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Abstract. This paper is an enlarged version of a talk given at the French-Wetnamese Colloquium of

Mathematicsheld in Ho Chi Minh City, 3-9 March 1997. It is a quick, non-exhaustive presentation

of some points of the theory of random Schr<idinger operators. We essentially restrict ourselves to

a single model, the continuous Anderson model.

1. Some Introductory Words

As a first approximation, solid state matter may be considered to be perfectly periodic. In

the one electron approximation, the Hamiltonian 11 used to describe this perfect crystal

is a periodic Schrddinger operator acting on L"(Ro), that is,

H : _ L + W ,

where
f,

o -A : L # is the usual Laplace operator (with domain H"(R"));
j : r  l

e IV is a f -periodic potential, (i.e., for y € I, W(x * y) : W(x));

o f is a non-degenerate lattice in Rd.

The spectral theory ofperiodic Schrddinger operators is well known (see [37, 53, 59]).

Under mild conditions on the potential W, il. can be proved that the spectrum of 11 is

made of bands of purely absolutely continuous spectrum. Intuitively, this characterizes a

diffusive behavior of the evolution semi-group associated to tI. Physically, this roughly

means that, at some energies (i.e., energies inside the spectrum), solid state matter will

be a conductor and, at other energies (i.e., energies outside the spectrum), it will be an

insulator.
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However, in experiments, it was discovered that this diffusive behavior is not always
seen where expected. One of the possible explanations is the presence of impurities, that
change the scattering process. Of course, it is impossible to know the exact location of
the impurities in a given chunk of matter. Nevertheless, one may understand some global
features of the impurity distribution (e.g., concentration, homogeneity, etc.). One way to
take these global features into account is to study a large number of pieces of the same
material. Hence, a natural thing to do is to study a random distribution of impurities [1].
This naturally leads to random Schr0dinger operators.

A random Schrddinger operator is a family of Schrtidinger operators endowed with
some probabilistic structure. As we shall see below in a simple example, if this structure
is ergodic, then, at least spectrally, the family of Schrddinger operators behaves like a
single operator. Indeed, one can associate a spectrum to the family. In the same way,
many spectral objects can be defined for the family of operators (e.g., density of states,
etc.). These concepts are then the natural objects to be studied. The aim ofthis paper is
to briefly present some of these notions and some of the most striking results concerning
them.

As a conclusion to this introduction, we emphasize the fact that this paper does not aim
at giving an exhaustive picture of the state of the art on the topic of random Schrddinger
operators. It simply presents a brief introductionl to some notions, results and techniques
that have proved valuable and useful in the study of random Schr0dinger operators. In
particular, we will restrict ourselves to a very simple and specific model: the continuous
Anderson model (see (3.1)). We will also make the necessary assumptions to have as
few technical difficulties as possible. For a more exhaustive treatment of this topic, one
may consult, for example, U,521(or [41] for a more physical point of view).

2. Some Basic Facts about Periodic Schriidinger Operators

We will first briefly review some standard facts from the Floquet theory for periodic
Schrridinger operators. Basic references where this material may be found are [53, 55,
5el.

Let f be a non-degenerate lattice in Rd generated by (e;)1.;<4, a basis of Rd 1i.e.,
| : @l:Fe), and let I4z be a f -periodic bounded potential (i.e., a measurable

function).2
Define H : -L, * W to be a periodic Schrcidinger operator acting on L2(Rd).

Then, by 1531, H is essentially self-adjoint on Cff (Rd) with domain H2 (Rr.Its unique
self-adjoint extension will also be denoted by 11 (cf. Appendix).

2.1. The Floquet Decomposition

As W is f -periodic, we know that, for arry y € l,

r r o H " T ; - r r o H o r - r - H .

lThir pup"r is essentially meant for students.
2This assumption as well as many of the following assumptions may be relaxed 152,531
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For d e Rd and ,, € ^S(Rd), the Schwartz space of rapidly decreasing functions, we
define

(Uu)(x,A) : t  eiY'o u(x - y).
vel

U can be extended as a unitary isometry from l2(Rd) to ?l where

y: lu(x,e1 e r !""1nd) o l21t*; ;  vx € Rd, vd e T*,

Yy e l ,  u(x * y,  0) :  eiY's u(x, 0)1,

and ?l is equipped with the norm 

"#t 
lr.Wf., 

0)ll2r,<co>d0 (here, C6 is the unit cell

of the lattice f , i.e., Cs = {x1e1 + . . . + x1ea, -l f2 ( rt, ..., xa < | l2}). ?l is a fiber
bundle over the torus T*, the fibers being the Hilbert spaces '11s : {u e LZ1RdS Vx e
Rd, v y e l, u(x * y) = ei v'0 u(x)\ equipped with the scalar product on L2 (Cd.

The inverse of U is given by the formula:

for u e'tl, (U*u)(x): *fu lr.u,@.ilde.
One sees that, for | < j < d,1fu, Uf : 0 (here, 07 denotes the jth partial derivative).
Moreover, as I{ is periodic, tW, Ul: 0. Hence, 11 admits the Floquet decomposition

uH(J* = 
l* ,rar, (2.r)

where Hs is the differential operator H acting onT{e with domain 7t} :: tle n H?o"(R, .
I/B is self-adjoint.

As 11 is elliptic, we know that He has a compact resolvent; its spectrum is discrete.
Let us denote its eigenvalues (also called Floquet eigenvalues of 11) by

E o ( 0 )  <  E r ( O )  <  . . '  <  E n ( 0 ) . . .  .

The functions (0 + E"(d))"er,l are Lipschitz continuous and one has

E"(0) --> +oo as n -) *oo (uniformly in d).

Let o denote the spectrum of H.It is purely absolutely continuous and given by

o: LJ En(T*).
neN

2.2. The Density of States

One defines n(E), the integrated density of states of H, in the following way (cf. [55,
5 9 1 ) f o r E e R ,

1  - r
n ( E \ : - )  I  d e .

(2o)o  
. tJPer - ,  E ,@t<El

(2.2)
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It is a continuous, positive, non-decreasing function. It is constant in the gaps of the
spectrum of /1 and its growth points are exactly the points of o. One can give another
formula defining the density of states n.Lnt g e Cfr(R) and let 1s be the characteristic
function of Cs. Then, the operator Xog(H) is trace-class and we have

f l

J*v@)dn(E) 
: le, an) : 

vot(co)tr(xoq(H) xd.

3. The Continuous Anderson Model

(2.3)

Let H be a self-adjoint periodic Schrddinger operator as defined in the previous section.
And let (ay)yer be a collection of independent identically distributed (i.i.d. for short)
real-valued random variables. Furthermore, we will assume they are bounded.

LetV :  Rd -+ Rbea.L@-funct ionsuchthat  l lV l l r , *  :  Drer l lV l l r , -1r"160;y is
bounded. Then we define

Ha : H* V, where V.(x) :  DrrV(x 
-  y). (3 .1)

v e f

Let us now consider the function o r-+ Hr. As FI, is a bounded perturbation of H, it
is a well-defined mapping from the probability space on which ar lives into the space
of self-adjoint operators with domain H2(Rr. This mapping is weakly measurable in
ar (see [54]), i.e., for (Q,ty1 e n21nd)2, the mapping cd r-+ \r!, H.QJ is measurable.
Indeed, it is an absolutely convergent sum of measurable functions as

\ t ,  H,Ql : (b, HOI -t (V,V,Q| : (h, HQ) +1.r, I  V@ - y)(r(x) x.
ft JRd

We now consider the famill (Hr). endowed with the natural probability measure defined
by the random variables (oy)yend (cf. Appendix).

