Vietnam Journal of Mathematics 26:1 (1998) 53-69

Vietnam Journal of MATHEMATICS © Springer-Verlag 1998

Subdifferential Characterization of Quasiconvex and Convex Vector Functions

Phan Nhat Tinh¹, Dinh The Luc², and Nguyen Xuan Tan²

¹Department of Mathematics, Faculty of Science, University of Hue, Vietnam ²Institute of Mathematics, P. O. Box 631 Bo Ho, 10000 Hanoi, Vietnam

> Received June 4, 1996 Revised December 14, 1996

Abstract. A new subdifferential of a C-lower semicontinuous vector function f from a Banach space X into \mathbb{R}^m is defined, where $C \subseteq \mathbb{R}^m$ is a cone generated by m linearly independent vectors. Some of its properties are shown. Especially, f is C-quasiconvex (resp. C-convex) if and only if its subdifferential is C-quasimonotone (resp. C-monotone).

1. Introduction

The problem of characterizing various classes of functions in terms of their local approximations has been studied intensively. Some new results are presented in [3–6, 8, 10] where lower semicontinuous convex, quasiconvex or pseudoconvex functions have been characterized via their Frechet derivatives [5], Clarke subdifferentials [3, 4, 6], upper and lower Dini derivatives [6, 8] or lower Dini–Hadamard derivatives [10]. Especially in [11, 12], the authors have shown necessary and sufficient conditions for a set-valued map F between Banach spaces X and Y to be convex and quasiconvex with respect to a convex cone $C \subseteq Y$. These conditions are written in terms of the Bouligand and Clarke derivatives of the map $\hat{F}(.) := F(.) + C$.

The aim of this paper is to characterize C-lower semicontinuous quasiconvex and convex vector functions from a Banach space X into R^m in terms of their generalized subdifferentials, where $C \subseteq R^m$ is a cone generated by m linearly independent vectors.

The paper is structured as follows. In the next section, we introduce some preliminaries. In Sec. 3, after introducing the concept of generalized subdifferentials of C-lower semicontinuous vector functions, we shall prove some of their basic properties. Section 4 is devoted to proving the equivalence between the quasiconvexity (resp. convexity) of C-lower semicontinuous vector functions and quasimonotonicity (resp. monotonicity) of their generalized subdifferentials.

2. Preliminaries

Let $C \subseteq \mathbb{R}^m$ be a cone generated by *m* linearly independent vectors $c_1, c_2, ..., c_m$. Denote by $\overline{\mathbb{R}}$ the set $\mathbb{R} \cup \{-\infty, +\infty\}$ and by $\overline{\mathbb{R}}^m$ the set $\{\sum_{i=1}^m \alpha_i c_i : \alpha_i \in \overline{\mathbb{R}}, i = 1, 2, ..., m\}$. Define on $\overline{\mathbb{R}}^m$ a partial order " \preceq " as follows. For every $x, y \in \overline{\mathbb{R}}^m$, $x = \sum_{i=1}^m \alpha_i c_i, y = \sum_{i=1}^m \beta_i c_i$,

 $x \leq y$ if $\alpha_i \leq \beta_i$, i = 1, 2, ..., m.

It is clear that if $x, y \in \mathbb{R}^m$, then

$$x \leq y$$
 iff $y - x \in C$.

Denote by pr_i the projection

$$pr_i: \sum_{i=1}^m lpha_i c_i \in R^m \mapsto lpha_i \in R.$$

Lemma 1. Let A be a nonempty subset of \overline{R}^m . Then

- (a) $\inf A = \sum_{i=1}^{m} \inf(pr_i(A))c_i$. Particularly, if $A \cap R^m \neq \emptyset$ and A is bounded below by an element of R^m , then $\inf A \in R^m$.
- (b) sup A = ∑^m_{i=1} sup(pr_i(A))c_i.
 Particularly, if A ∩ R^m ≠ Ø and A is bounded above by an element of R^m, then sup A ∈ R^m.

Proof. (a) Let $x \in A$ be arbitrary. Represent x as $x = \sum_{i=1}^{m} \alpha_i c_i$, for some $\alpha_i \in \overline{R}$. It is clear that $\alpha_i \ge \inf(pr_i(A))$, i = 1, 2, ..., m. Then $x \ge \sum_{i=1}^{m} \inf(pr_i(A))c_i$. Hence, $\sum_{i=1}^{m} \inf(pr_i(A))c_i$ is a lower bound of A. Now, let a be an arbitrary lower bound of A. Represent a as $a = \sum_{i=1}^{m} \alpha_i c_i$, for some $\alpha_i \in \overline{R}$. Let $\beta_i \in pr_i(A)$ be arbitrary. Then there is an element $x \in A$ such that $pr_i(x) = \beta_i$. Since $x \ge a$, then $\beta_i \ge \alpha_i$. Hence, α_i is a lower bound of $pr_i(A)$. Then $\alpha_i \le \inf(pr_i(A))$. Since this is true for every i = 1, 2, ..., m, then $a \le \sum_{i=1}^{m} \inf(pr_i(A))c_i$. Hence, $\inf A = \sum_{i=1}^{m} \inf(pr_i(A))c_i$.

Finally, assume that $A \cap R^m \neq \emptyset$ and A is bounded below by an element $b \in R^m$. Let $x \in A \cap R^m$ be arbitrary. We have $b \prec \inf A \prec x$. Hence, $\inf (pr_i(A)) \in R$, i = 1, 2, ..., m. Thus, $\inf A \in R^m$.

(b) The proof is completely similar.

Denote by $\stackrel{+}{\infty}$ the element $(+\infty)c_1 + (+\infty)c_2 + \cdots + (+\infty)c_m$. Let $x, y \in \overline{R}^m$, $x = \sum_{i=1}^{m} \alpha_i c_i, y = \sum_{i=1}^{m} \beta_i c_i.$ We shall write $x \ll y$ if $\alpha_i < \beta_i, i = 1, 2, ..., m$.

Now let f be a vector function from a Banach space X to $\mathbb{R}^m \cup \{\infty^m\}$. The effect domain of f is defined as the set

$$\operatorname{dom} f := \{ x \in X : f(x) \ll +\infty \}.$$

Represent f as
$$f(x) = \sum_{i=1}^{m} f_i(x)e_i.$$
(1)

It should be noted that dom $f = \text{dom } f_i$, i = 1, 2, ..., m.

