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Abstract. The smallest value of m for which we are still unsure if all connected cubic
(m, n)-metacirculant graphs have a Hamilton cycle is m = 6. In this paper, we shall prove that a
connected cubic (6,n)-metacirculant graph G=MC(6. n, a, Sp, S1, 52, S3) has a Hamilton cycle
if either one of the numbers @ + 1, — 1, 0r 1 —or + r* is relatively prime to n, or the order of « in
Z; is not equal to 6. As an application of these results, we shall show that every connected cubic

(6,n)-metacirculant graph has a Hamilton cycle if either n = p?g?, where p and g are distinct
primes, a > 0 and b > 0, or » is such that ¢(n) is not divisible by 3 where ¢(n) is the number of
integers z satisfying 0 < z < n and ged(z, n) = 1.

1. Introduction

This paper is a sequel to the first paper [12] in which it was shown that a connected
cubic (6, n)-metacirculant graph G=MC(6, n, o, So, S1, S2, S3) has a Hamilton cycle if
P+ =(s}and (1 + @ +a? + o’ +a* + o’)s = 0 (mod n). As in [12], we consider
here only finite undirected graphs without loops or multiple edges. If G is a graph, then
V(G) and E(G) denote its vertex-set and its edge-set, respectively. If » is a positive
integer, then we write Z,, for the ring of integers modulo » and Z* for the multiplicative
group of units in Z,.

Let m and n be two positive integers, @ € Z;, 4 = [m/2] and let Sp, Si, ..., S, be
subsets of Z, satisfying the following conditions:

(1) 0 ¢ So = —3So;
2) ™S, =8, forO<r < pu;
(3) if m even, then a*S, = —S,,.

Then we define the (m, n)-metacirculant graph G=MC(m, n, a, Sy, Sy, ..., Sp) to
be the graph with vertex set V(G) = {v;- i € Zy, j € Z,} and edge set
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EG) = (i) : 0<r <pi€ZmhjeZyh-je o'S,}, where
superscripts and subscripts are reduced modulo 7 and modulo n, respectively.

The concept of (m, n)-metacirculant graphs was introduced in [1]. It was asked if all
connected (m, n)-metacirculant graphs, other than the Petersen graph, have a Hamilton
cycle. Forn = p' with p a prime, an affirmative answer was obtained in [2]. Connected
cubic (m, n)-metacirculant graphs, other than the Petersen graph, are also proved to be
Hamiltonian for m odd [7], m = 2 [4, 7], and m divisible by 4 [8, 10]. Thus, the smallest
value of m, for which we are unsure if all connected cubic (m, n)-metacirculant graphs
have a Hamilton cycle, is m = 6.

This paper is a continuation of the first paper [12] in this series and is geared
towards the resolution of the problem of the existence of a Hamilton cycle in connected
cubic (6, n)-metacirculant graphs. Using the results obtained in {12], we will prove in
Sec. 3 two sufficient conditions for connected cubic (6, #)-metacirculant graphs to be
hamiltonian, namely, we will prove that a connected cubic (6, n)-metacirculant graph
G=MC(6, n, «, So, S1, S», S3) has a Hamilton cycle if either one of the numbers o + 1,
o — 1, or 1 — o + &2 is relatively prime to n or the order of « in Z}; is not equal to 6. As
an application of these results, we will obtain in Sec. 4 a partial affirmative answer to the
question whether all connected cubic (6, n)-metacirculant graphs have a Hamilton cycle,
proving that every connected cubic (6, n)-metacirculant graph has a Hamilton cycle if
either n = p®q®, where p and g are distinct primes, a > 0 and b > 0, or n is such that
@(n) is not divisible by 3 where ¢ (n) is the number of integers z satisfying 0 < z < n
and ged(z,n) = 1.

2. Preliminaries

First, we recall a method used in [10, 11] for lifting a Hamilton cycle in a quotient graph
G of a graph G to a Hamilton cycle in G. This method will be used in Sec. 3 to prove
Theorem 1.