3.1. Ergodicity and the Almost Sure Spectrum

We will see that, due to ergodicity, the family of Schrtidinger operators (H.), may rn
some respects be considered as a single operator.

3.1.1. Ergodicity

For y e l,let q : r21wd1 --> r21nd1be defined by

vu e t2(Rd),  ( t ru)(x)  :  u(x -  y) .

Then q is a unitary operator on L21Rd; and tj : r-y. Moreover, as lV is f -periodic,

we have 
tvHt) : H.

Ler t, : Rr -+ Rr be defined by

V a r e  R ' ,  ( t v r o ) p : @ f - y . (3.2)
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One computes
qH.rf, : qHtf, * rrV,r) - H * Vt,a.

The action of the group {tr; y e f} on the probability space underlying the random
variables (ay)yer is ergodic (cf. Appendix). Therefore, as the (ry), ate unitary

operators, we will say that the operator 11, is an ergodic random operator.

3.1.2. The Almost Sure Spectrum

The first consequence of ergodicity is as follows:

Theorem 3.1. t49l There exists t C R a closed set such that, for almost every a, the
spectrum of H, is equal to E.

We call X the (almost sure) spectrum of Hr. This result partially justifies the fact

that we speak of the family of operators (H.), as a single operator (at least from a
probabilistic point of view).

We will not give a rigorous proof of this classical statement (see [7, IL,49, 52] and
references therein). We will heuristically explain it. It is well known that a random

variable that is invariant under the action of an ergodic group is almost surely constant
(see the appendix and, e.g., [19]). Hence, Eq. (3.3) tells us that the spectrum of 11. is
invariant under the action of {tr; y e f }. So this spectrum should be almost surely
constant. Of course to make this rigorous, one has to understand what is meant by the
measurability of the spectrum with respect to ar. Therefore, one prefers to work with the
spectral resolution of 11, which is easier to handle.

Theorem 3.1 can be made more precise. For a self-adjoint operator A, we denote its
pure point spectrum by oop(A) (the closure of the set of eigenvalues of A), its absolutely
continuous spectrum by o"r(A) and its singular continuous spectrum by a'.(A) (cf.

Appendix). Then, we have the following:

Theorem 3.2. 126,38, 511 There exist three closed subsets Eor, Err, Eo, of R, such
that, for almost every @,

oo"(Hr) : Eo", orr(H.): Xr", oop(H.) - {eigenvalues of Hr} - Eoo' Q'4)

We see that the spectral types of the operators of the family H, are also almost surely
constant. Let us note that in the case of the pure point spectrum (i.e., the eigenvalues),
the set of eigenvalues itself is not almost surely constant; only its closure is almost surely
constant [52].

One of the main questions of the theory is then to determine the previously defined
sets X, Eor, Er" and Eoo.

3.2. The Density of States

Let us define the density of states. Physically, what we would like to do is count the
number of states in some energy range, say, below energy E. The problem will be that,
typically, we will be in the presence of a continuum of states (as in the periodic case). So
the obvious counting function will not make any sense. Therefore, the natural progression

is to count the number of states per unit of volume.

193

(3.3)
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To do this "per unit volume counting", let A c Rd be a large bounded cube. Consider
the restriction of H. to A with Dirichlet boundary conditions imposed on 0A. Let us
momentarily forget about the random nature of H. and denote this restriction by I1n . As
H. is a rather ideal perturbation of the Laplacian, the spectrum of f1,r will be discrete.
So, given an interval 1 c R, we may count the number of eigenvalues of I1,1 in 1.
Let us say that there are Nrr(I) such eigenvalues. The quantity we are interested in
is un(I) : Nn(I)/lAl, the number of states per unit of volume (here, lAl denotes
the volume of A). For the Laplace operator restricted to A (with Dirichlet boundary
conditions), we know that the number of eigenvalues in I grows with ), proportionately
to lAl. If I1, is not a nasty perturbation of -A, we may expect Nl(1) to behave in the
same way as the counting function for the Dirichlet Laplacian. So urr (1) seems to be a
reasonable quantity to consider. In particular, we may hope that un (1) converges when
A tends to Rd. In this case, we shall call this limit the integrated density of states u(1)
of Hr.

Although we did not do so, for the periodic Schrtidinger operator H , the integrated
density of states n (defined in (2.2)) may be obtained by the procedure described above.

The procedure described in the above paragraph works well and is somewhat
classical (see [7, 25,52]). Here, we will develop a different approach based on periodic
approximations. The main advantage of this approximation is the speed of convergence
towards its limit. Essentially, the speed of convergence is exponential in the size of the
side length of the cube on which one approximates. More details about this approach
may be found in [35, 36].

Pickn e N*andarealizationoftherandomvariables(ary)yer.Considerthefollowing
(2n j l)l-periodic Schr6dinger operator:

H . , r :  H  i t
/(2n+vel

, r (
r ) f  p

,r+pv).
1 ) f

(3.s)

T ----+ [ qax.
n++co JR

I
(p, d N,,"\ :,ro16,r,t(xc"q(H.,) xc")

D
e(2nl

Here, we identify f /( * l)f with the cube of center 0 and side length 2n in f , i.e.,

lv : D!:t yiei; -n Yr 3 n, I < i < d)' Note that only finitely many of random
variables come into the definition of H.,.

In Subsec. 2.2, we deflned the integrated density of states of a periodic Schrcidinger
operator. We will denote the integrated density of states of Hr, by Nr,n(E). Let
dNa,n(E) denote its distributional derivative; it is a positive measure. Then we have
the following:

Theorem 3.3. For almost every o e {2, dN.,r(E) corwerges tr-weakly to dN,,a
non- random p o sitiv e me as ure, i. e.,

ve e Cff(R), 9dN.,,

N is called the integrated density of states of H..

Proof. Pickg e Cfl(R). By formula (2.3),we know that

(3.6)
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where Cn : (2n * 1)C6 is the fundamental domain of (2n * l)f . As the trace is cyclic

ard 7g,: t ryftcn; we obtain
YeC"nl

ar,n(at) : tr(xcorig(H.,,)ry xc).

Obviously, ar,nk') arerandomvariables. Letm > n andpick Y e Cn o f . Then, using

the Helffer-Sjdstrand formula (see Appendix), we compute

(9, dN.,,)
Yol(Cd#(Cn n a) 

".?"n.

wherc#(E) denotes the numberof points of E. For n > I andT e Cn fl f , define

ar,n (a) - a r,  ̂  (a) : tr (xc o+y (9 (H r,") - I (H r,)) xc o+ v)

where @ is an almost analytic extension of. I and

Lr,n,^(z) : tr(xco+y(()'o * H.,)-q (z - Hr,n)-'

- (ro * H,,^)-q (z - H.,^)-1)xco+i.

Here, .tr s is real number chosen such that it is a uniform lower bound for all the operators

Hro,ni e is chosen larger than d 12 so that L,r,n,*(z) is a trace-class.

