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Abstract. A new subdifferential of a C-lower semicontinuous vector function / from a Banach
space X into Rm is defined, where C I Rn is a cone generatedby m linearly independent vectors.
Some of its properties are shown. Especially, / is C-quasiconvex (resp. C-convex) if and only if
its subdifferential is C-quasimonotone (resp. C-monotone).

1.. Introduction

The problem of characterizing various classes of functions in terms of their local

approximations has been studied intensively. Some new results are presented in [3-6, 8,

10] where lower semicontinuous convex, quasiconvex or pseudoconvex functions have

been characterized viatheirFrechetderivatives [5], Clarke subdifferentials [3,4,6], upper

and lower Dini derivatives [6, 8] or lower Dini-Hadamard derivatives [10]. Especially

in [11, l2], the authors have shown necessary and sufficient conditions for a set-valued

map F between Banach spaces Xand y to be convex and quasiconvex with respect to a

convex cone C c Y. These conditions are written in terms of the Bouligand and Clarke

derivatives of the map F(.) :: f(.) + C.
The aim of this paper is to characteize C-lower semicontinuous quasiconvex and

convex vector functions from a Banach space X into Ru in terms of their generalized

subdifferentials, where C c R^ is a cone generated by m linearly independent vectors.

The paper is structured as follows. In the next section, we introduce some preliminaries.

In Sec. 3, after introducing the concept of generalized subdifferentials of C-lower

semicontinuous vector functions, we shall prove some of their basic properties. Section 4

is devoted to proving the equivalence between the quasiconvexity (resp. convexity) of

C-lower semicontinuous vector functions and quasimonotonicity (resp. monotonicity)

of their generalized subdifferentials.
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Let C c R^ be a cone generated by m linearly independent vectors cr, c2, ..., cm.

Denote by R the set R U {-oo,*oo} and by R' the set {i d,ici : ai e R, i :
i : L

I,2,..., m). Define on R- a partial order "<" as follows. For every x, y e {,
m m

* : D a i c r ,  ! : L f l i c i ,
t : l  i : l

x  <  y  i f a ;  <  F i ,  i  :  l ,  2 , . . . ,  m .

It is clear that if x, ) € Rn , then

x < y l f f y - x e C .

Denote by pri the projection

o r , t i o , r i e R ^ D c Y ; € R .

Lemma l. Let A be a nonempty subset of R-^ . Then
m

(a)  in fA:  I  in f (pr i (A))c i .

Particularly, if A n R- I A and A is bounded below by an element of R-, then
inf A e Rn.

m
(b) supA: D sup(pr;(A))c; .

Particularly, if A n Rm # 0 and A is bounded above by an element of R^, then
supA e R-.

m
Proof. (a)Let x e A be arbitrary. Represent x as x : 

\otrt,for some c, € R. It
, = I

m

i s  c lear  tha ta" ;  : .  in f (p r i (A) ) ,  i  :1 ,2 , . . . ,  m,Then x  >  |  in f (p r i (A) )c ; .  Hence,
i : 1

m

I inf (pr; (A))c; is a lower bound of A. Now, let a be an arbitrary lower bound of A.
; - l

m

Representauro: Icvrcr,forsomeai € R.Letp; € pri(A)bearbitrary.Thenthereis

anelement . r  e Asuchthat  pr i@):  B; .Sincex I  a , thenFi  > a i .Hence,a;  isa lower
bound of pri(A). Then a; < inf(pr;(,4)). Since this is true for every i : 1,2,...,ff i ,

m m
thena < l inf(pr;(A))c;. Hence, inf A : l inf (pr;(A))ci.