A subset $W \subseteq R^m$ is said to be a neighborhood of $\stackrel{+}{\infty}$ if there is a point $z \in R^m$ such that $W \supseteq z + C$. Let us denote by \overline{C} the set $\{\sum_{i=1}^{m} \alpha_i c_i \in \overline{R}^m : \alpha_i \ge 0, i = 1, 2, ..., m\}.$ f is said to be C-lower semicontinuous at $x_0 \in X$ if, for every neighborhood W of $f(x_0)$, there is a neighborhood V of x_0 such that $x \in V$ implies $f(x) \in W + \overline{C}$. f is said to be C-lower semicontinuous if it is C-lower semicontinuous at every point of X. Sometimes we write "lower semicontinuous" instead of "C-lower semicontinuous" if it is clear which cone is being considered.

It is easy to see that if f is continuous at $x_0 \in \text{dom } f$, then it is lower semicontinuous at xo.

Lemma 2. f is lower semicontinuous at $x_0 \in X$ if and only if f_i is lower semicontinuous at x_0 , for every i = 1, 2, ..., m.

Proof. For the "only if" part, first assume that $x_0 \in \text{dom } f$. Let $\varepsilon > 0$ be arbitrary. Set

$$W := \{ y \in \mathbb{R}^m : \sum_{i=1}^m (f_i(x_0) - \varepsilon)c_i \leq y \leq \sum_{i=1}^m (f_i(x_0) + \varepsilon)c_i \}.$$

Then W is a neighborhood of $f(x_0)$. Hence, there is a neighborhood V of x_0 such that $x \in V$ implies $f(x) \in W + C$. We have more set over the

$$f(x) \in W + C \Rightarrow \exists y \in W, \ \exists c \in \overline{C} : f(x) = y + c$$
$$\Rightarrow \sum_{i=1}^{m} f_i(x)c_i \geq \sum_{i=1}^{m} (f_i(x_0) - \varepsilon)c_i$$
$$\Rightarrow f_i(x) \geq f_i(x_0) - \varepsilon, \ i = 1, 2, ..., m.$$

Hence, f_i is lower semicontinuous at x_0 , for every i = 1, 2, ..., m.

Now, assume that $x_0 \notin \text{dom } f$. Let $\alpha > 0$ be arbitrary. Set $W := \sum_{i=1}^{m} c_i + \overline{C}$. Then W

is a neighborhood of $\stackrel{+}{\infty}$. Hence, there exists a neighborhood V of x_0 such that $x \in V$ implies $f(x) \in W + \overline{C}$. Hence, $f_i(x) \ge \alpha$ for every i = 1, 2, ..., m. Then f_i is lower semicontinuous at x_0 , for every i = 1, 2, ..., m.

For the "if" part, first we assume that $x_0 \in \text{dom } f$. Let W be an arbitrary neighborhood of $f(x_0)$. Then there exists $\varepsilon > 0$ such that

$$\{y \in \mathbb{R}^m : \sum_{i=1}^m (f_i(x_0) - \varepsilon)c_i \leq y \leq \sum_{i=1}^m (f_i(x_0) + \varepsilon)c_i\} \subseteq W.$$

Since f_i is lower semicontinuous at x_0 , for every i = 1, 2, ..., m, we can find a neighborhood V of x_0 such that $f_i(x) > f_i(x_0) - \varepsilon$, for every $x \in V$, i = 1, 2, ..., m. Hence, $f(x) = \sum_{i=1}^{m} f_i(x)c_i \geq \sum_{i=1}^{m} (f_i(x_0) - \varepsilon)c_i$. Since $\sum_{i=1}^{m} (f_i(x_0) - \varepsilon)c_i \in W$, then

 $f(x) \in W + \overline{C}$. This means that f is lower semicontinuous at x_0 .

Now, assume that $x_0 \notin \text{dom } f$. Let W be an arbitrary neighborhood of $f(x_0)$. Then there exists $z \in \mathbb{R}^m$ such that $W \supseteq z + C$. Represent z as $z = \sum_{i=1}^m \alpha_i c_i$, for some $\alpha_i \in R$. Since f_i is lower semicontinuous at x_0 , for every i = 1, 2, ..., m, there exists a neighborhood V of x_0 such that $x \in V$ implies $f_i(x) \ge \alpha_i$, for every i = 1, 2, ..., m. Hence, $f(x) = \sum_{i=1}^{m} f_i(x)c_i \geq \sum_{i=1}^{m} \alpha_i c_i$, i.e. $f(x) \in W + \overline{C}$. Thus, f is lower semicontinuous at x_0 .

The proof is complete.

We recall some definitions.

f is said to be convex (or more precisely C-convex) if for every $x, y \in X, t \in (0, 1)$ we have

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y).$$

f is said to be quasiconvex (or more precisely C-quasiconvex) if for every $x, y \in X$, $t \in (0, 1)$ we have

$$f(tx + (1-t)y) \leq \sup\{f(x), f(y)\}$$

Lemma 3.

(a) f is convex if and only if f_i is convex, for every i = 1, 2, ..., m.

(b) f is quasiconvex if and only if f_i is quasiconvex, for every i = 1, 2, ..., m.

Proof. The proof is immediate from the definitions.

3. Subdifferentials of Lower Semicontinuous Vector Functions

Let $C \subseteq R^m$ be a cone generated by some linearly independent vectors $c_1, c_2, ..., c_m$ and f a lower semicontinuous vector function from a Banach space X into $\mathbb{R}^m \cup \{\infty, \infty\}$. The generalized subderivative of f at $x \in \text{dom } f$ in the direction $v \in X$ is defined by

$$f^{\uparrow}(x;v) := \sup_{\varepsilon>0} \inf_{\substack{y>0\\\lambda>0}} \sup_{\substack{y\in B_{\gamma}(x)\\t\in(0,\lambda)}} \inf_{\substack{u\in B_{\varepsilon}(v)\\t\in(0,\lambda)}} \frac{f(y+tu)-f(y)}{t}.$$

Let us represent f as (1).

Subdifferential Characterization of Quasiconvex and Convex Vector Functions

Theorem 1. For every $x \in \text{dom } f$, $v \in X$, we have some Compared Compared by an event

$$f^{\uparrow}(x; v) \preceq \sum_{i=1}^{m} f_i^{\uparrow}(x; v) c_i$$
.

If, in addition, f is continuous at x, then the equality holds.