A permutation 8 is said to be semiregular if all cycles in the disjoint cycle decom-
position of B have the same length. If a graph G has a semiregular automorphism 8, then
the quotient graph G /B with respect to B is defined as follows [3]. The vertices of G/8
are the orbits of the subgroup {8) generated by B and two such vertices are adjacent if
and only if there is an edge in G joining a vertex of one corresponding orbit to a vertex
in the other orbit.

Let B8 be of order ¢ and G°, G, ..., G" the subgraphs induced by G on the orbits of
(B). Let vé, vi, e ”;.—1 be a cyclic labeling of the vertices of G* under the action of B
andlet C = GGG/ ... G" G° be acycle of G/B. Consider a path P of G arising from
a lifting of C, namely, start at vg and choose an edge from vg to a vertex vfl of G*. Then
take an edge from v}, to a vertex vj of G/ following G’ in C. Continue in this way until
returning to a vertex vg of G°. The set of all paths that can be constructed in this way
using C is called in [3] the coil of C and is denoted by coil (C).

The following lemma is easy to prove. However, it has been proved in [8].

Lemma 1. [8] Let ¢ be the order of a semiregular automorphism 8 of a graph G and
G the subgraph induced by G on an orbit of (B). If there exists a Hamilton cycle C in
G/ B such that coil(C) contains a path P whose terminal vertices are distance d apart in
the G° where P starts and terminates and gcd(d, t) = 1, then G has a Hamilton cycle.
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The following lemmas are particular cases of Theorem 2 in [9] and Lemmas 5 and 6
in [11], respectively. Therefore, we omit their proofs here.

Lemma 2. [9] Let G=MC(6,n, a, So, S1, $2. S3) be a cubic (6, n)-metacirculant
graph with Sy = §. Then G is connected if and only if one of the following conditions
holds:

A S1=1{s}, $2=0, S3 = {k} and gcd(e,n) = 1 where e is [k — s(1 + ¢ + a?)]
reduced modulo n;

i) S1 =0, S ={s}, S3 = {k}andgcd(g,n) = 1where gis[k(1+a)—s(1+a+a?)]
reduced modulo n.

Lemma 3. [11] Let G=MC(6, n, «, Sy, S1, S2, S3) be a connected cubic (6, n)-meta-
circulant graph such that So = S1 = @, S2 = {s} and S3 = {k}. Letn = gcd(a — 1, n)
and7i = gcd(1 — o + o, n). Then G has a Hamilton cycle if any one of the following
conditions holds:

() Eitherged(n) @n), 37 —1) = 1;

() n=1

Lemma 4. [11] Let G=MC(6,n, «, So, S1, S2, §3) be a connected cubic (6, n)-meta-
circulant graph such that So = 0, S1 = {s}, S = @ and S3 = {k}. Then G has a
Hamilton cycle if n is even.

We now recall the definition of a brick product of a cycle with a path defined in [4].
This product plays a role in the proof of Theorem 2 in the next section.

Let C, with n > 3 and P, with m > 1 be the graphs with vertex sets
V(Cy) = {u1, uz, ..., un}, V(Pn) = {v1, v2, ..., Umy1} and edge sets E(C,) =
{urun, upus, ..., uzu1}, E(Py) = {viva, v203, ..., UnVn1}, respectively. The brick
product C,[,mH] of C, with P, is defined in [4] as follows. The vertex set of C,EmH] is
the cartesian product V(C,) x V(P,). The edge set of C,[,m+1] consists of all pairs
of the form (u;, vy)(ui+1, vy) and (u1, vp)(un, vp), where i = 1,2,...,, n — 1 and
h =1, 2,.. m+ 1, together with all pairs of the form (u;, vy)(u;, vp+1), where
i+h=0@mod2),i=1,2,..,nandh =1, 2,..., m.

The following result has been proved in [4].

Lemma 5. [4] Consider the brick product C,[lm] with n even. Let Cy, 1 and Cp
denote the two n-cycles in C,[lm] on the vertex-sets {(u;,v1) : i = 1,2,..., n} and
(i, vm) 1 i =1, 2,..., n), respectively. Let F denote an arbitrary perfect matching
joining the vertices of degree 2 in Cy,,1 with the vertices of degree 2 in Cy . If X is a
graph obtained by adding the edges of F to C ,[Lm], then X has a Hamilton cycle.