Let us now estimate the tlace class norm of the operatot A'.,n,^(z). We have

l lL,,,(z)lG < A+ B (3.8)

where

A : llxco+v((z - Hr,r)-r - (z - H.,*)-r)(),oI Hr,*)-q xco+y lltr

: l lxco+y(z - H.,)-r LX,n,^(z - H.,^)-r (Lo I H,,;-q xco+y lltr,

B : llxco+v(z - H.,r)-r (Q,o * Hr,)-q - (),0I Hr,^)-rxco+y llt,
q - l

: llxco+y(z - H,,)-L f tt + H,,n)t-q Ll/,,n,*(Lo * H,,*) I 
xco+y llt ,

l : l

and

L]/,,n,-@) : t k4 - rbv (x - a).
'Z':;

Here, ll ll1 denotes the trace-class nofln, and otft'* - ald where cY : & mod
((2n * 1)r) or mod((2m + 1)r).
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We separately control A and B. For A, as the koy)y are bounded, we obtain, for some
M > 0 .

A s D l lxco+yk- H.,)-rLyu,n,^Xf+col l r l r ,go;y
fer

x llxp+cok - H.,^)-r (),o * Hr,*1-e xco+yllt

< M I llxco+vk- H,,)-rVxfl*u1.collr(r,ia,))
fler

l o l >k ,ae f

x l lxp+cok - H.,^)-'(Lo * Hr,*)-q Xco+vlln.

By the appendix ot l32l (Proposition 4.3) and by the proof of Theorem XIII.96 of
[53]; we know that, for some K > l, we have, uniformly in a,l, for llmzl < 1

llxp+cok - H.,*)-r (Lo * H,,^1-o xco+ylltr . =!- - Fmzll| - ylr /Kpmzf.

and

llxco+yQ - Hr,r)-rV xp+o+collc1z,'1nr;; < 
K 

l lrp+o-yV|ryGo)

(where z, is the translation by y).
Hence, we obtain

A S I D #nllrB+a-vV llv*G,1.e-trmztt0.vtr / K .
,.t,;f,:

Doing the same computation for B, we obtain the same estimate for Lr,n,^(z).
Hence, integrating these estimates, as }-rQ vanishes to infinite order on the real axis

(see (6.2)), and using (3.8) and (6.3), we obtain

t  r  f  ,  \  |  - t I  f  t  |  \vor(co)lE( 
J v&)dN,.*) - lr,dnll s 

"(;/ | (.)l ttL..,,^(z)|tdxdt)
R

= ! [ :-rl l t. l l  ( D ltp+o-yvll7*6op-tr^,lo-tr/c\axdt.-  
n  I  l l m z l a  l a Z ' - ' l \ r " r f i . r " ' " - "  r  " L  \ v e t -  

/
" P..' 

(3.9)
Now, as D llryVllr*ed < *oo, we apply Lebesgue's dominated convergencg

vel
theorem to the right-hand side of (3.9) so that it tends to 0 when n tends to +oo. Hence,
the sequence ar,nk't) is a Cauchy sequence and converges. We call ay(a) itslimit.

We may also use the same computation as above to estimate ar,nkt) - ag,"(ty(a)).
This shows that ar,"(t't) - ao,"(ty(ro)) -+ 0 as n -+ *oo. Hence, the random variable
a, satisfies, for any ot e 9,

ar(tp(a)) : ay+p(a).

Moreover, (3.9) is suffrcient to show that

d^t ,n 
lar,'(a) - av(a)l -+ o

(3.10)
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when r? + *oo. So, by (3.7), (q, dNr,nl admits a limit when n -+ oo if and only if
S"(ro) admits a limit, where

l \ -
sn(ar)  -  

#G"nD,oLn 
o, ( r l .

Now, (ay)yer, being the images of a6 under the action of the group of shifts (ty)y er and
the action ofthis group being ergodic on the considered probability space, the celebrated
Birkhoff-Khinchine Theorem (see Appendix, |9,25D tells us that Sr(rrr) has a limit and
that this limit is almost surely independent of ar.

To end this proof, we just have to check that the limit defines a positive distribution
on R. We leave this easy task to the reader. I

For E e R, let us define N(E) : I:*dN. N is the integrated density of states of
Hr. The *-weak convergence proved in Theorem 3.3 implies that, for any E e R, a
continuity point of N, we have ar almost surely, Nr,, ( E) --> N (E) as n -+ oo.

As a consequence of Theorem2.2, we obtain a nice closed formula for the density of
states.Pickg e Cfl(R).Asthedensityof statesof Hrisnon-random,by(3.6),weknow
that is the limit of E((9 , dN.,,\) as n -> *oo (where E(X) denotes the expectation of
the random variable X). Using the stationarity of the (oy)yer, we obtain

E((e, d N,,nD : -b 
ft(x6^E(e(H,,,)) xc^)

I
= tr(Xs.E(9(H,,))Xc).

Hence, taking the limit as n --> *&, using the same arguments as in the proof of
Theorem 2.2. we ohtain

(q, dN): Oh" @(xcop(H,)xcoD,

,": 
-bE(r(xgoE,xs,)),

hence,

(3. r r)

where E, is the spectral resolution of H..

4. The Spectrum: Its Location

Now, the first question one needs to answer about the spectrum of tI, (i.e., the almost
sure spectrum of H.) is the question of its location. Therefore, we will use the following
theorem:

Theorem 4.1. 12,5ll Let o be the spectrum of H. and dN its density of states. Then
we have

supp(dN): X.
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Proof. By formula (3.11), one obviously has

supp(dN) c E.

Conversely, fix E e R, € > 0 and assume Iii: aN: 0, that is,

E(n(XgoE,(lE - e, E * el)16.0)) : Q.

Hence, using the stationarity of Hr, for any n ) O, we have

/ -  \

" (  
I  t (x6 ,E, ( fE  -  € ,  E*e l )x6 , ) )  :  g .

\  l r l . ,  /

Then, using the positivity of the trace, we have, for almost every @, for any y e | ,

tr(Xg,E,(IE - e, E * el)X6,,) : g.

Hence, for almost eyery @, for any y e l, we have

llxc,E,([E - E, E * e])ll : g.

So, for almost every @, E.(IE - t, E * el) : 0, thus, E f >. This proves

E c supp(dN).

From Theorems 3.3 and 4.1, we obtain a characteization of E using periodic
approximations of I1r, namely, the following:

Theorem 4.2. 126l E is the closure of the union of the spectra of the operators Hr.n
(definedby(3.5))forn eNanda e suppP,thesupportof theprobabil itymeasure(i.e.,
the infinite product of the supports of the individual ay ).

Proof. Denote the spectrumof Hr,nby or,n. By formula (2.3),we see that, for periodic
operators, the specffum is the support of the density of states. Then, by Theorem 3.3, we
have

t l> c  U  o ' ' ' : > ' '
o,neN

as

U o ^ n . U o , p n .  ( 4 . 1 )

Conversely, fix aro and n0 as in rrlor"- +.2'^arake E € oao,no.rhen, for any e > 0,
thereexists e" € L2(R, suchthat llq"ll:Iandll(H.o,no- E)prll < s.Pickm e N.
Define the event

(  
, r u ,  1 2 m n n * m * n n  '  o  '  e  - f{Zm.e :  

l r ;  VlVl l2mns * m I  no, l@y - , iv l l  = , ,u,Ct  
' '  "  , , ,  , , r . -  J
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where [y] : y nod((2n+ 1)f). Then, for arty ffi e N and e > 0, if arO is in the support
of P, then P(O.,") > 0. Moreover,for @ € {2^,r, we compute

ll (H. - H.o, n o) I "l | 
2 s I lr, - ro, lllv, ll2*ll q, ll2

vel

cl lvyP*
Ino

r
2mno+ml y l

< 2 e

I
:;2mno+m

t -
I l f  I L

N r i l r -  
l l  Y l z l l c n ,

+ n o  l Y  l >

for m largeenough as ! llz, Vll- < *oo.
y e f

Hence, for m large enough and ar e S2r,", we have

l l (H . -E )9 ,11<3e .