Proof. From Lemma 1, we have

$$f^{\uparrow}(x;v) = \sum_{i=1}^{m} \left(\sup_{\substack{\varepsilon > 0 \ y > 0 \ y \in B_{\gamma}(x) \\ \delta > 0 \ \lambda > 0}} \inf_{\substack{y \in B_{\gamma}(x) \\ u \in B_{\varepsilon}(v) \\ i \in (0,\lambda)}} \frac{f_{i}(y + tu) - f_{i}(y)}{t} \right) c_{i}.$$

Let $\varepsilon > 0$ be arbitrary. For every i = 1, 2, ..., m, we shall prove that

$$\inf_{\substack{\gamma>0\\\lambda>0}} \sup_{\substack{y\in B_{\gamma}(x)\\t\in(0,\lambda)}} \inf_{\substack{u\in B_{\varepsilon}(v)\\t\in(0,\lambda)}} \frac{f_{i}(y+tu) - f_{i}(y)}{t} \\
\stackrel{\delta>0}{=} f_{i}(y) \in f(x) + B_{\delta}(0) - C \\t\in(0,\lambda)} \\
\stackrel{\delta>0}{=} \inf_{\substack{y\in B_{\gamma}(x)\\\lambda>0\\t\in(0,\lambda)}} \inf_{\substack{u\in B_{\varepsilon}(v)\\t\in(0,\lambda)}} \frac{f_{i}(y+tu) - f_{i}(y)}{t}.$$
(2)

Indeed, let $\gamma > 0$, $\delta > 0$, $\lambda > 0$, then the set

$$W := \left\{ z = \sum_{i=1}^m \alpha_i c_i \in R^m : |\alpha_i| < \delta \right\}$$

is a neighborhood of 0. Then there exists $\delta_1 > 0$ such that $B_{\delta_1}(0) \subseteq W$. Hence,

$$\{y \in X : y \in B_{\gamma}(x), f(y) \in f(x) + B_{\delta_{1}}(0) - C\} \\ \subseteq \{y \in X : y \in B_{\gamma}(x), f_{i}(y) \le f_{i}(x) + \delta\}.$$

This implies

 $\sup_{\substack{y \in B_{\gamma}(x) \\ f(y) \in f(x) + B_{\delta_{1}}(0) - C \\ t \in (0,\lambda)}} \inf_{\substack{y \in B_{\gamma}(x) \\ f_{i}(y) \leq f_{i}(x) + \delta \\ t \in (0,\lambda)}} \frac{f_{i}(y + tu) - f_{i}(y)}{t}.$

Then we obtain (2). From (2) one has a second second

$$f^{\uparrow}(x;v) \preceq \sum_{i=1}^{m} f_i^{\uparrow}(x;v)c_i$$
.

Now, assume that f is continuous at x. For every $\varepsilon > 0$, i = 1, 2, ..., m, we shall prove that

$$\frac{\inf_{\substack{\gamma>0\\y\in B_{\gamma}(x)\\\lambda>0}}\sup_{\substack{y\in B_{\gamma}(x)\\t\in(0,\lambda)}}\inf_{\substack{u\in B_{\varepsilon}(v)\\t\in(0,\lambda)}}\frac{f_{i}(y+tu)-f_{i}(y)}{t} \\
\geq \inf_{\substack{\gamma>0\\y\in B_{\gamma}(x)\\\lambda>0\\f_{i}(y)\leq f_{i}(x)+\delta\\t\in(0,\lambda)}}\inf_{\substack{u\in B_{\varepsilon}(v)\\t\in(0,\lambda)}}\frac{f_{i}(y+tu)-f_{i}(y)}{t}.$$
(3)

Let $\gamma > 0$, $\delta > 0$, $\lambda > 0$. Since $f(x) + B_{\delta}(0)$ is a neighborhood of f(x), then we can find a positive number γ_1 with $\gamma_1 < \gamma$ such that $y \in B_{\gamma_1}(x) \cap \text{dom } f$ implies $f(y) \in f(x) + B_{\delta}(0)$. Hence,

$$\{y \in X : y \in B_{\gamma}(x), f(y) \in f(x) + B_{\delta}(0) - C\} \supseteq B_{\gamma_1}(x) \cap \operatorname{dom} f$$
$$\supseteq \{y \in X : y \in B_{\gamma_1}(x), f_i(y) \le f_i(x) + \delta\}.$$

This implies

$$\sup_{\substack{y \in B_{\gamma}(x) \\ t \in (0,\lambda)}} \inf_{\substack{u \in B_{\varepsilon}(v) \\ u \in B_{\varepsilon}(v)}} \frac{f_i(y + tu) - f_i(y)}{t}$$

$$\sum_{\substack{y \in B_{\gamma}(x) \\ f_i(y) \le f_i(x) + \delta \\ t \in (0,\lambda)}} \inf_{\substack{u \in B_{\varepsilon}(v) \\ t \in (0,\lambda)}} \frac{f_i(y + tu) - f_i(y)}{t}.$$

Then we obtain (3). From (3) one has

$$f^{\uparrow}(x; v) \succeq \sum_{i=1}^{m} f_i^{\uparrow}(x; v) c_i$$
.

The proof is complete.

Let $f : X \to \mathbb{R}^m \cup \{\infty^+\}$ be a *C*-lower semicontinuous function. The generalized subdifferential of f at $x \in X$ is defined by

$$\partial^{\uparrow} f(x) := \begin{cases} \{A \in L(X, R^m) : A(v) \leq f^{\uparrow}(x; v), \forall x \in X\}, & x \in \text{dom } f \\ \emptyset, & x \notin \text{dom } f, \end{cases}$$

where $L(X, \mathbb{R}^m)$ denotes the space of continuous linear maps from X into \mathbb{R}^m .

Let $A_1, A_2, ..., A_m \in L(X, R)$. Denote by $\sum_{i=1}^m A_i c_i$ the linear map from X into R^m defined by the rule

$$(\sum_{i=1}^{m} A_i c_i)(x) := \sum_{i=1}^{m} A_i(x) c_i$$

Let $\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_m \subseteq L(X, R).$

Denote by $\sum_{i=1}^{m} A_i c_i$ the subset of $L(X, R^m)$ defined by the rule

$$\sum_{i=1}^{m} \mathcal{A}_{i} c_{i} := \{\sum_{i=1}^{m} A_{i} c_{i} : A_{i} \in \mathcal{A}_{i} \ (i = 1, 2, ..., m)\}.$$

Theorem 2. For every $x \in \text{dom } f$, we have

$$\partial^{\uparrow} f(x) \subseteq \sum_{i=1}^{m} \partial^{\uparrow} f_i(x) c_i .$$

In addition, if f is continuous at x, then the equality holds.