3. Sufficient Conditions

Using results obtained in [12], we will prove in this section two sufficient conditions for
connected cubic (6, n)-metacirculant graphs to be hamiltonian which are expected to be
helpful in further investigation of the problem of the existence of a Hamilton cycle in
connected cubic (6, n)-metacirculant graphs. As an application of these conditions, we
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will prove in Sec. 4 that every connected cubic (6, n)-metacirculant graph has a Hamilton
cycle if either n = p®g® where p and ¢ are distinct primes, 2 > 0 and b > 0 or n is
such that ¢(n) is not divisible by 3, where ¢(n) is the number of integers z satisfying
0 <z <nandged(z,n) =1.

Theorem 1. Let G=MC(6,n, a, So, S1, 52, S3) be a connected cubic (6, n)-meta-
circulant graph. If one of the numbers & + 1, &« — 1 or 1 — a + o is relatively prime to
n, then G possesses a Hamilton cycle.

Proof. Let G=MC(6, n, «, So, S1, 872, §3) be a connected cubic (6, n)-metacirculant
graph, 71 = ged(o — 1, n), n = ged(1 —a+a? n)and A = ged(a + 1, n). If Sg # @,
then by [7], G has a Hamilton cycle. Therefore, we may assume from now on that Sg = @.
Since G is a cubic (6, n)-metacirculant graph, only the following cases may happen:

Case 1. |51|=1,85 =0 and|S3| =1
Case 2. S1=0,|8]|=1and |53 =1
Case 3. S1 =8, =@ and |S3] = 3.
Since G is connected, Case 3 does not occur. Now, consider Cases 1 and 2 in turn.

Case 1. |Si|=1,S, =@ and|S3| = 1.

Let S; = {s} with 0 < s < n and S3 = {k} with 0 < k < n. By the definition of
(6, n)-metacirculant graphs, we have

(1) a® = s (mod n)

& @+ D — 1A + o+ a®)s =0 (mod n), and (3.1
(2) o’k = —k (mod n)
& (03 + Dk = 0 (mod n). (3.2)

Letz = n/gcd(a®+1, n). From (3.1) and (3.2), it follows that z is a divisor of both k and
(@—1)(1+a+a?)s. Since G is connected, by Lemma 2(i), gcd(k, (1+a+a?)s, n) = 1.
Therefore, z must be a divisor of & — 1. Thus, we have

(@® + 1)@ — 1) = 0 (mod n). (3.3)

Assume first that 7 = ged(e — 1, n) = 1. Then (3.3) implies that (e + 1) = 0 (mod
n). By [12], G has a Hamilton cycle.

Assume next that i = ged(e + 1,n) = 1. Let p : V(G) — V(G) : v > v
Then p*~1is a sermregular automorphism of G and therefore, we can construct the
quotient graph G/p® ! which is isomorphic to the cubic (6, 77)-metacirculant graph
G MC (6,7, @, So, S1, S2, S3), where n1 = gcd(a—l n),1 =@ =« (mod7), Sp =

= {5} with0 <5 <7mand5=+s (mod7), S =P and S5 = {k} with0 <k < nand
E = k (mod 7). We identify G /p®~! with G and in order to avoid the confusion between
vertices of G and G, we assume V (G) = {w} 1 i€ Zs, j€Z7)



Sufficient Conditions for the Existence of a Hamilton Cycle 221

If n is even, then by Lemma 4, G has a Hamilton cycle. If » is odd, then we can repeat
here the proof of the main theorem in [10] for the case of # odd in order to construct a
Hamilton cycle of G such that the path P of coil(C), which starts at vg, terminates at v?
with f = (¢ — 1)d (mod n), where

d=-[k—sA+a+ad)]d+a+a’+a?)
= —[k—s(1+a+ad)e+ A +a?).

Let ¢ be the order of the automorphism 0% 1. Itis not difficult to see that 1 = n /. Since
(3.3) holds, it follows that ¢ is a divisor of gcd(ot3 +1,n)=ged((¢+1)(1—« +a?), n). By
our assumption, gcd(ex + 1, n) = 1. Therefore, ¢ must be a divisor of ged(1 —a + a?, n).