This implies o(H.) n [E - 3e, E + 3el * A. Then, as o(Hr) is almost surely
constant and as P(O-,r) > 0, we know that, ar almost surely, o(Hr) OIE - 3e,
E * 3el : E n [E - 3e, E * 3el + 0. This holds for any e
E e X as E is closed. r

One can also give characteizations of E in terms of other approximations of .F1.. The
details of these constructions may be found in 126, 521.

5. Localization

We will now discuss the question of the spectral type of the random operator .I/r, that is,
the question of the location of the sets Eor,E* andEoo. The results that we will describe
can be summed up as follows: Under the adequate conditions on the random variables
(roy)yer, at the edges of the spectrumof Hr, the spectrum is a pure point spectrum and
the associated eigenfunctions associated to this pure point spectrum are exponentially
decaying. Another regime where we know that this localization phenomenon occurs is
the regime of large randornness, i.e., if the fluctuation of V, is very large.

So we see that little is known about the nature of the spectrum of H. and one of
the main open questions is the existence of spectral types other than pure point and the
transition between the different existing spectral types.

Localization at spectral edges was first conjectured by physicists in the late 1950s
and the beginning of the 1960s (see [1, 40]). Although the models they considered were
not exactly the one considered here (they were either discrete or of another type of
randomness), the heuristic picture they developed may also be applied in the present
case.

Let us now briefly explain the physical heuristics suggesting location at band edges.
For the sake of simplicity, we will assume I1o : -A and V. is non-negative. Let us
assume X : [0, *m). Let E > O be small. Lifshits' argument (see [40]) is that, in a
finite box, a state of energy less than E has to have a kinetic energy less than E. Hence,
the state must spread out in space. On the other hand, if the state is spread out in space,
then its expectation on the random potential is approximately the empirical average of a
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large number ofrandom variables. The number ofrandom variables that one averages is
roughly the size of the support of the state. By the large deviation theory, the probability
that the empirical average is small (i.e., greatly differs from the mathematical expectation
of random variables) is very small. One computes that it is exponentially small in the
volume of the support of the eigenstate. If one optimizes over the possible sizes of this
support, one obtains this volume to be roughly of size E-d/2 . So there is only a very
small probability that two states of energy less than E live in the same box of size EL
(for some large l). Hence, there will be almost no tunneling between different states
as these will be living too far apart. Hence, the picture of the spectrum one obtains in
this way is the following: pure point spectrum associated to eigenfunctions that live far
away from each other. This heuristic will find its mathematical realization in the Lifshits
tail asymptotic for the density of states described below (see Subsec. 5.1) and in the
localization shown to occur in this regime (see Subsec. 5.3).

In the case of large randomness, the other heuristic due to P.W Anderson goes as
follows: In the case of large fluctuations of V., the probability that V, (in some finite
box) assumes a certain value is very small; hence, the probability that H, (in some finite
box) has given value E as an eigenvalue is very small. So it is very unlikely that two
close values of energy are eigenvalues for I/o, (in the same box of fixed size). Hence,
again there should be almost no tunneling and, when one goes over from a finite box to
the whole space, energy values that were eigenvalues should remain eigenvalues. The
general estimates of the probability that a given energy is an eigenvaluefor H. restricted
to some box are called Wegner estimates (see Subsec. 5.2). To obtain information on the
operator in the whole space from information on the same operator in finite boxes, one
uses a multiscale analysis (essentially due to Frcihlich and Spencer [18]) which will be
briefly described (see Subsec. 5.3).

In the last ten years, Iocalization has been extensively studied mathematically for a
large number of different models and regimes. We will not review all this material here.
This is far beyond the scope of this elementary introduction.

5. 1 . The Band-edge Asymptotics for the Density of States

Assume H : -L,, V. is non-negative and E : [0, +oo). Then the heuristics described
above lead Lifshits to conjecture the following behavior for the asymptotics of the tail
of the density of states of H. - H + Va (see (3.1)):

N(E) - N(0)
E+0
E > 0

C12-CzE 
atz (s. l )

Mathematical proofs of a slightly less precise version (one obtains the asymptotic
behavior of log(N(E) - N(0))) of (5.1) have been first given by Pastur 147, 48, 501
(see also [52] for more references) for models different from ours. To prove their
asymptotic formula, these authors did not follow the original Lifshits heuristic; they
used the Feynman-Kac formula (or Wiener integrals) to estimate the large / behavior of
the Laplace ffansform of the density of states (see also 16I,62l).

The first proofs of (5. 1) following the ideas of Lifshits are due to Kirsch and Martinelli

[27]. The versions of (5.1) proved in those cases are very rough as one only obtains results
on the log llog(N(E) - N(0))1. Lifshits tails are proved to occur at the bottom of the
spectrumof anoperatorof type(3.1)when W :0. Usingthesamekindof techniques,
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the behavior of the integrated density of states at the bottom of the spectrum has been

studied quite extensively for a variety of different continuous and discrete models [28,
45, 5'11. In the continuous case of dimension one, and for some models in the discrete

case, Lifshits tails have also been proved at internal bands of spectrum [46, 58].

More recently, Klopp recovers many of the previously known results as particular

cases [35]. Although the heuristics used to obtain these new results are those of Lifshits,

the mathematical technique is quite different from the one used in the papers cited above.

We will now describe these results.
Let o : o (H)bethe spectrum of Il and assume o has a gap below energy 0 of length

at least 6, that is,

o  f o r somea  >  0andd  >  0 ,o  n  [ 0 ,a )  : lD ,a )  ando  f l  [ - 6 ,0 ) :0 .

o(11)

- 5 0

Fig. 1. A part ofthe sPectrum of 11.

We will also need some additional assumptions on the random potential Vr,naInely,

o V is a non-negative, bounded and compactly supported potential;

c Qoy)yer is a collection of independent identically distributed random variables that

have [0, a.,+1 as their common support (ar* > 0);

o l imsup :0.
e--+0+

Let X : o(H.) be the almost sure spectrum of Hr. By Theorem 4.2,we know that

0 belongs to X. We assume E has a gap below 0, that is,

o for some 6/ > 0, t n [-6/, 0) : A.

o(H.)

. . . . . . . . .  -. . . .  1.... . . . . .--
6 ' 0

Fig. 2. A part of the spectrum of H,.