; - t  ; - 1

Finally, assume that An R- + A andA isboundedbelowby anelement b e R*.
Letx e AnRn bearbi t rary.Wehave b < in f  A < x.  Hence, inf (pr ; (A))  e R,
i  : 1 , 2 ,  . . . , m .  T h u s ,  i n f  A  e  R ^ .
(b) The proof is completely similar. t



Subdffirential Characterization of Quasiconvex and Corwex Vector Functions 55

Denote Uy S tne element (+m)cr * (*m)cz + "' + (+oo)c.. Let x' y €{,
m m

" :  I  d i c i , ! : D f l i c i . W e s h a l l w r i t e x  1 1  y i f  a ;  <  F t , i : I , 2 , . . . ,  m .
; - l  i - l

Now let f be a vector function from a Banach space X to R- U 1&). the effect
domain of / is defined as the set

dom/ :: {x e X: "f (-r) << +oo}.

Represent/as 
;! -

f ( x ) : l f , ( * ) r i .  ( 1 )
T : T

It should be noted that dom/ : dom,f, , i : I, 2, ..., 
T.

Asubset  W c R* issaidtobeaneighborhoodof&i f there isapointz € Ru such

t h a t l V  )  z * C . L e t u s d e n o t e b y C t h e s e t { t  q i c i  e { : c Y ;  > 0 ,  i : 1 , 2 , . . . ,  m } '

/ is said to be C-lower semicontinuous at x6'e X if, for every neighborhood IV of

,f(ro), there is aneighborhood V of .16 such thatx e V implies f(x) e W +e. f is

said to be C-lower semicontinuous if it is C-lower semicontinuous at every point of X.

Sometimes we write "lower semicontinuous" instead of "C-lower semicontinuous" if it

is clear which cone is being considered.
It is easy to see that if / is continuous at x6 e dom/, then it is lower semicontinuous

at xO.

Lemma 2. f is lower semicontinuous at xs e X if and only if f i is lower semicontinuous

at xo, for every i : 7, 2, ..., m.

Proof. For the "only if" part, first assume that xs e dom/. Let e > 0 be arbitrary. Set

w :: {y e Rm : ft,ntrol 
- €)ci <} I D(r(xo) *e)c;1.

i : t  j : l

Then W is a neighborhood of /(x6). Hence, there is a neighborhood V ofxo such that
x e V implies /(x) e W + C.Wehave

f(x) e W + C 4 3Y e W, 1c e C : f(x) - Y + c

s  " . .  + . " .
+ L J i lx)c i  > 

l \ I i \xo)  
-  e)c i

i : t  i : l

+  f t @ )  >  f i @ d  -  e ,  i  -  I , 2 , . . . ,  m .

Hence, fr is lower semicontinuous at x6, for every i : I, 2, ...' ffi. 
*

Now, assume that x6 S domf .Let a > 0 be arbitrary. Set IV t: D q * C. Then W
t:L

+
is a neighborhood of &. Hence, there exists a neighborhood V of x6 such that x e V

imp l i es  f  ( x )  eW +e  .Hence ,  f i@)>  a fo reve ry  i : 1 ,2 , . . . ,  m .Then  f r  i s l ower

semicontinuous at xs, for cvery i : I, 2, ,.., m.
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For the "if" part, first we assume that x6 e dom/. Let W be an arbitrary neighborhood
of /(xs). Then there exists e > 0 such that

{y e R-,  i<f ,Ao>-s)ci  < t  : i<f , f*o) *e)c;}  c 142.

Since f, is lower semicontinuous at xg, for every i : I, 2,..., m, we can find a
ne ighbo rhood  V  o f  xs  such tha t  f i@)  >  f i@d  -  e , f o reve ry  x  eV , i : 1 ,2 , . . . ,  m .

m m m

Hence, f(x) : D f,@)ri > I("fi(xo) - e)ci.Since f(f,(xs) - e)c; e I/, then
i : 1

f (x) e W + C. This means that / is lower semicontinuous at x6.
Now, assume that xs f domf . Let W be an arbitrary neighborhood of f (xs).

Then the reex i s t sz  €  R -  such  tha tW )  z *C .Represen t  zasz  -  
f o i r ; , f o ,

some cvi e R. Since f is lower semicontinuous at xg, for every i -'1,t2,..., *,
there exists a neighborhood V of xo such that x e V implies fi@) . cv,, for every

i  :  l ,  2 , . . . ,  m .Hence ,  f ( x )  :  i  f ,@) r , ,  f  o , r , , i . e .  f ( x )  e  W - lC .  Thus ,  /  i s
i : l

lower semicontinuous at 16.
The proof is complete.

