges for the topology of O(I1g)
if and only if it converges absolutely for the topology of O(T1R).

Remark 2.3. When the frequencies (A,,) are complex numbers, the domain of absolute
convergence of Dirichlet series, as is well known, is convex. In this case, this result
was proved for a bounded convex domain in [4] for one variable and in [7] for several
variables.

Denote by £ (ITg) the class of functions f of the form
o0
f(Z) = Zane—lnl,
n=1

where (an) satisfy condition (2.2). We see that if f € £(I1g), then f € O(Ilg), and
moreover, the class £(I1g) contains all entire functions represented by Dirichlet series
with frequencies (An ) It is easy to verify that it forms a vector space with usual pointwise
addition and scalar multiplication.

As was noted above, due to the uniqueness of the representation of Dirichlet series with
real frequencies, we can indentify the class £(I1g) with the class Ey of their Dirichlet
coefficients. Thus,

Eg = {(an) satisfies (2.2)}.

It is obvious that E is a vector space called a Dirichlet sequence space.
In the sequel, we study various properties of the space Eg.

3. Topeological Structures

We shall show that the sequence space Er can be endowed with some topological
structure. Before doing so, we would like to introduce the terminology we adopt in the
present paper: a Fréchet space is any metrizable and complete locally convex topological
vector space; an (F)-space is metrizable and complete, but not necessarily locally convex.

A natural question arises: Is it possible to endow the space Ex with some topological
structure? Below, we see that there are different ways to do this.

So far, this problem was first considered by Kamthan and Shing Gautam in [3], namely,
for each a = (a,) € Ek, it can define norms on E as follows:

o0
- A'n
lalle =) _ lanle™**, (o%) | R.
n=1

Denote by t, the topology on Eg generated by the family of norms (|| | k). Then
(E R, rc,) is a Fréchet space (i.e., the complete, metrizable locally convex space).

Furthermore, consider the family of pseudo-norms defining the compact-open
topology of the space O(I1g). As a sequence of compact subsets converging to TTg
from inside, we can take (Kq) of the compact subsets of the half plane [Ty of the form
(2.4),ie.,

1
Kq={z; R+ —<Rez<R+gq, IImzleI}, g=12,....
q
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Then for each a = (a.) € Eg, we denote

00 [0}
—(R+1
laly = Zsup{lane_}‘"zl; ze Ky} = Zlanle BEM g > 1.
n=1 n=1

Itis easy to see that | - |, is a pseudo-norm on the space Eg. Denote by 1o the topology
generated by {| - |q}f1’°=1. Taking into account (2.4), it is easy to verify that the topology
T is equivalent to the topology 7,. So we have the following result.

Proposition 3.1. In the space ER, two topologies 1, and 1y are equivalent.

On the other hand, foreacha = (an) € Eg, we can also define the following function:
lalle = sup {jan1"/* . 3.1
n>1

Due to (2.2), function (3.1) is well defined and it is a paranorm (see, e.g., [, 9]) on
Eg. Denote by t the topology given by || - | £.

Before continuing, we make the following note. Itis well known that for entire Dirichlet
series (with real frequencies), i.e., for the case R = —o00, two topologies 7, and t are
equivalent, which means that the space (E R, 1:) is also a Fréchet space (see, e.g., [3]).
However, for Dirichlet series with complex frequencies, the picture is quite different.
In this case, the topology 7 is no more locally convex and it is strictly stronger than
topology 7, (see [8]).

It can be asked: What about our case of non-entire (holomorphic) Dirichlet series?
We are concerned with this question.

Denote

p(a,b) = lla = bllg = sup fan - bl ), a = (@), b = (bn) € Er.
n>

It is easy to verify that p(a, b) is an invariant metric on Eg. As it was in [7], we can
prove the following result.

Theorem 3.2. (E R, r) is a complete metrizable, non-locally bounded space, i.e., a
non-normable (F)-space.

Furthermore, we have the following result.

Proposition 3.3. In the space Eg, the topology defined by the metric p is not locally
convex. In other words, this space with the metric p is never a Fréchet space. Moreover,
the topology t is strictly stronger than the topology ts.