Let n(E) be the integrated density of states of fI and N(E) the integrated density of

states of Hr.Tl'rcn, we obtain

Theorem 5.1. t35l Under the assumptions given above, we have

o 0 is a continuity point for N (E);
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. under no further assumption on n, one has

Frdddric Klopp

liminf
E+O+

o one has the equivalence

log l log(N(E) - N(0))

log E

d
>  _ _ :

2 ' ,

. .  log l loe(N(E) -  N(0)) l
u u r - -

E-0+ los E

d- t : tog(n(E) - n (0))
lim

E+0+ log E

Rem.ark5.1. Wewillnotgiveaproofofthisresulthereasitcanbefoundin[35].Here,
we will just say a few words about it. There are two key ingredients to this proof. First,
we shall do a cut-off in energy for the density of states. More precisely, this means that

we shall construct a random operator (more precisely, a discrete random operator) that

also has 0 as a spectral edge, such that, up to some scaling factor in energy, the integrated
density of states ofthe new random operator and the integrated density of states of 11.
have the same behavior near 0. For the discrete operator, 0 is the infimum of the almost
sure spectrum. The discrete operator is essentially FI, projected onto the spectral space
corresponding to 11 (the background periodic operator) and the energy band of FI staring
at 0.

The second idea is that, if n satisfies (5.2), then the discrete operator is essentially
a direct sum of discrete Anderson models for which the behavior of the Lifshits tail is
already known 144,57).

The result described in Theorem 5. 1 is valid in a much more general setting. Let us also
say that this result is valid for upper edges of the spectrum if one properly symmetrizes
the assumptions on (ary)y and H.

It is well known l37lthat at the bottom of the spectrum of 11, its integrated density of
states n (E) satisfies

(s.2)d

2

This enables us to recover the results of [27], [28] and [45]. In dimension one, (5.2) is

well known at any edge of the spectrum of a periodic Schrtidinger operator [17]. Then,
Theorem 5.1 gives the results of [46].

Under the same assumptions and in the situation described above, Theorem 5.1
suggests the following conjecture linking the asymptotic behavior of N and n near a
band edge Es:

ln l ln(N(E) -  N(Eo)) l  
n ln:  

- rn(n(E) -  n(Ed)

if we assume E6 is a lower band edge.
Such aformulawas proved in generalfor one-dimensional discrete random Schrtidinger

operators [36]. We expect it to be correct in a more general setting [30].

5.2. The Wegner Estimate

Let n € N* and consider the operator Hjr, defined bV

Hi,rr: (H')tc, '
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i.e., the operator HI rcsticted to the cube C, : (2n + 1)C0 with Dirichlet boundary
conditions [54]. This operator is self-adjoint on L2(C) with domain H&G).It has a
compact resolvent, hence, its spectrum is discrete.

A so-called Wegner estimate is an estimate on

N " ( ( E o - e ,  E o * t l )

:E(#{E; E is an eigenvalue of Hiro and E e (Eo - e, Eo * el})

for n large and e small (Es is some fixed energy). As we already know, when renormalized
by the volume of Cn, this quantity converges to the integrated density of states at Eo I e
minus the integrated density of states at Es - e. So one expects that it grows with C" and
decreases with e (if the density of states is assumed to be regular). The main problem is
then to obtain an estimate that controls the respective increase in n and decrease in e.

For the sake of simplicity, let us assume the potential V has compact support in some
cube centered at 0 oflensth side less than 1. So

H',^ :  ( -A)r . ,  +  (W + V.) Ic , .
u l u  t u

where 1.6, is the characteristic function of the cube Cr.
H" 

, oonl! 
depends on a finite-dimensional space of random parameters. Let us denote

these finitely many parameters by a : (ay)yerlen-rr)r.Let (\(a,n))[, be the
eigenvalues of ,i"f 

, 
that lie in [Eo - s, Eo * e] for some possible choicei of ra, that

is, for some a,l in the support of the probability measure defined by the initial random
variables (here, e6 > 0 is fixed). The existence of the density of states guarantees that
their number N is of order of the volume of C".

We can write

N,((Eo -  e,  Eo*el )  :  
" (  

I  11E6-e.r ,+"1(E;( ro.n)) )
l . j . N

15i ' l t r

(here, P{E} is the probability of the event E).
Soweneedtoest imateP{E1Qo,n)  e (Es-e,  Eo*el } .  Themapping o r> E1(a,n)

realizes a projection from the parameter space onto the real axis, and we would like to
measure the size (with respect to the probability measure on the parameter space) of the
preimage of some interval. The idea is then to find V a vector field in the parameters a.r
such that the eigenvalue E 1 ko , n) moves when ar moves along the flow of the vector fieltl.
The flow of V foliates the parameter space nicely and the volume we want to measure
is that contained in a layer between two leaves (see Fig. 3). This volume will then be of
the width of this layer at least when the probability measure has a nice density. So if one
is able to do this for all the eigenvalues, one gets an estimate ofthe form

N,((Eo - e. Eo * el) . CeVol(Cn). (s.3)

To be able to do this simultaneously for all eigenvalues, one may choose V so that HI
derived along V has nice properties (e.g., positivity). Let us give a simple example.
Assume V > also (for some cy > 0). If we take V : divo : Lyec, fr, 

ttren

VHI > a16,. This ensures VE1@,n) > a. Such an estimate immediately gives (5.3).

203
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E1@)

Fig. 3. Foliation and projection ofthe probability space.

In singular cases like the Bernoulli case, the probability measure is supported by
discrete points in the parameter space. To be able to derive (5.3), we need to compute
the number of points in the given layer; this is a much harder problem, as it requires
knowing more or less exactly the nature of the mappings (a,l D Ei (a, n))ri =N .

We saw that, to derive (5.3), one needs to assume that the random variables (a;7)y
admit a density. In this case, one can define the randomness of the system to be the
inverse of the supremum nonn of this density. The randomness roughly measures the
proportionality between the Lebesgue measure and the probability measure in the sense
that, for a set of Qoy)y ec^ of a given Lebesgue measure, the larger the randomness, the
smaller the probability of this set. From this, one deduces that the constant C in (5.3)
can be taken inversely proportional to the randomness of the system.

The right choice of vector field to prove (5.3) is model dependent. For the Anderson
model, discrete or continuous, in many cases, one may use the divergence vector field
(for example, see [8, 23, 33,64]). Another useful vector field with respect to this problem
is the generator of the dilations lar\ar; it can be used to obtain a Wegner estimate
for the continuous Anderson model without sign assumptions on V 1341. Different types
of randomness may require different types of vector fields (e.g., [31, 60]).

For the continuous Anderson model, another more elegant way (but nevertheless based
on the philosophy described above) of proving Wegner estimates has been developed in

t101.

5.3. Band-edge and Large Randomness Localization

We will now describe the phenomenon of localization. We will first describe the physical
heuristics that underlie the understanding of this phenomenon. We will then state some
mathematical results. We will not prove any of these localization results as one of the

Eg-e Eg+e
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main technical tools needed to prove localization is the multiscale analysis which is long
and complicated.

Physically, localization is roughly the trapping of the electron inside the bulk of solid

state matter. The natural interpretalion for this is that the wave function of the electron
does not spread in space as time evolves. So, if time r : 0, the electron has a wave function
g. Then, at time / , one is interested in where the wave function eit H g is localized in

space. This is a dynamical property.

Mathematically, this can be interpreted in different ways. The closest to the physical

point of view would be to study the time evolution of averages of the form e.g.,

\r2r"H g, ri'H g) (where g is some nicely localized function in Z2(Rd)). One would

speakof  local izat ioni f , forsome C >O,onehas l (*z" i 'Hg," i 'Hgl l<Cfora l l l  >0.