Proof. Let $A \in \partial^{\uparrow} f(x)$ be arbitrary. Represent A as $A = \sum_{i=1}^{m} A_i c_i$, for some $A_i \in L(X, R)$. From definitions and by Theorem 1, we have

$$\sum_{i=1}^m A_i(v)c_i \leq f^{\uparrow}(x;v) \leq \sum_{i=1}^m f_i^{\uparrow}(x;v)c_i,$$

for every $v \in X$. Then $A_i(v) \leq f_i^{\uparrow}(x; v)$. Hence, $A_i \in \partial^{\uparrow} f_i(x)$. Thus, $A \in \sum_{i=1}^m \partial^{\uparrow} f_i(x) c_i$.

Now, assume that f is continuous at x. Let $A_i \in \partial^{\uparrow} f_i(x)$ be arbitrary. From definitions and by Theorem 1, we have

$$\sum_{i=1}^m A_i(v)c_i \preceq \sum_{i=1}^m f_i^{\uparrow}(x;v)c_i = f^{\uparrow}(x;v),$$

for every $v \in X$. Hence, $\sum_{i=1}^{m} A_i c_i \in \partial^{\uparrow} f(x)$. The theorem is proved.

Now, we shall consider the relation between the generalized Jacobian and the generalized subdifferential of a lower semicontinuous vector function f from R^n to R^m .

Let $x_0 \in int (\text{dom } f)$. Assume that f is Lipschitz near x_0 . By Radermacher's theorem, f is differentiable almost everywhere. The generalized Jacobian $Jf(x_0)$ of f at x_0 in the Clarke's sense [2] is defined as the convex hull of all $(m \times n)$ matrices obtained as the limit of a sequence of the form $(Df(x_i))_i$, where $(x_i)_i$ converges to x_0 and the classical Jacobian matrix $Df(x_i)$ of f at x_i exists.

- Statute .. a tak .. a mannes.

N < 1 com 1 > N.

s set of ban its

Lemma 4. For every $x \in \text{dom } f$, $\partial^{\uparrow} f(x)$ is convex.

Proof. This is immediate by definition.

Lemma 5. Let $g : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a lower semicontinuous function. If g is Lipschitz near $x_0 \in int(\operatorname{dom} g)$, then

$$Jg(x_0) \subseteq \partial^{\uparrow}g(x_0).$$

Proof. Let A be the limit of a sequence of the form $(Dg(x_i))_i$, where $(x_i)_i$ converges to x_0 and the classical Jacobian matrix $Dg(x_i)$ of g at x_i exists. Since g is Lipschitz near x_0 , there exists $\varepsilon' > 0$, k > 0 such that for every $x, y \in B_{\varepsilon'}(x_0)$, one has

$$|g(x) - g(y)| \le k ||x - y||.$$
(4)

Let $v \in \mathbb{R}^n$ and $\alpha > 0$ be arbitrary. Set $\varepsilon_0 := \frac{\alpha}{3k}$. From the definition we have

$$\inf_{\substack{\gamma > 0 \\ \delta > 0 \\ \lambda > 0}} \sup_{\substack{y \in B_{\gamma}(x_0) \\ t \in (0,\lambda)}} \inf_{\substack{u \in B_{t_0}(v) \\ u \in B_{t_0}(v)}} \frac{g(y + tu) - g(y)}{t} \le g^{\uparrow}(x_0; v).$$
(5)

By the definition of "inf", there exist $\gamma_1 > 0$, $\delta_1 > 0$, $\lambda_1 > 0$ such that

$$\sup_{\substack{y \in B_{\gamma_{1}}(x_{0}) \\ g(y) \leq g(x_{0}) + \delta_{1} \\ t \in (0,\lambda_{1})}} \inf_{\substack{u \in B_{\varepsilon_{0}}(v) \\ t \in B_{\varepsilon_{0}}(v)}} \frac{g(y + tu) - g(y)}{t} \\
\leq \inf_{\substack{\gamma > 0 \\ \gamma > 0 \\ s \geq 0 \\ s(y) \leq g(x_{0}) + \delta \\ t \in (0,\lambda)}} \inf_{\substack{u \in B_{\varepsilon_{0}}(v) \\ u \in B_{\varepsilon_{0}}(v) \\ t \in (0,\lambda)}} \frac{g(y + tu) - g(y)}{t} + \frac{\alpha}{6}.$$
(6)

Since $x_i \rightarrow x_0$ and g is continuous at x_0 , there exists N > 0 such that

$$i > N \Rightarrow x_i \in B_{\gamma_1}(x_0) \cap B_{\frac{\varepsilon'}{2}}(x_0), \ g(x_i) \le g(x_0) + \delta_1.$$

$$\tag{7}$$

For every i > N, since $Dg(x_i)(v) = \lim_{t \downarrow 0} \frac{g(x_i + tv) - g(x_i)}{t}$, there exists $t_i \in (0, \lambda_1)$ such that

$$t_i < \frac{\varepsilon'}{2(\|v\| + \varepsilon_0)}, \ Dg(x_i)(v) < \frac{g(x_i + t_i v) - g(x_i)}{t_i} + \frac{\alpha}{3}.$$
 (8)

It is clear that

$$\inf_{u \in B_{\varepsilon_0}(v)} \frac{g(x_i + t_i u) - g(x_i)}{t} \leq \sup_{\substack{y \in B_{\gamma_1}(x_0) \\ g(y) \leq g(x_0) + \delta_1 \\ t \in (0, \lambda_1)}} \inf_{u \in B_{\varepsilon_0}(v)} \frac{g(y + tu) - g(y)}{t}, \quad (9)$$

Subdifferential Characterization of Quasiconvex and Convex Vector Functions

for every i > N. From the definition of "inf", there exists

$$u_i \in B_{\varepsilon_0}(v) \tag{10}$$

such that

$$\frac{g(x_i + t_i u_i) - g(x_i)}{t_i} \le \inf_{u \in B_{c_0}(v)} \frac{g(x_i + t_i u) - g(x_i)}{t_i} + \frac{\alpha}{6}.$$
 (11)