Since G is connected, by Lemma 2(1),

ged(k —s(1 + ¢ +ad)],n) = 1.

Therefore, ged(fk — s(1 + o + a?)), 1) = 1. Since ged(er,n) = 1, it is also
clear that gcd(1 + 2,1 — a + ?,n) = 1. So ged(l + a?,¢) = 1 because ¢t is a
divisor of gcd(1 — & + &2, n) as we have shown in the preceding paragraph. Further,
ged(e + 1,n) = 1 by our assumption. Thus, gcd(d, ) = 1. By Lemma 1, G has a
Hamilton cycle.

Finally, assume 7 = gcd(l — o + &2, n) = 1. Since the automorphism p of G with
p(v}) = vJ’: 41 18 semiregular, we can construct the quotient graph G/p. It is easy to see

that G/ p is isomorphic to the circulant graph ﬁ = C(6, {1, 3, 5}), the vertex set and the
edge set of which are

V(G) = {w; : j € Zg} and
E(G) = {wjwy : j,h € Zg; (h— j)=1or3or5 (mod 6)},

respectively. Therefore, we can identify G/ p with G. 1tis also clear that G possesses the
following Hamilton cycle D:

D = wowzwawswawi wo.
Let P be the path of coil(D) which starts at vg. This path terminates at vJQ with

f=k—als+a’k—a's+a*k—s
E(1—a+a2)k—s(1—a+a2)(1+a+a2)
=1 —a+a®)k—s1+a+a?)] (modn).

It is clear that p has order + = n and terminal vertices of P in G are v8 and
v? which are distance d = f apart in G°. Since G is connected, by Lemma 2(i),
ged([k —s(1 +a+a?)], n) = 1. By our assumption, ged(1 —a+a?,n) = 1. Therefore,
ged(d, 1) = ged(f, n) = 1. By Lemma 1, G has a Hamilton cycle.
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Case 2. §1=10,|S;| =1and |S$3| =1.

LetSy = {s}with0 < s <nand $; = (k} with0 < k < n.If 7 = ged(1 —a + a2, n)
= 1, then G has a Hamilton cycle by Lemma 3. Let

7=gedl—1,n) =1. (3.4)

Since ged(a, n) = 1, equality (3.4) holds only if » is odd. Therefore, n/(n 7) is odd.
This implies that ged(n/(m 7), 3% — 1) = ged(n/(@7), 2) = 1. By Lemma 3, G again
has a Hamilton cycle. Finally, let 72 = gcd(e 4+ 1, n) = 1. As in Case 1 but using Lemma
2(ii), we can show that, for the graph G,

@+De-D=@+1)1 -« +a?) (o — 1) = 0 (mod n). 3.5)

Since ged(e + 1, n) = 1, this implies that (1 —a + a?)(a — 1) = 0 (mod n). Therefore,
n/(mn) = 1and ged(n/@mn), 31 — 1) = ged(1, 37 — 1) = 1. Again, by Lemma 3, G
has a Hamilton cycle.

The proof of Theorem 1 is complete. =

Theorem 2. Let G=MC(6,n,a, S, S1, 2, S3) be a connected cubic (6, n)-meta-
circulant graph. Then G possesses a Hamilton cycle if the order of « in Z is not
equal to 6.

Proof. Let G=MC(6, n, o, Sg, S1, 52, 53) be a connected cubic (6, n)-metacirculant
graph. If Sy # @, then by [7], G has a Hamilton cycle. Therefore, we may assume from
now on that So = @. Since G is a cubic (6, n)-metacirculant graph, only the following
cases may happen:

Case 1. {S1|=1, S =@ and |S3]| = 1.
Case 2. §1 =0,|8|=1and |S3| = 1.
Case 3. S; = S, =@ and |S3| = 3.

Since G is connected, Case 3 does not occur. Further, since (3.3) and (3.5) hold, we
have a® = 1 (mod 7). This means that the order of « in Z} is a divisor of 6. Therefore,
itis equal to one of the numbers 1, 2, 3 or 6. Thus, to prove Theorem 2, we need only to
consider the possibilities where the order of o in Z}; is equal to 1, 2 or 3. We consider
these possibilities in turn.