In this case, one speaks of dynamical localization. For more information on dynamical
localization, we refer the reader to [5, 15, 16].

There is also a spectral interpretation of localization: it is simply to say that, in some
region, the spectrum is purely punctual and dense. This is called Anderson localization.

One speaks of exponential localizationwhen the eigenfunctions associated to eigenvalues
in these parts of the spectrum are exponentially decaying at oo.

The two notions described above are connected. Indeed, dynamical localization (in

some energy region) implies Anderson localization (in the same energy region). From a
mathematical point of view, more work has been devoted to Anderson localization than
to dynamical localization. In the sequel, we will only speak of Anderson localization.
Hence, the term "localization" will from now on be used to designate Anderson
localization.

5.3. l. Physical Heuristics

Localization was first predicted by Anderson [1] for a discrete model (the An-

derson model) in the large randomness regime. As we will see below, the main

argument that speaks for localization is the absence of resonance, i.e., of tunneling
between the different wells of the random potential. Using his work on Lifshits tails,
Lifshits [41] gave a different argument to show that localization should occur at the
band edges.

One of the main features of quantum systems is the possibility of tunneling and

localization is mainly the symptom of the absence of tunneling in a quantum system.
Let us explain what tunneling is about. Take two Schrtidinger operators Ht : - L + Wt

and H2 - -A I Wz where Wr and Wz arc potential wells described in Fig. 4. For tfe
sake of simplicity, let us assume (Wi)i:t,z are compactly supported. Assume the wells
are sufficiently deep to bound at least one state (see [54]), i.e., for I e {1, 2}, assume
that for the well W; , denote the state by tpi and the corresponding energy by E; . Then,
bydefinit ion,wehave Higr: Eiqiforl e {1, 2}.Thefunctions (qt)i:t,2arelocalized

near the wells (I4z;);:r.2. More precisely, one knows that g; satisfies an inequality of the
type

lq i (x) l  .  gr - lx-n l lC (s.4)

Then the question is: What happens when one puts the two wells together, or more
precisely, can one deduce the bound states of the operator H - - A, -f Wt@ - .r1) +
Wz@ - x2) from the bound states of H1 and H2? To obtain this information, one

205
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Fig. 4. Two distant wells.

projects FI on the vector space spanned by (pi)i:t,2, i.e., one looks at the 2 x 2 matrix

u : (  @r' H.qt).  l ,vt '  f l " I)  .
\ ( q z .  H v r l  \ q z '  H q )  / '

Because of (5.4), the localization properties of the eigenstates (p;);:1,2 and as fI is
a local operator, the off-diagonal terms (qt, Hqz) and (qz, Hgr) : (q, Hq) are very
small. i.e..

l@r,  Hqz) |  .  gr - lx t -xz l lc  -  5r-Lx/C, (s.s)

where Ax : lxz - x1l,i.e., the distance separating the two wells. On the other hand,

@i ,  Hq i )  :  ( g i ,  H ig i )  t  l q i ,W ip i l  :  E i  I  ( 9 ; ,W1e i ) ,

where {l, "r } 
: { 1 , 2}. Because of (5.4), pi , W19) also satisfies an estimate of the type

(5.5). So M can be written as

*  :  ( " ;  ] r )  *  o@-^* /c1 :  Mo t  o(e-^* tc1.

Let us now study the eigenvalues and eigenvectors of M as Ax gets larger. Of course
inthislimit,theeigenvaluesof M tendto E1 andE2astheerrortendsto0.Tostudythe
eigenvectors, we must distinguish two cases:

(1) If El I E2,thenoneeasilycomputesthatthetwoeigenvectorsof Mtendto (1, 0)
and (0, 1), i.e., the eigenvectors of the matrix Ms. For our quantum system, this
means that, when Ax is large, I/ has two eigenvalues, one close to E1, the other to
E2.The eigenvectors associated to these two eigenvalues are respectively close to

9t and 92 (see Fig. 5).
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Fig. 5. The asymmetric double well.

(2) If h : E2 :i E, then the situation is more complicated. To simplify the discussion,
let us assume the system is symmetric with respect to the plane mediator of x1 and
x2.  In th is  case,  (pr ,Wjgi )  :  (q i ,Wiqi )  for  { i ,  j }  :  {1 ,2J,  So we need only to
study what happens to the eigenvectors of a matrix of the form

,  _  / o  r \, " : \ r  o /
when e -+ 0. The fact that the limit matrix has an eigenvalue with multiplicity
2 introduces a degeneracy. One computes that the eigenvectors of .I" equal
jtt. t lltl> ana 

fi\, 
-e /lel) . Hence, for the quantum system, the eigenvalues

are close to E and the eisenvectors to

1
v + : 7 @ t L e l l e l r p ) ,

(see Fig. 6 (we assume e e R)).

- \/ \
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Fig. 6. The symmetric double well.
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In the first case, the two eigenfunctions remain localized each in the well that
"produced" it. In the second case, they delocalize under the action of the other well: this
effect is called tunne lin g. The wells are said to be re s onant. For a periodic Schrddinger
operator, the fact that the spectrum is purely absolutely continuous (see Sec. 1) is an
extremal version of delocalization due to tunneling. Due to the high degree of symmetry,
the eigenfunctions of the separate wells delocalize so much that they do not stay in
t2 (pd); they are no longer eigenfunctions but merely generalized eigenfunctions.

Tunneling, being one of the main features of quantum systems, is a well- and widely
studied phenomenon. For a physics aspect on the subject, we refer to [39]. Tirnneling
was also mathematically studied at the beginning of the 1980s (and even much earlier
in dimension one) (see ll2, 13,20,2I,561 and references therein).

In a random system, i.e., for a random Schrddinger operator, tunneling should not
occur very frequently. Consider a continuous Anderson model of the type (3.1) and
assume V has a support that is sufficiently small so that the support of V(' - T) and
V(- - P) intersect if and only if P : y. Then one can consider V, as the "union"

of infinitely many potential wells @vV (. - y). One may now wonder when tunneling
occurs. Of course, as one is dealing with infinitely many potentials, one should not only
worry about tunneling between two wells but also between three or four wells, and more
generally, between two groups of wells. This is exactly the sense of the Wegner estimate
(5.3). Given an energy 86, the Wegner estimate gives a control on the probability that
tunneling occurs at energy Es (this in a given fixed cube). Remember that the constant
C in (5.3) is inversely proportional to the randomness of the system. So it is immediate
that, at large randomness, tunneling should be suppressed, hence, localization should
occur. This is Anderson's argument.

Another case where localization should occur is at the band edges. In this case, the
mechanism is a little more subtle. As in Subsec. 5.1, let us assume the edge of the
spectrum is 0 and that the gap is at the left of 0. For positive energies close to 0, by
Lifshits tails (5.1), we know that N(E) - N(0) is very small. Let us now assume that
it is well approximated by E(N.,"(E)) - E(N,,,(0)) (it actually is the case for N,,n
defined before Theorem 3.3 (cf. [35])) where n is of size at least a power of E-'. The
Bienaym6-Tchebycheff inequality then tells us that,

P(Hn,. has some spectrum in t0, U l) . d r-E-u'' .

So we see that we may take n of size eE-o'o arrd still have a probability that Hn,.
has a spectrum in [0, E]. By assumption, [0, E] is part of the almost sure spectrum of
H.,henee, there exists some sites in Rd that generate spectrum in [0, E]. But, by the
above considerations, these sites are very isolated, so tunneling is prevented by the great
distances separating these sites.