From (5), (6), (9) and (11), for every i > N, we have

$$\frac{g(x_i + t_i u_i) - g(x_i)}{t_i} \le g^{\uparrow}(x_0; v) + \frac{\alpha}{3}.$$
 (12)

From (4), (7), (8) and (10), we have

$$\frac{g(x_i + t_i v) - g(x_i)}{t_i} - \frac{g(x_i + t_i u_i) - g(x_i)}{t_i} \le k \|v - u_i\| < k\varepsilon_0 = \frac{\alpha}{3}.$$
 (13)

From (8), (12) and (13), we have

$$Dg(x_i)(v) \leq g^{\uparrow}(x_0; v) + \alpha.$$

As $i \to \infty$, one has

$$A(v) < g^{\uparrow}(x_0; v) + \alpha.$$

Since $\alpha > 0$ is arbitrary,

$$A(v) \leq g^{\top}(x_0; v).$$

Hence $A \in \partial^{\uparrow} g(x_0)$. By Lemma 4, we obtain

$$Jg(x_0) \subseteq \partial^{\uparrow}g(x_0).$$

The proof is complete.

Theorem 3. If a lower semicontinuous vector function $f : \mathbb{R}^n \to \mathbb{R}^m \cup \{\infty\}$ is Lipschitz near $x_0 \in int (\text{dom } f)$, then

$$Jf(x_0) \subseteq \partial^+ f(x_0).$$

Proof. Since f is Lipschitz near x_0 , by Theorem 2, we have

$$\partial^{\uparrow} f(x_0) = \sum_{i=1}^m \partial^{\uparrow} f_i(x_0) c_i .$$

By Lemma 5 above and by [2, Proposition 2.6.2], one has

$$Jf(x_0) \subseteq \sum_{i=1}^m Jf_i(x_0)c_i \subseteq \sum_{i=1}^m \partial^{\uparrow} f_i(x_0)c_i = \partial^{\uparrow} f(x_0)$$

The proof is complete.

It should be noted that the inclusion of Theorem 3 is strict in general. For instance, consider the function $f : x \in R \to (|x|, |x|) \in R^2$, where R^2 is ordered by the nonnegative orthant. Then Jf(0) = [(-1, -1), (1, 1)] and $\partial^{\uparrow} f(0) = [-1, 1] \times [-1, 1]$.

Lemma 6. Let g be a lower semicontinuous function from a Banach space X into $R \cup \{+\infty\}$. If g is differentiable at $x_0 \in int(\operatorname{dom} g)$, then $Dg(x_0) \in \partial^{\uparrow}g(x_0)$.

Proof. Let $v \in X$. For every $\varepsilon > 0$, $\gamma > 0$, $\delta > 0$, $\lambda > 0$, we have

$$\sup_{t\in(0,\lambda)}\inf_{u\in B_{\varepsilon}(v)}\frac{g(x_0+tu)-g(x_0)}{t}\leq \sup_{\substack{y\in B_{\gamma}(x_0)\\g(y)\leq g(x_0)+\delta\\t\in(0,\lambda)}}\inf_{\substack{u\in B_{\varepsilon}(v)\\t\in(0,\lambda)}}\frac{g(y+tu)-g(y)}{t}.$$

Hence,

$$\sup_{\varepsilon>0} \inf_{\lambda>0} \sup_{t\in(0,\lambda)} \inf_{u\in B_{\varepsilon}(v)} \frac{g(x_0+tu)-g(x_0)}{t} \le g^{\uparrow}(x_0;v).$$
(14)

Let $\alpha > 0$ be arbitrary. Since $Dg(x_0)$ is continuous at 0, for $r := \frac{\alpha}{6} > 0$, there exists s > 0 such that for every $w \in X$, one has

$$\|w\| < s \Rightarrow |Dg(x_0)(w)| < r.$$
⁽¹⁵⁾

Since $\lim_{w \to 0} \frac{g(x_0 + w) - g(x_0) - Dg(x_0)(w)}{\|w\|} = 0$, for $r' := \frac{\alpha}{6(\|v\| + s)}$, there exists s' > 0 such that

$$\|w\| < s' \Rightarrow \frac{|g(x_0 + w) - g(x_0) - Dg(x_0)(w)|}{\|w\|} < r'.$$
(16)

It is clear that

$$\inf_{\lambda>0} \sup_{t\in(0,\lambda)} \inf_{u\in B_{\varepsilon}(v)} \frac{g(x_0+tu)-g(x_0)}{t} \\
\leq \sup_{\varepsilon>0} \inf_{\lambda>0} \sup_{t\in(0,\lambda)} \inf_{u\in B_{\varepsilon}(v)} \frac{g(x_0+tu)-g(x_0)}{t}.$$
(17)

From the definition of "inf", there exists $\lambda_1 > 0$ such that

$$\sup_{t \in (0,\lambda_1)} \inf_{u \in B_{\varepsilon}(v)} \frac{g(x_0 + tu) - g(x_0)}{t}$$

$$\leq \inf_{\lambda>0} \sup_{t\in(0,\lambda)} \inf_{u\in B_{\varepsilon}(v)} \frac{g(x_0+tu)-g(x_0)}{t} + \frac{\alpha}{4}.$$
 (18)

Let $t_0 \in (0, \lambda_1)$ such that $t_0 < \frac{s'}{\|v\| + s'}$. Then

$$\inf_{u \in B_{\varepsilon}(v)} \frac{g(x_0 + t_0 u) - g(x_0)}{t_0} \le \sup_{t \in (0,\lambda_1)} \inf_{u \in B_{\varepsilon}(v)} \frac{g(x_0 + tu) - g(x_0)}{t} \,. \tag{19}$$

From the definition of "inf", there exists $u_0 \in B_s(v)$ such that

8

I-Dall

$$\frac{(x_0 + t_0 u_0) - g(x_0)}{t_0} \le \inf_{u \in B_{\varepsilon}(v)} \frac{g(x_0 + t_0 u) - g(x_0)}{t_0} + \frac{\alpha}{4}.$$
 (20)

From (14), (17)–(20), we have

$$\frac{g(x_0 + t_0 u_0) - g(x_0)}{t_0} \le g^{\uparrow}(x_0; v) + \frac{\alpha}{2}.$$
(21)