We recall some definitions.

/ is said to be convex (or more precisely C-convex) if for every x, ! € X, t e (0, l)
we have

f (tx * (r - t)y) < tf (x) + (l - t)f (y).

/ is said to be quasiconvex (or more precisely C-quasiconvex) if for every x, y e X,
r e (0, 1) we have

f (tx * (1 - /)y) < sup{/(.r), /(y)}.

Lemma 3.
(a) f is coftvex if and only if f; is convex, for every i : l, 2, ..., m.
(b) /rs quasicorwex if and only if fi is quasicorwex, for every i : l, 2, ..., m.

Proof. The proof is immediate from the definitions.

3. Subdifferentials of Lower Semicontinuous Vector Functions

Let C c Rm be a cone generated by some linearly independent vectors c1, c2,..., cm

and, f alower semicontinuous vector function from a Banach space X into Rru U t&t.
The generalized subderivative of / at x e domf in the direction u e X is defined by

fr (x;,),: 
::B ilr. ,.?"0u, ,.11j,,,

! -9  I ty t . I t r l+ar(o)-c >u 
r€(0,1")

Let us represent / as (1).

f (v-r  tu)  -  f (v)
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Theorem l. For every x e dom/, u e X, we have

m

f I  ( r ;  u)  3D f  t I  Q;  u)c ;  .
'  

i : l

If, in addition, f is continuous at x, then the equality holds'

Proof. Froml-emma 1, we have

57

f i 1 + t u ) - f i 9 )
c i ,

Let e > 0 be arbitrary. For every i : l, 2, ..., rn,we shall prove that

inf suD inf t -t tu) - fi9)
Y,O yeB"^ ix )  ueB, (D l  t

f  
> ! ; t y re / (x l+86(0) -c

 >u l€(o,r)

< inf sup i4f
Y'0 Yeai{xl ueB'(u')
6=9 r rv l ' r ( ' )+alru - -r<O 

fl

Indeed, let y > 0, 5 > 0, I > 0, then the set

f i 1 * t u ) - f i 9 )

W : :  { z : l o i r i  e  R -  :  l " ; l  .  6 }
t : 1

is a neighborhood of 0. Then there exists 61 > 0 such that 85, (0) c W. Hence,

{y e x :  y e By(x),  f (y) e f(x) +85,(0) -  C}

c {y e X : y e Br(x), fi}) < fi@) + 31.

This implies

suP inf
Yeni*1 ueB'(u)

f (v)e f (x)+Bq(o)-c
r€(0, i )

f i 9 + t u ) - f i 5 )

ven)v l  4€B ' (u )

f i0)< ft@)-tt
r€(0,),)

(2)

fi0 -t tu) - fi9)
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Then we obtain (2). From (2) one has

f r  ( r ;  r )  - i  f , r  { r ; t r i  .
i : l

Now, assume that / is continuous at x. For every e > 0, i : I, 2, ..., m, we shall prove
that

inf sup inf
Y>O YeA ,G)  ueB" (u \

9'9 -ro).,r(')+Bd(o)-c^>o " 
t€(o,r)

: inf^ sup itrt. (3)
Y > u  Y € B " ( x )  u e b E \ v )

! 'o^ f,ol=I,tr)+tA>u 
,€(o,r)

Let y > 0, 6 > 0, l. > 0. Since f(x) + B5(0) is a neighborhood of /(x), then
we can find a positive number lzr with n < y such that ! € Bvr(.r) n dom/ implies
f (v) e f (x) + 85(0). Hence,

ly e X i y e By(x), f(y) e f(x) +Bo(0) - Cl ) By, (x) o dom/
> {y e X :  y e Br,(x),  f i } )  = f i@) + 3}.