5.3.2. Some Mathematical Statements

The heuristics described above can be made rigorous in many situations. There was a
lot of work devoted to this task in the last five years not only for the Anderson model

[4, 8, 10, 29,33] but also for magnetic random Schrcidinger operators [3, 9, 63] or for
random translation [31]. We will only describe two rigorous results (taken from [34]) as
examples of the two asymptotics we have described above.
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We assume V is a real bounded function with compact support. We also assume the
i.i.d. random variables (ay)yer have common distribution density I satisfying
(a) 3e6 > 0 and po > 0 such that, Ve e [0, es],

(b) Let q0 : + if d > 4 ̂ d qo - 21f d < 3.lk > 40 suchthat

Vlk SG)dt < *oo.

Remark5.2. Assumption(a)isaregularityassumptionongthatis,forexample,satisfied
if g is differentiable and I lx.g'(x)ldx < *a.

WbeingdefinedasinSec. l, letHrbedefinedby(3.1).Onethenprovesthefollowing:

Theorem 5.2.1341 Let H. be defined as above and assume E, the almost sure spectrum

o.f Hr, satisfies X : R. Then, for any m > 0, there exists E^ > 0 such that, with
probability I,

o the spectrum of H. in (-x, -E^f is pure point;
o if g is an eigewector associated with E, an eigewalue of H, in (-a, -E*1, then

there exists C, , 0 such that, for any x e Ra ,

lq(x) l  < Cre-mtxt .

Let us comment on this result. In Theorem 5.2,we prove that, in some neighborhood

of -oo, the spectrum of 11, is purely punctual and exponentially localized. We are
not exacfly in the large randomness limit, but the decay of the density of the random
variables at -oo simulates this large randomness limit. Indeed, negative energies in the

spectrum of H. can only be created by negative values of the random variables (ary ) (as

11 is lower bounded). So, as g roughly tends to 0 near -oo, the randomness becomes

arbitrarily large.
We also notice that, as the single site potential V is compactly supported, the decay

rate of the eigenfunctions gets asymptotically faster than any exponential as the energy

decreases to -oo.

We take V as above. We assume the i.i.d. random variables (ay)yer have common
distribution density g satisfying

o 3e6 > 0 and ps > 0 such that, Ve e [0, eo],

o G, the essential support of g, is bounded.

Under these assumptions, we know that E, the almost sure spectrum of Hr, is lower

bounded. Define Ei'r : infE. One proves the following:

f rrtrt + e)t) - sl)tdt = (;)^

T

f rr,,t + e)t) - se)tdt = (;)^
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Theorem 5.3. [34] Assume H, is defined as above. Assume the above-described
assumptions are satisfied. Then there exists Eo > Eiof and m > 0 such that, with
probability 1,

o the spectrum of H (t) in fEint, Esl is pure point;
o ifgisaneigenvectorassociatedwithE,.aneigenvalueofHrinlE'*,Eol,thenthere

exists C, > 0 such that, for any x e Ra ,

lq(x) l  < Cre-mtxt .

The above result is not exactly contained in [34]; it is easily obtained from [34] and
the results on Lifshitz tails given in Theorem 5.1.

We will not prove any of these results here. The main ingredient needed to
mathematically implement the heuristics described above is the multiscale analysis "a
la Fnihlich-Spencer" [18]. Many versions of this analysis have been developed14,8,23,
29,34, 421;but they are all built around the same idea: to recover the behavior of the
resolvent (at some fixed energy or in some energy range) of 11, restricted to a large cube
from the resolvents of I/, restricted to smaller cubes (covering the laxge cube). This can
be done, for instance, using a resolvent identity of the following form: Let It 1 C f be
thecubeofcenter0andsidelength2l  ( i .e . ,Al  :1D41=6xje j  e f ;  - l  <  x1 = l l )
and define

H r , . : H + D @ y V y .
YeL t

For E ( o(Ht,), we define

Q. . (E ) :  (H t . .  -  E ) -1 .

Letl < lt andletAl C Al, be two cubes of f . Then, for E f o(Ht,)U o(Hy,r),we
obtain the following resolvent formula:

Gy. , (E)  :  Gt . , (E)  - t  G t ,a(E)Vt . r  Gy. , (E) , (s.6)

where
V t  r , :  t  @ y V y .

, tu"sn,

From (5.6), one sees that one can transfer the decay of the kernel of the resolvent bf
the small cube to the kemel of the resolvent of the large cube if one knows a priori that
the resolvent on the large cube is not too big. This is given by the Wegner estimate (5.3).
The reader will find the details of the multiscale analysis in the references cited above.

6. Appendix

In the appendix, we shall briefly recall some basic notions from the probability and
spectral theory needed for this exposition. For a thorough treatment of this material, we
refer to 16, 7, 14, 19, 24, 25, 52, 541.
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6.1. Some Notions from the Probability Theory

Laet (0, A, hheaprobability space (O is the state space, Ltheo-algebraof events and
P the probability measure). X : Q -+ R is a random variable if it is Borel measurable
(where R is endowed with the o-algebra of Borel sets denoted by B(R)). X induces a
probability measure Pa on (R, B (R)) by Py(B) : P (X e B). Py carries all interesting
information on X. Py is called the distribution of X.

Ler (X;);4 be a collection of real-valued random variables on O. The (X)ia1 are
i n d e p e n d e n t i f  a n d o n l y i f , f o r a n y n > I , B t , B z , . . . , B r B o r e l s e t s a n d i t , i z , . . . , i n i n
1. we have

n

F(X,, € 81, Xi, € Bz, .. . ,  Xi, e B,j) : f lF1Xi, e 4).
;- |

(6 .1 )

The left-hand side of (6.1) is called afinite-dimensional distribution of the collection of
random variables (Xi)ia (even in the case when the (Xi)ia are not independent). As in
the case of a single random variable, we will only be interested in the finite-dimensional
distribution of (Xi);er. This enables us to change the underlying probability space (as
long as we keep the same distribution). The example we are interested in is the case when
(Xi)ia are independent and identically distributed (i.e., P(X1 € B) - P(Xp e B) for
any Borel set B and (j, k) e lz1.Let Py be the common distribution of (X;);67. Define
the probability space (Q, C , P) by

. the state space f,2 is R1;
o the o-algebra is the o-algebra generated by the cylinders of Borel sets in R, i.e., it is

generated by sets of the form fl B; where, for a finite set of indices in I , B; is some

Borel set in R and for all other indices, Bi : R;
o P is the product measure 8Px.

Any point a e (2 can be written as &) : (ai)i.t. For every i € I, o e oi
defines a random variable. The collection of random variables (a.i)i.t has the same
finite-dimensional distribution as the collection of random variables (Xi)ia. So one can
always replace a collection of i.i.d. random variables by this representation. This is what
we did when defining our model (3.1).

6.LL Ergodicity and the Birkhoff-Khinchine Theorem

LetS :  CI  -+ O.  Sismeasurepreserv ingi f , forany B e.A,F1S-t3;  :  F6; .
Let us now assume 1 is a non-degenerate lattice in Rd that will be denoted by f as

above. We define (l;);.p, the shifts on Q by (3.2). These mappings define an Abelian
group (under the composition law) isomorphic to the lattice f . If the shifts are measure
preserving, one says that the random variables (X;);.r are stationary.