Put $\beta := \frac{s'}{\|v\|}$. For every $t \in (0, \beta)$, since $\|tv\| < s'$, then by (16), one has

$$\frac{|g(x_0 + tv) - g(x_0) - Dg(x_0)(tv)|}{\|tv\|} < r'.$$
(22)

Since $t_0 ||u_0|| < s'$,

$$\frac{|g(x_0 + t_0 u_0) - g(x_0) - Dg(x_0)(t_0 u_0)|}{\|t_0 u_0\|} < r'.$$
(23)

Since $u_0 \in B_s(v)$, by (15), one has

 $|Dg(x_0)(v - u_0)| < r.$ (24)

From (22)–(24), for every $t \in (0, \beta)$, we have

$$\begin{aligned} \left| \frac{g(x_0 + tv) - g(x_0)}{t} - \frac{g(x_0 + t_0u_0) - g(x_0)}{t_0} \right| \\ &\leq \|v\| \left| \frac{g(x_0 + tv) - g(x_0) - Dg(x_0)(tv)}{\|tv\|} \right| \\ &+ |Dg(x_0)(v - u_0)| + \|u_0\| \left| \frac{g(x_0 + t_0u_0) - g(x_0) - Dg(x_0)(t_0u_0)}{\|t_0u_0\|} \right| \\ &\leq \|v\|r' + r + \|u_0\|r' = \|v\| \frac{\alpha}{6(\|v\| + s)} + \frac{\alpha}{6} + \|u_0\| \frac{\alpha}{6(\|v\| + s)} < \frac{\alpha}{2}. \end{aligned}$$
(25)

From (21) and (25), we have

$$\frac{g(x_0+tv)-g(x_0)}{t} \le g^{\uparrow}(x_0;v) + \alpha$$

Taking $t \downarrow 0$, we obtain

$$Dg(x_0)(v) \leq g^{\uparrow}(x_0; v) + \alpha$$

Since $\alpha > 0$ is arbitrary,

 $Dg(x_0)(v) \leq g^{\uparrow}(x_0; v).$

Hence, $Dg(x_0) \in \partial^{\uparrow}g(x_0)$. The proof is complete.

Theorem 4. If a lower semicontinuous vector function f from a Banach space X into $\mathbb{R}^m \cup \{\infty, \infty\}$ is differentiable at $x_0 \in int(\text{dom } f)$, then

$$Df(x_0) \in \partial^{\uparrow} f(x_0).$$

Phan Nhat Tinh, Dinh The Luc, and Nguyen Xuan Tan

Proof. By Theorem 2, we have

$$\partial^{\uparrow} f(x_0) = \sum_{i=1}^{m} \partial^{\uparrow} f_i(x_0) c_i .$$

By Lemma 6, one has $D_f i(x_0) \in \partial^{\uparrow} f_i(x_0)$, i = 1, 2, ..., m. Hence, $Df(x_0) = \sum_{i=1}^{m} f_i(x_0)c_i \in \partial^{\uparrow} f(x_0)$. The proof is complete.

Now, let $f : \mathbb{R}^n \to \mathbb{R}^m \cup \{\infty^+\}$ be convex. The subdifferential of f at $x \in \text{dom } f$ (see [9]) is defined as the set

$$\partial f(x) := \{ A \in L(\mathbb{R}^n, \mathbb{R}^m) : f(y) - f(x) \succeq A(y - x), \ (\forall y \in \text{dom } f) \}.$$

We shall consider the relation between the subdifferential and the generalized subdifferential of a convex vector function.

Lemma 7. Let $g : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a lower semicontinuous convex function. Then for every $x_0 \in int(\operatorname{dom} g)$, we have

$$\partial g(x_0) = \partial^{\uparrow} g(x_0).$$

Proof. Since g is a scalar convex function, then $Jg(x_0) = \partial g(x_0)$. By Lemma 5, one has $\partial g(x_0) \subseteq \partial^{\uparrow} g(x_0)$.

Conversely, let $A \in \partial^{\uparrow} g(x_0)$ be arbitrary. Since g is Lipschitz near x_0 , there exist $\varepsilon' > 0, k > 0$ such that

$$|g(x) - g(y)| \le k ||x - y||,$$
(26)

for every $x, y \in B_{\varepsilon'}(x_0)$. Let $v \in \mathbb{R}^n$ such that $x_0 + v \in \text{dom } g$ and let $\alpha > 0$ be arbitrary. There exists $\varepsilon_0 \in (0, \frac{\alpha}{4k})$ such that

$$\inf_{\substack{\gamma>0\\ \delta>0\\ \lambda>0\\ t\in(0,\lambda)}} \sup_{\substack{y\in B_{\gamma}(x_{0})\\ u\in B_{s_{0}}(v)}} \inf_{\substack{u\in B_{s_{0}}(v)\\ t\in(0,\lambda)}} \frac{g(y+tu)-g(y)}{t} \ge g^{\uparrow}(x_{0};v) - \frac{\alpha}{4}.$$
(27)

Let $\delta_0 > 0$ be arbitrary. Then there exist $\lambda_0 > 0$, $\gamma_0 > 0$ such that

$$\lambda_0 < \min\{\frac{\varepsilon'}{2(\|v\| + \varepsilon_0)}, 1\}, \ \gamma_0 < \min\{\frac{\varepsilon'}{2}, \frac{\lambda_0 \alpha}{8k}\},$$
$$g(y) \le g(x_0) + \delta_0 \ (\forall y \in B_{\gamma_0}(x_0)).$$
(28)

Obviously,

$$\frac{\sup_{\substack{y \in B_{\gamma_0}(x_0) \\ g(y) \le g(x_0) + \delta_0 \\ t \in (0, \lambda_0)}}{\inf_{\substack{y > 0 \\ y \in B_{\gamma}(x_0) \\ \lambda > 0 \\ g(y) \le g(x_0) + \delta}} \inf_{\substack{u \in B_{\varepsilon_0}(v) \\ u \in B_{\varepsilon_0}(v) \\ u \in B_{\varepsilon_0}(v)}} \frac{g(y + tu) - g(y)}{t}.$$
(29)

Subdifferential Characterization of Quasiconvex and Convex Vector Functions

From the definition of "sup", there exist $y_0 \in B_{\gamma_0}(x_0), t_0 \in (0, \lambda_0)$ such that

$$\inf_{\substack{u \in B_{\varepsilon_0}(v) \\ y \in B_{\gamma_0}(x_0) \\ t \in (0, \lambda_0)}} \frac{g(y_0 + t_0 u) - g(y_0)}{t_0}}{\sup_{\substack{u \in B_{\varepsilon_0}(v) \\ u \in B_{\varepsilon_0}(v) \\ x \in (0, \lambda_0)}} \frac{g(y + t u) - g(y)}{t} - \frac{\alpha}{4}.$$
(30)