This implies

sup inf
yeaitxl  ueBe\Dl

f (Y)ef (x)+Ba(o)-c
r € (0,1)

Yen,G;  ueB, (u)

, ( ,srG)+d

Then we obtain (3). From (3) one has

f I  (*;,) >i f , '{*, r),,  .
; - 1

The proof is complete. r

Let f : X --> Rm U {&} be a C-lower semicontinuous function. The generalized
subdifferential of f atx e X is defined by

^+  ̂ .  I  tA  e  L (X .  R \ :  A (u )  <  f I  ( x ;  r ) ,  Vx  e  X ) ,  x  e  dom /Er  f  ( -x)  : :  {
l A ,  x ( . d o m f ,

where Z(X, Ru ) denotes the space of continuous linear maps from X into R-.
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m

Let Ar, A2, ..., A* e L(X, R). Denote by I Aici the linear map from X into R^

defined by the rule
m m

(DA;ci)(.r) ' : t A;@)ci .
i = l  i : l

Let Ar,  Az, . . . ,  Am c L(x, R).
m

Denote by I Aici the subset of L(X, Ru ) defined by the rule
; - l

m m

l A i t i  ' :  { I  A i c i  i  A i  e  A i  ( i  : 1 , 2 ,  " ' ,  m ) } '
i - l  ; - l

Theorem 2. For every x e dom/, we have

m

aI  f  @) c lar  f i@)c i .
r : l

In addition, if f is continuous at x, then the equality holds,

m

Proof. Let A e AI f @) be arbitrary. Represent A as A = .D.Atr,, for some
l : L

Ai e L(X, R). From definitions and by Theorem 1, we have

f  a;1r; . ;  .  f I  (* ; r )  :  I  f )  (x;u)ci ,
i : 1  i : I

for every u e X. Then Ai(u) . f,I(*;u). Hence, A; e aI7i1x1. Thus, A e
m

| 0I 7;1x)ci.
i : I

Now,assumethat/iscontinuousatl. LetAi e AI fi@)bearbitrary.Fromdefinitions
and by Theorem 1, we have

m m

Ie,(r) t ,  = f  ,4t t t ;  u)c i  -  f r (x:u) '
t : l  i : l

for every u e X.Hence, L o,r, e aI f @)'The theorem is proved. I
i : l

Now, we shall consider the relation between the generalized Jacobian and the

generalized subdifferential of a lower semicontinuous vector function / from Rn to

R^ .
Letxs e int (dom /). Assume that / is Lipschitznear xs. By Radermacher's theorem,

/ is differentiable almost everywhere. The generalized Jacobian J f (xd of / at x6 in the

Clarke's sense [2] is defined as the convex hull of all (m x n ) matrices obtained as the

limitof asequenceof theform (Df (x))i,where (x;); convergestox6 andtheclassical

Jacobian matrix Df (x) of f atrr exists'
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Lemma 4. For every x e dom/, AI f @) is corwex.

Proof. T}lris is immediate by definition. r

Lemma 5. Let g i R' -+ R U {+aI be a lower semicontinuous function. If g is
Lipschitznear xo e int(domg), then

Jg(xd c 01s(x6).

Proof. Let A be the limit of a sequence of the form (DS@))i,where (x;); converges to
rs and the classical Jacobian matrix Dg(xi) of g at -rr exists. Since g is Lipschitz near
xs, there exists e/ > 0, ft > 0 such that for every r, y e Br,(xg), one has

l s@) -s (y ) l  <k l l x - y l l .

Let u e Rn and o > 0 be arbitrary. Set e6 :: ft. From the definition we have

s 0 + t u 1 - s O )< gr (xo; u). (s)

By the definition of "inf", there exist yt > 0,61 > 0, lr > 0 such that

c O + t u ) - g ( y )

(4)

sup inf
yeBr r { xs l  ueB€00 ) )

g(v)<g(xo)+6t
r€(0, .1r  )

< inf suD inf-  
y-O yeBr^1rs\  ueB,ofu\

f ]l s(rrssrror+a
r€(0,I)

xs and g is continuous at.r0, there exists N > 0 such that

i  > N +  x ; € B y , ( - r o ) O B r @ d ,  g @ i )  S g ( x o ) + 6 r .  e )

> N, since Dg(x;)(u): 1- €(tLJ J'):-€("'), 
there exists /i € (0,1r)

rJO t

s 0 * t u 1 - s 0 )
(6)

q
- T  

6 .