Let us now assume the random variables (X;);.r are stationary. An event B e Ais
invariant under the shift il for any i e l, t, '(B) : B. The shifts (4);.r are said to be
ergodic if any invariant set has measure 0 or 1.

One proves that a collection of i.i.d. random variables indexed by a lattice is ergodic
with respect to the shift group (i.e., the shift group is ergodic). Ergodicity is a property
of the probability measure P.
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A well-known consequence of ergodicity is that, if the shifts (Ti)i.r are ergodic on
(4, A, F ) , then the random variables invariant under the shifts are almost surely constant.

One of the most important results in ergodic theory is the Birkhoff-Khinchine theorem.
It is a version of the strong law of large numbers for an ergodic collection of random
variables.

Theorem 6,1. Let (X;);er be an ergodic collection of random variables such that
E(lXol) < *m. Then, F almostsurely,

l -
- ) X' 

?_ 
E(Xo).

(2n * l)d 
,l 

n-

By the above remark, the Birkhoff-Khinchine theorem holds for a collection of i.i.d.
random variables (indexed by a lattice).

6.2. Some Notions from the Spectral Theory of Unbounded Linear Operators

LetllbeaHilbert space and H : D(H) -+ ?l an unbounded linear operator with dense
domainD(H).E isanextensionof H if D(H) cD(E) andfor f e D(H),E y : ny.
Onewr i tes n cE.

z e Cisinthespectrumof Hif z-H : D(H) -+ ?lisnotinvertible.Thespectrumof
11 is denoted by o (H).The resolvent set is the complementary of the spectrum, i.e., the
set ofpoints z e C where z - H is invertible. The resolvent set is open and the spectrum
is closed. For z, a point in the resolvent set, the resolvent of H at z is (7 - 11)-1, the
inverse of z - H. One defines H*,the adjoint of F/, by

D(H*)  :  { f  e '11;  lg  e ' }1,  Yh € D(H),  (Hh,  f )  :  lh ,  g l }

H * f : g .

If D(H*) is dense, then H : H** : (F1*)*.One says that Fl is self-adjointitr H* : H,
i .e . , i t rD(H*) :D(H) and H* f  :  Hf  for  arry  f  eD(H).

An operator H is symmetric if Y f , I e D (H), (H S, f ) : (g, H f ) . For .FI symmetric,
we have H C H*" C H*. A symmetric operator is said to be essentially self-adjoint
if it admits a unique self-adjoint extension. For example, the differential operator -A
is essentially self-adjoint on the domain Cff(Rd); its closure is the differential operator
-A on the domain H2 : {f e L2(Rd); Lf e Lz(Rd)} (to see this, one can use the
Fourier transformation).

An operator Il is said tobe semi-bounded below or lower boundedby C iff

Yf  eD(H) ,  (H f ,  f ) ,  C l l f l l z .

If C :0, one says that H is positive.
A well-known result by K. Friedrichs states that every non-negative symmetric

operator Il has at least one non-negative self-adjoint extension. This immediately extends
to lower bounded operators.

Let H be a self-adjoint operator with dense domain D(H) and let B be a symmetric
operator whose domain contains D(H).Then B is said tobe relatively bounded with
respectto FI withrelativebound b > Olf,for some c e [0, *oo), wehave, V/ eD(H),
llf/ ll S bllH f ll + c ll"f ll. Note that a symmetric bounded operator is relatively bounded
with respect to any self-adjoint operator.
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The Kato-Rellich theorem states that, if fI is self-adjoint and B is relative bounded
withrespecttollwithrelativeboundb < l,thentheoperatorK :: H*B isself-adjoint
with domain D(K) : D(H).

6.2.1. The Spectral Theorem

A function on B(R) with values in the space of orthogonal projections on 7l will be
called a resolution ofthe identity on R ifand only if

(1) E(R) : Id,theidentity of H;
(2) for arry f, g inH, B € B(R) r-> (E(B)f, gJ : Ey,g(B) defines a complex Borel

measure on R.

To E, a resolution of the identity on R and a measurable function g ; R -+ C, we
may always associate a unique operator g@) in the following way. Define

D(q(E)) :  l f  eX;  I  tv<x l lzE7,7@).) .  +* ] .
Jn

ThenD(g(E)) is dense in'11. On this domain, we define q(E) by

Yf eD(<p(E)),  vs e 11, (q(E)f ,  d :  I  e$)Ep(dL).
./R

One writes

e(E): I q|)dt@).
JR

One notes thatg(E*) : e@).For 91, rp2 measurable,rf D((919) (E)) = D(et@D,
then we have 91(E)92(E) : (pp)(E).One has the following spectral theorem:

Theorem 6.2. H isself-adjointon'llifandonlyifthereexistsaresolutionoftheidentity
E on R such that

u : [ ).dEe).
Jn

The resolution ofthe identity defined by a self-adjoint operator is unique; it is called
the spectral resolution of H. The spectrum of Il is the support of the spectral resolution of
F/. The spectral resolution ofa self-adjoint operator is aprojection-valued Borel measure
dE so it may be decomposed with respect to the Lebesgue measure. More precisely, if
we define

j l . :  { f  e ' 11 ;  Ey , y  i s  . l

where . stands for "pp = purely punctual", "ac = absolutely continuous" or "sc = singulir
continuous", then'Jl. is a closed subspace of ?1. One has

11  :Hpp t *u * t *u " . .

Denote by II. the orthogonal projection onT{. and define E. : ll.H.. Then Enn is a
pure point measure, Eu" an absolutely continuous measure and Er" a singular continuous
measure. Their respective supports are opp(H), the pure point specffum of H, ou"(H),
the absolutely continuous spectrum and o'"(11), the singular continuous spectrum of FI.
Note that, with our definition, orp(H) is not the set of eigenvalues of f/ but the closure
ofthis set. To finish this subsection, we redefine a notation. If E is the spectral resolution
of 11 and g : R -+ C is a measurable function, then we deflne rp(H) i: e(E).
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6.2.2. The Heffir-Sjcistrqnd Fortnulq

Let g e Cf (R). An almost analytic extension of g is a function satisfying
(1) for z € R, Q(z) : q(z);
(2) supp(@) C {z e C; l lm(z)l < 1};
(3) Q e 5({z e C; llm(z)l < 1}) (here,5 denotes the Schwartz class of rapidly

decaying functions);
(4) The family of functions, - ff i{*+ ty) . lyl-n (for0 < lyl < 1) is boundedinS

f o r a n y n e N .
Such extensions always exist for p e 5(R) (see [43]) and one has the following

estimates: for n > 0, d ) 0, f , 0, there exists Cr,o,B > 0 suchthat

|  ^ 0 F  t ,  A i i  \ r  |  ^ , A P ' ' ^sup sup l.r- .- t t)l-' Y@ + iD\l = c,,,,p sup sup lx"'l#(x)1. 6.2)
o . l y i . r r e i r l  0 x p \ ' " '  A Z '  " / | -  ' p , s . + p + z r . i . l  ' d x p  ' l

Let H be a lower semi-bounded self-adjoint operator and 1 - ),s a lower bound for
H . Let 9 e Cff (R) and Q be an almost analytic extension of (),0 f x)q p(x) (here, 4 is
any integer). Then, by l22l (see also [32]), we know that the following formula holds:
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