Since g is convex, for every $u \in B_{\varepsilon_0}(v)$, we have

$$\frac{g(y_0 + t_0 u) - g(y_0)}{t_0} \le \frac{g(y_0 + \lambda_0 u) - g(y_0)}{\lambda_0}.$$

Hence,

$$\inf_{u \in B_{\epsilon_0}(v)} \frac{g(y_0 + \lambda_0 u) - g(y_0)}{\lambda_0} \ge \inf_{u \in B_{\epsilon_0}(v)} \frac{g(y_0 + t_0 u) - g(y_0)}{t_0}.$$
 (31)

Let $u_0 \in B_{\varepsilon_0}(v)$ be arbitrary. One has

$$\frac{g(y_0 + \lambda_0 u_0) - g(y_0)}{\lambda_0} \ge \inf_{u \in B_{e_0}(v)} \frac{g(y_0 + \lambda_0 u) - g(y_0)}{\lambda_0}.$$
 (32)

From (27) and (29)-(32), we have

$$\frac{g(y_0+\lambda_0 u_0)-g(y_0)}{\lambda_0} \ge g^{\dagger}(x_0;v) - \frac{\alpha}{2} \,.$$

On the other hand, we have

$$\begin{aligned} \left| \frac{g(x_0 + \lambda_0 v) - g(x_0)}{\lambda_0} - \frac{g(y_0 + \lambda_0 u_0) - g(y_0)}{\lambda_0} \right| \\ &\leq \left| \frac{[g(x_0 + \lambda_0 v) - g(y_0 + \lambda_0 u_0)] - [g(x_0) - g(y_0)]}{\lambda_0} \\ &\leq \frac{|g(x_0 + \lambda_0 v) - g(y_0 + \lambda_0 u_0)|}{\lambda_0} + \frac{|g(x_0) - g(y_0)|}{\lambda_0} \\ &\leq \frac{k}{\lambda_0} ||x_0 - y_0 + \lambda_0 (v - u_0)|| + \frac{k}{\lambda_0} ||x_0 - y_0|| \\ &\leq k ||v - u_0|| + \frac{2k}{\lambda_0} ||x_0 - y_0|| < kx_0 + \frac{2k}{\lambda_0} \gamma_0 < \frac{\alpha}{4} + \frac{\alpha}{4} = \frac{\alpha}{2}. \end{aligned}$$

By this and the convexity of g, one has

$$g(x_0 + v) - g(x_0) \ge \frac{g(x_0 + \lambda_0 v) - g(x_0)}{\lambda_0} \ge \frac{g(y_0 + \lambda_0 u_0) - g(y_0)}{\lambda_0} - \frac{\alpha}{2}$$

$$\ge g^{\uparrow}(x_0; v) - \alpha \ge A(v) - \alpha.$$

Since $\alpha > 0$ is arbitrary, $A(v) \le g(x_0 + v) - g(x_0)$. Thus, $A \in \partial g(x_0)$. The proof is complete.

Theorem 5. If a lower semicontinuous function f from \mathbb{R}^n into $\mathbb{R}^m \cup \{\stackrel{+}{\infty}\}$ is convex, then for every $x_0 \in int(\text{dom } f)$, we have

$$\partial f(x_0) = \partial^{\uparrow} f(x_0).$$

106

Proof. Represent f as $f(x) = \sum_{i=1}^{m} f_i(x)c_i$. It is not difficult to see that

$$\partial f(x_0) = \sum_{i=1}^m \partial f_i(x_0) c_i \,.$$

By Lemmas 3 and 7, we have

$$\partial f_i(x_0) = \partial^{\top} f_i(x_0).$$

Then by [9, Theorem 3.1] and Theorem 2 above, we have

$$\partial f(x_0) = \partial^{\uparrow} f_i(x_0).$$

The proof is complete.

4. Subdifferential Characterization of Convex and Quasiconvex Vector Functions

Let F be a set-valued map from a Banach space X into $L(X, \mathbb{R}^m)$. Denote by domF the set $\{x \in X : F(x) \neq 0\}$.

F is said to be monotone if $x, y \in \text{dom}F$, $A \in F(x)$, $B \in F(y)$ imply $(B - A)(y - x) \in C$.

F is said to be quasimonotone if $x, y \in \text{dom}F$, $A \in F(x)$, $B \in F(y)$ and $A(y-x) \in \text{int } C$ imply $B(y-x) \in C$.

Let F_1 , F_2 , ..., F_m be set-valued maps from X to L(X, R). Denote by $\sum_{i=1}^{m} F_i c_i$ the set-valued map from X into $L(X, R^m)$ defined by the rule

$$(\sum_{i=1}^{m} F_i c_i)(x) := \sum_{i=1}^{m} F_i(x) c_i .$$

It is easy to see that dom $\left(\sum_{i=1}^{m} F_i c_i\right) = \bigcap_{i=1}^{m} \text{dom} F_i$.

Lemma 8. Assume that dom $F_1 = \text{dom} F_2 = \cdots = \text{dom} F_m$. Then

- (a) $\sum_{i=1}^{m} F_i c_i$ is quasimonotone if and only if F_i is quasimonotone for every i = 1, 2, ..., m.
- (b) $\sum_{i=1}^{m} F_i c_i$ is monotone if and only if F_i is monotone for every i = 1, 2, ..., m.

Proof. (a) For the "only if" part, let $x, y \in \text{dom}F_i$, $A_i \in F_i(x)$, $B_i \in F_i(y)$, and $A_i(y - x) > 0$. Then $\sum_{i=1}^m A_i c_i \in (\sum_{i=1}^m F_i c_i)(x)$, $\sum_{i=1}^m B_i c_i \in (\sum_{i=1}^m F_i c_i)(y)$ and $(\sum_{i=1}^m B_i c_i)(y - x) = \sum_{i=1}^m A_i(y - x)c_i \in \text{int } C$. Since $\sum_{i=1}^m F_i c_i$ is quasimonotone, $(\sum_{i=1}^m B_i c_i)(y - x) \in C$. Hence, $B_i(y - x) \ge 0$, i = 1, 2, ..., m. Thus, F_i is quasimonotone for every i = 1, 2, ..., m.