Proof. Suppose (a Y )) C Eg anda’) — 0 with respect to the topology 7. We show that
the sequence (a') tends to O under each norm | - [|lx, kK =1, 2, .... Take an arbitrary

number k € N and let ¢ > O be given. Then for s € N with aZe~M1o8s - Ge there
exists N1 = Ni(s) such that Vj > N;

, NP 1
”a(]) | = sup 'ar(l])| < ; = ¢~ logs 3.2)
n>1
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On the other hand, by condition (2.3), there is a number N; = N>(s) such that
Vn > N,. We have

Alogs +-2logn
s =
or +logs

’

which implies that
M logs +2logn < An(ox + log s). 3.3

Combining (3.2)—(3.3), we have that Vj > N = max{N1, N;}

o0 )
||a(j) e = Z |ar(lj)|e—0k}\-n < Z o *n(logs+oy)
n=1 n=1

o0

1 n?
< e—Al logs Z ;2_ E Fe_)” logs <&,
n=1

So we have proved that in the space Eg, the convergence of a sequence with respect
to the metric p implies its convergence with respect to the topology 7.

Now, we assume a*) — g under each norm || - ||z, k = 1, 2, .... We show that in
general, the sequence (a‘/) need not tend to a with respect to the topology 7.

Take an arbitrary element a = (a) of the space Eg. Then for each o > R, the series

Y o2 | ane~%* converges, which implies
o0
Y lanle™™ >0, j - oo (34
n=j+1
Consider a sequence (a'/) in the space Eg with

EM an, ifn <j,
Z 0, otherwise.

Then, since

j —o
a,(,f) —an’e ,

oJ o0
”a(j) —als = Z a,(,]) —an’ e’ = Z

n=1 n=j+1

(3.4) shows that a0 — a with respect to the topology 7.
On the other hand, concerning the convergence of this sequence in the topology p, we
consider
p@?, a) = sup ja,|'/1™!.

n>j

The sequence (p(a', a)) need not tend to 0 as j — oc. For this claim, it is enough
to give an example.
Indeed, if we take the sequence (a,,) defined as follows:

ap=e""n=12..., (3.5)
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then @ = (a,) € Eg. For this sequence (3.5), we have
lap|V/* = e, ¥n > 1.

Thus, the topology defined by metric p is strictly stronger than the Fréchet topology 7,
and therefore cannot be locally convex. Indeed, if it were, we would have two topologies
making Ep into a Fréchet space. These topologies would then be equivalent by the
Banach homomorphism theorem: a contradiction. [

4. Dual Spaces

Given two sequence spaces A and B, we denote by (A, B) the sequence space of
“multipliers” from A to B,

(A, B) = {u = (un); (unan) € B, V(ay) € A}.

A sequence space A is said to be normal [5] (or solid [1]) such that, whenever A
contains (an), it also contains (b,,) with |b,| < |az| forn = 1, 2,... . Equivalently,
A is normal if I*° C (A, A). For a sequence space A, there always exists the largest
normal subspace denoted by s(A) that is contained within it, and the smallest normal
superspace denoted by S(A) that contains it. More precisely, s(A) = (I°, A) and S(A)
is the intersection of all the normal spaces that contain A [1].

Various concepts of duality for sequence spaces are given in [2, 5]. Let D be a fixed
sequence space. Then the D-dual of a sequence space A, denoted by AP, is defined to
be (A, D), the multipliers from A to D. The Kothe dual is obtained when D = !, and
will be denoted by A® (it is also denoted by AX). The Abel dual is obtained when D is
the space of Abel-summable sequences, that is, the space of sequences (dn) for which

00
lim E dnr®
r—>1

n=1

exists. We denote the Abel dual of A by A%. Note that when d,, > 0, the existence of
this limit is equivalent to Y  d, < +oo0. It is clear that A* C A®. The inverse inclusion
is true if space A is normal [1]. Spaces A® and A? were studied in 1,2, 5, 6].

In this section, we study some dual spaces of the space Eg.

We note that if the sequence (A,,) satisfies condition (2.3), then

[0.¢]
Zr}‘” < 400, Vr € (0, 1). 4.1)

n=1

It is obvious that E is a normal space. Then E3 = E%.
Beside E}, the Kothe dual of the space Eg, we introduce the following space:

o0
Eﬁ = {(un); Zunan converges, V(a,) € ER].

n=1

It is clear that E C Eﬁ.
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Proposition 4.1. If (u,) € E Ig, then the following condition holds:

log |u
lim sup illl <
n—>oe n

—R. 4.2)

Conversely, if the sequence (u,,) satisfies condition (4.2) and, in addition, the sequence
(An) satisfies condition (2.3), then (un) € E§.