Since x; -+

For every I

such that

t ,= z,t i+ro), Dg(x;)(u) .93@*Z
It is clear that

(8)

inf
ueB"o(u) yeBy l ( r i l  zeBro(u)

g(v )<s( to )+6r

t€ (0 , . i . r )

8 @ i * t ; u ) - g ( x ; ) & ( Y * t u ) - g ( y ) (e)
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for every i > N. From the definition of "inf", there exists

u; e B6o(v) (10)

such that
g(x i  *  t iu)  -  g@i)  

< in f  
g@i *  hu)  -  g(x i )  

* !  .  (11)
t' "eE"ofD 

ti 6

From (5), (6), (9) and (11), for every i > N, we have

g ( x i * t i u i ) - g ( x i ) _ . g t ( " 0 ;  
O + I .  G z )

t t )

From (4), (7), (8) and (10), we have

ti ti

From (8), (12) and (13), we have

Dg(x)(v) . 81(ro; u) * a.

As i -+ m, one has
A(u) < gt (ro; u) I a'

Since cv > 0 is arbitrary 
A(u) < g1(x6; u).

Hence A e 0tg(.r6). By Lemma 4, we obtain

Js@d c 01s(x6)'

The proof is complete. r

Theorem 3. Ifalowersemicontinuousvectorfunction f : R" --> R*U{&1 fsfipschitz

near xo e int(domf ), then
Jf (xd c 3tl(xo).

Proof. Since / is Lipschitz near.f,6, by Theorem 2, we have

^+  " .  ,  3^ , ,ot.f ("0) : \oT f ibi la .

By Lemma 5 above and by [2, Proposition2.6.2], one has

Jf (xil gitf,t 'olr, si l i  f;(xs)ci: at/(x6).
i : l  i : l

The proof is complete. r

It should be noted that the inclusion of Theorem 3 is strict in general. For instance,

consider the function f : x e R -+ (lxl, lxl) e R2, where R2 is ordered by the

nonnegat iveor thant .Then l f  (O):  t ( -1,  -1) ,  (1,  1) land0t / (0) :  [ -1,1]x[ -1,  1] .
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Lemma 6, Let g be a lower semicontinuous function from a Banach space x into
R u {*oo}. If g is differentiable at xo e int(domg), then Dg(xs) e 0tg(-16).

Proof. Letu e X. Forevery € > 9,y > 0,6 > 0, I > 0, wehave

: .r g(xo + tu) - g(xs) _ cO + tu) - sO)sup qlr
1616-tr1 reB,(u) t  

-  
yeBr^(xf i  ueE,fu) t

8O)ssGo)+d

Hence.
g(xo * tu) - g(xs) +sup rnf sup lnl < gr(xo; u).

e>0 I>U te (O) i  ue6t@)

Let a > 0 be arbitrary. since Dg(xd is continuous at 0, for , t= ! > 0, there exists
,r > 0 such that for every w € X, one has 

6

(r4)

(1s)

u+0  l l u
s ' > 0 s u c h t h a t

l lut l l  < s + lDg(xo)@)l < r .

l l u r l l  <  s ' * ls@o * w) - s@O - Dg(ro)(u)l
< r '

It is clear that

inf sup inf 
g(xo * tu) - g(xs)

lt0 retgllt ueB,(u)

=::E i3f ,jffi, ,.'f,f,,, t
From the definition of "inf', there exists l.r > 0 such that

sup 61 4t91/'l: s(to)
re(QJ.r) ueB"(u) t

< inf sup inf 
g@o -t tu) - g(xd 

*! .
f tO  re t6 , l )  ueB , (u )  t  4

Let /6 € (0, f r) such rhar 1o = J-. Th"n
l lu l l  +  s '

inf 
g@o I tou) - gQil 

< suD inf 
g1o -f tu) - g(xo)

ueB"(u) tg 
- 

re(0i,) ueB"(u) t

From the definition of "inf", there exists us e B,(u) such that

l l u l l
(16)