For the "if" part, let $x, y \in \text{dom} \sum_{i=1}^{m} F_i c_i, A \in (\sum_{i=1}^{m} F_i c_i)(x), B \in (\sum_{i=1}^{m} F_i c_i)(y)$ and $A(y-x) \in \text{int } C$. Represent A, B as

$$A = \sum_{i=1}^{m} A_i c_i, \text{ for some } A_i \in F_i(x).$$
$$B = \sum_{i=1}^{m} B_i c_i, \text{ for some } B_i \in F_i(y).$$

Then $\sum_{i=1}^{m} A_i(y-x)c_i = (\sum_{i=1}^{m} A_ic_i)(y-x) \in \text{int } C$. Hence, $A_i(y-x) > 0$, i = 1, 2, ..., m. Since F_i is quasimonotone, $B_i(y-x) \ge 0$, i = 1, 2, ..., m. This implies $B(y-x) = \sum_{i=1}^{m} B_i(y-x)c_i \in C$. Thus, $\sum_{i=1}^{m} F_ic_i$ is quasimonotone. (b) The proof is completely similar.

Now, let f be a lower semicontinuous vector function from a Banach space X to $R^m \cup \{\infty^+\}$. Represent f as

$$f(x) = \sum_{i=1}^{m} f_i(x)c_i,$$

for some $f_i \in R \cup \{+\infty\}$.

Theorem 6. Assume that the lower semicontinuous vector function f is continuous on dom f and dom $\partial^{\uparrow} f_1 = \text{dom}\partial^{\uparrow} f_2 = \cdots = \text{dom}\partial^{\uparrow} f_m$. Then (a) f is quasiconvex if and only if $\partial^{\uparrow} f$ is quasimonotone.

(b) f is convex if and only if $\partial^{\uparrow} f$ is monotone.

Proof. Since f is continuous on dom f, by Theorem 2, we have

$$\partial^{\uparrow} f = \sum_{i=1}^{m} \partial^{\uparrow} f_i c_i$$

Mint collect 3. Hill States, G. 1

(a) One has

f is quasiconvex $\Leftrightarrow f_i$ is quasiconvex, i = 1, 2, ..., m, by Lemma 3 above. $\Leftrightarrow \partial^{\uparrow} f_i$ is quasimonotone, i = 1, 2, ..., m, by [6, Theorem 3.2]. $\Leftrightarrow \partial^{\uparrow} f$ is quasimonotone by Lemma 8 above. Phan Nhat Tinh, Dinh The Luc, and Nguyen Xuan Tan

(b) One has

f is convex $\Leftrightarrow f_i$ is convex, i = 1, 2, ..., m, by Lemma 3 above. $\Leftrightarrow \partial^{\uparrow} f_i$ is monotone, i = 1, 2, ..., m, by [6, Theorem 3.2]. $\Leftrightarrow \partial^{\uparrow} f_i$ is monotone, by Lemma 8 above.

The theorem is proved.

Remark. We note that in [11, Theorem 4.2] some sufficient conditions for quasiconvex set-valued maps between Banach spaces were given. However, in some cases [11, Theorem 4.2] is not valid while Theorem 6 above is still applied. For instance, put X = R, m = 2 and $C = R_{+}^{2}$. Define a function $f : R \to R^{2} \cup \{\infty\}$ as follows:

 $f(x) = \begin{cases} (x, -x) & x \in [-1, 0] \\ (x, -2x) & x \in [0, 1] \\ + \\ \infty & \text{otherwise.} \end{cases}$

Denote by f_1 , f_2 the component function of f. Obviously, f is continuous on [-1, 1]. By computing, we obtain

$$\partial^{\uparrow} f_1(x) = \begin{cases} (-\infty, 1] & x = -1 \\ \{1\} & -1 < x < 1 \\ [1, +\infty) & x = 1 \\ \emptyset & \text{otherwise.} \end{cases}$$

 $\partial^{\uparrow} f_2(x) = \begin{cases} (-\infty, 1] & x = -1 \\ \{-1\} & -1 < x < 0 \\ [-2, -1] & x = 0 \\ \{-2\} & 0 < x < 1 \\ [-2, +\infty) & x = 1 \\ \emptyset & \text{otherwise.} \end{cases}$

It is not difficult to see that $\partial^{\uparrow} f_1$ and $\partial^{\uparrow} f_2$ are quasimonotone and so is $\partial^{\uparrow} f$. Hence, by Theorem 6 above, f is quasimonotone.

However, in this case, the sufficient conditions in [11, Theorem 4.2] do not hold.

References

- D. Aussel, J. N. Corvellee, and M. Lassonde, subdifferential characterization of quasiconvexity and convexity, University of Perpignan, 1993 (preprint).
- 2. F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
- R. Correa, A. Jofre, and L. Thibault, Characterization of lower semicontinuous convex function, *Proc. Amer. Math. Soc.* 116 (1992) 67–72.
- E. Ellaia and H. Hassouni, Characterization of nonsmooth functions through their generalized gradients, *Optimization* 22 (1991) 401–416.
- S. Karamardian and S. Schaible, Seven kinds of monotone maps, J. Optim. Theory Appl. 66 (1990) 37–46.

- 6. D. T. Luc, Characterization of quasiconvex functions, Bull. Austr. Math. Soc. 48 (1993) 393-406.
- 7. D. T. Luc, On the maximal monotonicity of subdifferentials, Acta Math. Vietnam. 18 (1993) 99–106.
- D. T. Luc and S. Swaminathan, A characterization of convex function, Nonlinear Anal. Theory, Method Appl. 30 (1993) 697–701.
- 9. D. T. Luc, N. X. Tan, and P. N. Tinh, On convex vector functions, Acta Math. Vietnam, 23(1) (1998).
- 10. J. P. Penot and P. H. Sach, Generalized monotonicity of subdifferentials and generalized convexity, Univesité de Paul et des Pays de l' Adour, Preprint No. 94/16.
- 11. P. H. Sach, Sufficient conditions for generalized convex set-valued maps, *Optimization* 37 (1996) 293–304.
- 12. P. H. Sach and N. D. Yen, Convexity criteria for set-valued maps, Hanoi Institute of Mathematics, 1995 (preprint); *Set-valued Analysis* (to appear).