Proof. Let (u,) € Eg. Assume

. log |u
n—>00 n

R,

the value of the left-hand side can be finite as well as +oc. In any case, for a sequence
(ex) 4 0, there exists an increasing sequence (n) of positive numbers such that

log |unk | >

—R — &, Yk > 1,
An,

which is equivalent to
log (1/lun,1) < (R + &),
Define a sequence (ay) as follows:

| Vlunl, ifn=ng, k=1,2,...,
ST 0, otherwise.

Then we have

lim sup lig—la—"l < lim sup 1_o§|ai| <limsup {(R + €)} = R,
n—»00 n k—o0 R k—00
which means that () is in Eg.
However, since |a,un| = 1,forn =ng (k =1, 2,...), it follows that a,u, does not
tend to 0 as n — 00. So the series Y oo aalt, does not converge, a contradiction.
Conversely, assume there exists a constant M such that (4.2) holds, i.e.,

1
lim sup ol [4n]
n—00 n

=M < —R,

and also condition (2.3) is satisfied.
Then for ¢ > 0 (satisfying 2¢ < —R — M), there exists N1 such that Vn > N;
1
og |un| <M+e, g

n

or, equivalently,

On the other hand, for each (a,) € Er, there exists Nz such that Vn > N

lan| < e(R+€)A"~

Hence, for all n > max{N;, N2},
|anitn| < eMFTREZN

which implies that the series Y .o ; |asun| converges due to (4.1). =
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Corollary 4.2. If (2.3) is satisfied, then (un) € Eg if and only if (un) € E%, ie.,
E ﬁ = E$. In this case, these spaces can be defined as follows:

EP = E% = {(un) satisfies (4.2)} .

It is clear that Eg C E%*. We shall prove that with condition (2.3), the inverse
inclusion is true.

Proposition 4.3. Suppose condition (2.3) holds. Then the space Eg is perfect, i.e.,
EY¥ = Ep.

Proof. Suppose (an) ¢ Eg. This means that

. log |an|
limsup ——— >
n—>00 n

the value of the left-hand side can be finite as well as +oo. In any case, there exists
M > R > 0 such that, for a sequence (sk) J 0, there exists an increasing sequence (nk)
of positive numbers such that
log |ay, |
Ang

R;

>M — e, Yk =1,

which is equivalent to
log (1/lan,!) < (&x — M)An,.
Define a sequence (un) as follows:

1la,|, ifn=n, k=1,2,...,
i 0, otherwise.
Then we have

1 log (1/]a,,
lim sup ﬂ"—l < lim sup —g—(M < lim sup (ek = M) =~—-M < —R,
n—>00 n k— 00 ne k00
which means that (u,) is in E§.
However, since |anu,| = 1, forn = ni (k =1, 2, ...), the series Z;’;l anun, does
not converge. Hence, (a,) ¢ E%*. The proof is complete. [

From now on, the sequence (A,) satisfying condition (2.3) is considered to be given.

Taking into account Proposition 4.1, we study a question about linear continuous
functionals on the space Eg with the metric o. In a similar way, as was in [7], we can
prove the following result.

Proposition 44. Leta = (a,,) € ER. Then every linear continuous functional F from
the dual space EY, has the form

o0
F(a) = Z Anlin,
n=1
where (u,,) satisfies condition (4.2), i.e., (Un) € E§.
As noted above, the Kothe dual of a sequence space is in fact the sequence space of

multipliers from this space to the space I'. A question arises: What about multipliers
from Eg to [P?
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Theorem 4.5. The following assertion holds:

Eg,IP)=E%, V0 < p < .
R

Proof. Let (u) € (Eg,17),0 < p < 0c. Assume (u,) ¢ E, which means that

I
lim sup _‘.)Lunl T
n—>00 An

R;

the value of the left-hand side can be finite as well as 4+00. In any case, for a sequence
(sk) 1 0, there exists an increasing sequence (n k) of positive numbers such that

log |un, |

Z_R_SIOsz 15
Ang

which is equivalent to
log (1/lun,|) < (R + 1)An,.