(r7)

(  18)

(1e)

g(xo * /oao) - g(xo) 
. inf 

g@o -t tou) - g(xd 
+ !

tg 
- 

ueB,tu\ tg 4
(20)
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From (14), (17)-(20), we have

g ( ; o + t o u d - g @ o )t oao ) -g (xo )  ,  t ,  ,  cv
< g ' ( r 0 ;  u ) + ;-. (2r)

2

Put B :: ffi. for every t € (0, p), since llrull < s', then by (16), one has

lg(xo + tu) - s(xd - Ds@d(tu)l ,
llrull 

"' ""---:: 
"" 

(22)

Since 16llz6ll < s',

lg(xo + touo) - c(ro) - Dg(xs)(tsus)l
< r'. (23)

l l lozo l l

Since zs e Br(u), by (15), one has

lDg( . rs ) (u  -uOl  < r .

Frcm (22)-(24), for every / € (0, p), we have

s  i l u i l |  |

f lDs(xs)(u - ro)l + l laoll | |
.  l lu l l r '  + r  + l luol l r ' :  l l r l lu. l#+ s) + [  + l laol l  . ; .  

es\

From (21) and (25), we have

p 6 o * t u ) - p ( x o )6\4v '  'w. ,  o .*Y1 
S gt(xo:  u)  *  a.

Dg(xs)(u)  < gT(xo;  u)  *  ot .

since a > 0 is arbitrary' 
Ds.,o)@)< gt(ro; u).

Hence, Dg(xd e 8tg(xs). The proof is complete. r

Theorem 4. If a lower semicontinuous vector function f from a Banach space X into

R'U {&} is dffirentiable at xg e int(domf), then

(24)

Taking r { 0, we obtain

Df (xd e 0I f (xs).
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Proof. By Theorem 2,wehave

or f (*d:iar y,1*dr,.
,  i : I

By Lemma 6, one has Dli(x6) € atr'(xg), i : 1,2,..., ff i . Hence, Df (xs) :
m

D f,@dr, e aI f @O. The proof is complete. I
i : I

Now, let f : R" --> Rmut&)Ueconvex.Thesubdifferentialof f atx e dom/(see

[9]) is defined as the set

| f ( x ) : : { A e L ( R " , R ^ ) :  f ( y ) -  f ( x ) >  A ( y -  x ) ,  ( V y  e  d o m / ) } .

We shall consider the relation between the subdifferential and the generalized subdiffer-
ential of a convex vector function.

Lemma 7. Let g : Rn --> R U {*m} be alower semicontinuous convexfunction. Then

for every xs e int(domg), we have

0g(ro) : 018(xo)'

Proof. Since g is a scalar convex function, then ,Ig(xo) = 8g(xo).By Lemma 5, one
has 0g(.ro) c 31g(xo).

Conversely, let A e Otg(ro) be arbitrary. Since g is Lipschitz near r0, there exist
8 ' ) 0 , k > 0 s u c h t h a t

ls(x) - s0)l < ft l lx - yl l ,  (26)

forevery.r, y eBr,(xs).Letu e Rnsuchthatxo*u e domgandletcv > 0bearbitrary.
. d ,

There exists so € (0. |) such that'  +k '

Let 66 > 0 be arbitrary. Then there exist ).6 > O, yo > 0 such that

g(y) < g(xo) * 6o (vv € Byo@d). (28)

Obviously,

suD inf sO -f tu) - sO)

Ye Bri'r6) ueB'o()) t

8O)-'8(to)+60

> inf sup inf 
gO -f tu) - sO) . Qg)