(i) The order of @ in Z¥ is 1, ie, « = 1. Then 1 — « + &> = 1 and
gcd(l — a + %, n) = 1. By Theorem 1, G has a Hamilton cycle.
(ii) The order of o in Z7 is 2.

Assume first that G is a connected cubic (6, n)-metacirculant graph of Case 1. Let §; =
{s} and S3 = {k}. An edge of G of the type v; v}iai ; 1s called an S7-edge, and of the type
vj’: vj’iz, , an S3-edge. A cycle C in G is called an S; -cycle if every edge of C is an S1-edge.
Consider S;-cycles in G. Since every vertex of G is incident with just two S;-edges, any

S1-cycle B; in G can be represented in the form B; = P(v(y))P(v8+Z)P(v(y)+22)..., where
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P(vg) = vgvilz+s v}21+S+DlSv}:’;l+2S+0lsv:+2s+2&sv2+3s+2ds’ and z is 3s + 3as. Further, it
is clear that all Sj-cycles in G are isomorphic to each other and have an even length
1. Moreover, two vertices v} and vit? of G are vertices distance 2 apart in the same
Si-cycle Bj ifand only if g = f + 5 +as in Z,.

If G has only one S;-cycle, then this cycle is trivially a Hamilton cycle of G. Therefore,
we assume G has at least two S;-cycles. Let v} and v?’z, with 7 even being two vertices

distance 2 apart in the same Si-cycle B;. Then the vertices of G adjacent to v} and
vit? by S3-edges are v+ and v’+5 respectively, where f = f + o'k = f + k and
g =g+a' %k = g+k. Smceg_._ f+s+as,wehaveg = g+k = f+stas+k=

f' + s + as. Thus, v5* and v’+5 are vertices distance 2 apart in the same S;-cycle

Bj:. Moreover, the superscripts i + 3 and i + 5 of respectively v and v’ are odd.

Us1ng this property and the fact that G is a connected cubic graph, it is not difficult to
see that G is isomorphic to the graph X obtained from a brick product C; [r] by adding
the edges of a perfect matching joining the vertices of degree 2 in C; 1 W1th the vertices
of degree 2 in C; , of C l[r], where C; is isomorphic to an Si-cycle Bj;, r is the number

of distinct Sj-cycles in G, and C;,; and C; , are two [-cycles in Cl[r] on the vertex sets
{i,vy) : i =1, 2,..., l}and {(u;,v,) : i =1, 2, ..., I}, respectively. By Lemma 5,
X has a Hamilton cycle. Therefore, G has a Hamilton cycle.

Assume next that G is a connected cubic (6, n)-metacirculant graph of Case 2. Let

S2» = {s} and S3 = {k}. An edge of G of the type v’ ’ia , is called an §,-edge, and of

the type v]’: vj’:ia,. . an S3-edge. A cycle Cin G is called an S>-cycle if every edge of C is
an S;-edge.

Since the order of  in Z7 is 2, wehavea —1=0(modn)< (¢+1)(@—1) = 0(mod
n). On the other hand gcd(l —a+a?, a—1,n) = 1 because gcd(a, n) = 1. Therefore,
7 =ged(l —a + a2, n) is a divisor of ged(e + 1, n). Since 1 — & +a?=tl@+1)+3
for some integer ¢, it follows that 7 is a divisor of 3. Thus, 7z = 1 or 3.

If 7 = 1, then G has a Hamilton cycle by Theorem 1.

Ifn = 3, thenn = 3°x andw+1 = 3%y witha > 1. Since G is connected, by Lemma
2, ged((k(1 + &) — s(1 + & + @?)],n) = 1. On the other hand, by the definition of
(6, n)-metacirculant graphs, (a3 + Dk = (o + 1)k = 0 (mod n). Therefore, gcd(s, n) =
1. Let G'=MC(6, n, o, S, S1, S5, S3) be a cubic (6, n)-metacirculant graph such that
o =« S;=25 =408 ={1}, $; = {0} and V(G') = {xj’: tieZs jeZ,) Thenit
is not difficult to verify that the mapping

v ifi=0,24
¥ V(G) > V(G): { 7 Wy
ifsia—=sl V8, ¢S

Xx; > v] o

is an isomorphism of G’ and G. Therefore, w1thout loss of generality, we may assume
G is a cubic (6, n)-metacirculant graph MC(6, n, o, So, S1, S2, S3) such that n = 3%x,
a+1=3ywitha >1, S =S =0, 52 = {1} and S3 = {0}. Such a graph has
six disjoint S>-cycles, namely, ¢, ¢, ¢%, DY D! and D? which contain vg, v%, vg,
vg, vg and vé, respectively. It is not difficult to see that, for each Sp-cycle C* or D',
(t =0, 1, 2), each element of Z,, appears as a subscript of one and only one vertex of
this cycle.