(1) Inthe case 0 < p < 0o, consider a sequence

1/ |tny|, ifn=m, k=1,2,...,
= 0, otherwise.
Then we have
1 1
lim sup o8 lan| _ 1im sup log lan,|
n—>00 n k—o0 g
log (1/|u
= lim sup —g(/l—n"l) <limsup (R + &) = R,
k—00 i k— 00

which means that (ax) € Er.

However, since |ap,un,| = 1, (k = 1, 2,...), we have Y oo | |ayun|? = oo and

(anun) ¢ 17.

(2) Inthe case p = 00, consider a sequence

ol nk/|unk|, if'n"= ny, %= 1,52;°=°F,
" 0, otherwise.

Then we have

1 1 log (ni/lun,|
lim sup oglanl _ lim sup log lan| _ lim sup M
n—00 n k—>00 e k—o00 }\-nk
lo
< lim sup Bl + lim sup (R + ak) =R,
k—00 )‘-nk k— o0

which means that (a;) € Eg.

However, since |ay, Uy, | = ng — +00 as k — 00, it follows that (anun) ¢ 1°°.
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So in both cases, we have that (1,) ¢ (Eg,!”), a contradiction. Thus, (Er.17) C
E%, 0 < p <oco.
Conversely, let (u,) € E%. Then for some M < —R, there exists N; such that
Vn > N;
[un| < eMA"-
Take an arbitrary (a,) € Eg. Then for & € (0, —R — M), there exists N, such that
Vn > N,

an < e R+,

Consequently, for all » > N = max{N;, N2}, we have
|anun| < e(M+R+8)A.,,.
(1) Inthecase 0 < p < oo, we have
o0 o0
Z lanun|? < Z eMHRYEPI 00,

n=N n=N -

due to (4.1), as M + R + ¢ < 0, which means that (a,u,) € I7.

(2) Inthe case p = oo, we have |a,u,| < eMHR+eM, < 1, ¥n > N, which shows that

(anun) € 1.
Thus, in both cases (4,) € (Eg,?) and E§ C (Eg,?),0 < p < 0o. The proof is
complete. [ ]

The next result concerns the sequence space of multipliers from [? to Ep.
Theorem 4.6. The following assertion holds:

(lp,ER)=ER,VO<p§OO.

Proof. Let (u,) € (I?, Eg),0 < p < 00. Assume (u) ¢ Er, which means that

log |u,|

lim sup > R;

n—o0 n

the value of the left-hand side can be finite as well as +o0. In any case, there exists
M > R such that, for a sequence (g) | 0, there exists an increasing sequence (n;) of
positive numbers such that

Ry

which is equivalent to
L _ -,
|un1¢ |

Define a sequence (§,) as follows: ’
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(1) Inthecase 0 < p < o0,

. M =8 V)hny | |unk|, ifn=ng, k=1,2,...,
" 0, , otherwise,
where v € (0, M — R). Then we have

e ® X P Msy) X
Y alP =) el = Z_W <Y e < too,
n=1 k=1 £

k=1

due to (4.1), which shows that ($n) elb.

However,
1 lo u .
lim sup M = limsupilgn"—""| =limsup(M — g —v)=M —v > R.
n—>00 n k=00 ni k—o00

(2) Inthe case p = oo,

= M=ty |u,,k|, itk =1, 20 &4
K 0, otherwise.

Then we have |£,| < 1, ¥ > 1, which implies that (£,) € I*°.

However,
1 lo .
lim sup 10g |Enttnl = lim sup —g—lgﬂuL"l = limsup(M — &) = M > R.
n—00 n k—>00 ng k—o00

So in both cases, we have (f,—'nun) ¢ Eg, a contradiction. Thus, (lP X ER) C Eg,
0<p<=<oo.
Conversely, let (u,) € Eg, which means that

. log |un|
lim sup ——u <
n—oQo n

R.

Take an arbitrary (5,,) € 17,0 < p < oo. Inboth cases, there exists a constant M > 0

such that |£,] < M, Vn > 1. Then we have .
1 1 . 1
lim sup L getn] [Enttn] < lim sup il il + lim sup sl [un|
n—00 n n—>00 An 00 "
log M ! 1
< lim sup ° +limsupM=1imsup—o§—lu—"l§R,

n—>oQ n n—o0 n n—>00 n

which shows that (§,ur) € Eg.
Thus, Eg C (I?, Er),0 < p < 0o. The theorem is proved completely. ]
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