Let p and t be the automorphisms of G defined by p(v]’:) = v]’: and T(W)) =
Set B = p72. Then
B = pT* (W) = p(ufD) = p(*?) = v 1. (3.6)

i+1
of
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So, B maps every vertex of C', ¢t = 0, 1, 2, to the vertex following it in C’. Further,
since a + 1 = 3%y witha > 1, @ = 2 (mod 3). Therefore,

B(D%) = D?, B(D* = D', and B(D') = D°. (3.7

From (3.6) and (3.7), it is not difficult to see that G is isomorphic to the graph H such
that V(H) = {u}, w} : i € Zs, j € Zy) and
E(H)=E1UE,UE3UE,,
where + =
E = {u}u}H, w]’.w]’.w i €23, jEZy),
Ey={uw) :i€Zs, j€Z and j =0 (mod3)},
i+2

E3={u§wj :i€Zs, jeZ, and j =1 (mod3)}, and

Ey={wi™ 1 ieZs, jeZ, and j =2 (mod3)).

We now show that H possesses a Hamilton cycle. Let U' and W', wherei =0, 1, 2,
be the subgraphs induced by H on {u§ 1 j € Zy}and {w; 1 j € Zy}, respectively.
By the definition of H, it is clear that U’ and W', where i = 0, 1, 2, are cycles of
length n. First, assume w3, w3, and w of WY are pairwise distinct (Fig. 1). This implies
that the vertices u2, u2, and u?,; of U? are also pairwise distinct. Further, the edge
w9, wY, is an edge of the subpath P of W not containing w{ and connecting w with
wg. Moreover, wga and wga are not the endvertices of P. Such a graph H possesses a
Hamilton cycle shown in Fig. 1.

Next, assume wga = wg but wga # wg (Fig.2). If wg #* wg, then since 3o = 3
(mod n), 40 = 3¢ + « = 3 + « (mod n) and 4o + 1 = 4 + « (mod n). Therefore,
wga = wg 4o and wix 1= wi 4o+ Further, the edge wga wga is an edge of the subpath P
of W not containing w and connecting w9 with w? = wY,. Moreover, w3, and wd,
are not the endvertices of P. Such a graph H possesses a Hamilton cycle shown in Fig.
2.1f wg = wg, then 6 = 0 (mod n). So n =3 or 6. But wga #+ wg by our assumption.
Hence, 3a 3 0 (mod n) < 3 # 0 (mod n). If follows that n 7 3, whence n = 6. We
leave it to the reader to verify that, for this value of n, the graph H also has a Hamilton
cycle.

Finally, assume wg = wga or wg = wg. It follows in both cases that 3 = 0 (mod n).
So n = 3. We again leave it to the reader to verify that for this value of n, H also has a
Hamilton cycle.

Thus, the graph H possesses a Hamilton cycle in any of the cases. Since G -is

isomorphic to H, the graph G also has a Hamilton cycle.
(iii) The order of & in Z} is 3.

By (3.3) and (3.5), we have (@41 (x—1) =2(a@—1) = 0 (mod n). If n is odd, then
this implies that « — 1 = 0 (mod ) < « = 1, contradicting the fact that « has order 3.
If n is even, then o« — 1 = #(n/2) for some integer ¢. Therefore,« = lora =n/2 + 1.
The case @ = 1 cannot occur as before. Suppose « = n/2 + 1. Since n is even and
gcd(e, n) = 1, @ must be odd. So n/2 must be even. We have

o} =m/2+1° =n/8+3n2/4+3n/2 +1
= (n/2)n%/4+3n/2+3)+ 1.



A |

D40,
LTS N O () %
@
0+6
ik, O ~ Rl
%
. @ D+
. = L

° 4 '

5

3
+
o<
=
I
% s
3 3
o< NN
= =
Q 0
P
\\
.‘.-“‘.
=] 3
+ +
o — ™o
= =

uny on oSN 9CT



0+ () £+0
o p %
7+0
[M () ® Zn
@ ‘
2 . 1+0
. EM ) , @ Zn
I'“OSM @
@ Dy
5 ! z
[+101Z7M ) Zn =

s/

0+
tm & A 1oty
" IM
z ®
" O “n
V+E .
Em

gM S ) e 1+ao%n
: / 1 :
)A o "t

D on
ng
oM ()
(4
* n
07 ® 8 . 0
oM oM ofl -
0 I
OM ® k) ol

ST 2194 uoNUDE] v JO 20ud1SIX5 Y} L0f SUOBIPUOD) JUSIILING



Sufficient Conditions for the Existence of a Hamilton Cycle 227

Since n/2 is even, n2/4 +3n/2 + 3 is odd. Hence, o® = (n/2)(n?/4+3n/2+3)+ 1 =
n/2+1 # 1 (mod n), contradicting again the fact that o has order 3. Thus, the possibility
(iii) never occurs. This completes the proof of Theorem 2. [ ]

4. Applications

In this section, we will use the results obtained in Sec. 3 in order to obtain a partial
affirmative answer to the question: Do all connected cubic (6, n)-metacirculant graphs
have a Hamilton cycle? Namely, we will prove the following result.

Theorem 3. Let G=MC(6, n, a, So, S1, S2, S3) be a connected cubic (6, n)-meta-
circulant graph. Then G possesses a Hamilton cycle if either n = p°q®, where p and q
are distinct primes, a > 0 and b > 0 or n is such that ¢(n) is not divisible by 3, where
@(n) is the number of integers z satisfying 0 < z < n and ged(z,n) = 1.

Proof. Let G=MC(6, n, , So, S1, 52, S3) be a connected cubic (6, n)-metacirculant
graph. If Sy # @, then by [7], G has a Hamilton cycle. Therefore, we may assume from
now on that S = @. Since G is a cubic (6, n)-metacirculant graph, only the following
cases may happen:

Case l. |S1|=1,85 =@and|S$;| =1
Case 2. §1=10,|5|=1and|S3]| = 1.
Case 3. S1 =8, =0 and |S3| =3.

Since G is connected, Case 3 does not occur. Further, since (3.3) and (3.5) hold, we
have a® = 1 (mod n). This means that the order of « in Z is a divisor of 6.

Assume first that n = p®g?, where p and g are distinct primes, @ > 0 and b > 0. If
either p or q is equal to 2, then by [2, 11], G has a Hamilton cycle. Therefore, we may
assume p # 2 and g # 2. Since the order of a in Z} is a divisor of 6, by [1], G is a
Cayley graph of the group

G={(p,T:p" =10=1, rpr! = p%),

where p and 7 are automorphisms of G with p(vJ’:) = vj.H and t(v}) = vL}'l. If
ged(a — 1, n) = 1, then by Theorem 1, G has a Hamilton cycle. Since  is odd, we have
ged(e® + 1, @ — 1, n) = 1. Therefore, if ged(er — 1, n) # 1, then (3.3) and (3.5) imply
that gcd(a — 1, n) is equal to either p?qb or p® or q". It is not difficult to verify that the
commutator subgroup [G, G] of G is the subgroup (p*~1y generated by p%~L. So, the
order of [G, G] is 1 or ¢” or p? depending on whether ged(« — 1, n) is equal to pPq® or
p° or g°. In any cases, by [6], G has a Hamilton cycle.

Assume now that 7 is such that ¢(n) is not divisible by 3, where ¢(n) is the number
of integers z satisfying 0 < z < n and ged(z, n) = 1. Since | Z| = ¢(n) and the order
of o in Z} is a divisor of 6, our assumption implies that the order of « in Z;} is 1 or 2.
By Theorem 2, G has a Hamilton cycle. This completes the proof of Theorem 3. ]
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