Ytj  yeBr ixol  ueB,o@) t

9'9 s(v).e("ol+a >u 
r€(0, .1)
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From the definition of "sup", there exist ys e Byr(xd, /s e (0, 16) such that

inf 8Oo * tou) - 51"1
ueB"o@) tg

,. i i i ' . , u'e.it ' t t 4'
8())s8(ro)+do

t€(0,r.0)

Since g is convex, for every u e Bro(u), we have

SOo -f tou) - gjd 
. 8()o I )'ou) - S(Yo)

ts .l,s

Hence,

Let us e Bro (u) be arbitrary. One has

),9 
- 

ueB"o@) i.6

From (27) nd (29)-(32), we have

On the other hand, we have

I
. l- l

lg(ro + lou) - sOo * loao)l - [s(xo) - s(yo)]

ho

< ftl lu - uoll +zlllxo - yoll . k*o +'!ro .. i * i : i
, . , o ^ o + + 2

By this and the convexity of g, one has

s(xo *u) - g(xo) ' gqd*@ , soo-r LolQ - sod - u

> 8 1 ( r o ;  u ) - d >  A ( u ) - q .

Since a > 0 is arbitrary, A(v) < g(ro + u) - g(xo). Thus, A e 0g(xo). The proof is

(32)

complete.
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Theorem 5. If alower semicontinuousfunction f from Rn into R'U {&} is convex,
thenfor every xo e int(dom f), we have

0f (xd: at l (ro).

Proof. Represent / as f (x) : i f,@)",.It is not difficult to see that
i : l

m

0f (xd :  )  , } f ; (xg)c ; .
T : L

By Lemmas 3 and7, we have

\ f i@d:  ar  f t@d.

Then by [9, Theorem 3.1] and Theorem 2 above, we have

0 f  ( xd :01  f i@d .

The proof is complete.

4. Subdifferential Characterization of Convex and Quasiconvex Vector Functions

Let F be a set-valued map from a Banach space X into L(X, Ru ). Denote by domF the
s e t { x e X : F ( x ) # 0 1 ,

F is said to be monotone if x, ! € domF, A e F(x), B e F(y) imply
( B - A ) ( y - x ) e C .

F is said to be quasimonotone if x, y e domF, A e F(x), B e F(y) and
A(y - x) e int C imply B(y - x) e C.

Let F1, F2,..., F^ be set-valued maps from X to L(X,R). Denote ay i fici ne
i : I

set-valued map from X into L(X, R') defined by the rule

m m

{f r,r;){") :: I Fi@)ci .
i : l  i : l

1 l l 1 \ m

It is easy to see that dom( | Fici) : fl domfi.
r : I  I : I

Lemma 8. Assume that dom Ft : domFz: . ' . : domF^. Then
m

(a) I Fic; is quasimonotone if and only if F; is quasimonotone for every i :
i : I
1 , 2 , . . . ,  m .
m

(b) t F;c; is monotone if and only if Fi is monotone for every i : I, 2, ..., m.
i : 1



Subdffirential Characterization of Quasiconvex and Corwex Vector Functions 67

Proof. (a) For the "only if' part, let x, y e domF;, A; e Fi@), Bi e Fi$),
m m n l m

and A;(y - x)
i : l  i : l  i : l  i : r

m m m
and (D Bic)(t - x) = LA,(y - x)ci e intC. Since I Frci is quasimonotone,

t : l  i : 1  i : l
m

(I B;c;)(y-r) e C. Hence, Bi(y-x) > 0, i : l, 2, .'., lzr. Thus, fi isquasimonotone

for every i : l, 2, ..., m.
m m m

For the "if" part,let x, y € dom D F,r,, A € (t Fic)(x), B € (I F;c;)(y) and
i : L  i : l  i : l

A(y -;) e intC. Represent A, B as

m
. \ -

A: LAiq. for some A; e Fi(x).
i : l
m

B : I B;c;, for some Bi e Fi(i.

m m
Then I  Ai j  -  x)c i  -  (DAic i )Q -  x)  e in tC.  Hence,  Ai j  - r )  > 0,  i  :

r - 1  i - l

I ,2 , . . . ,  ru .  Since f i  is  quasimonotone,  Bi j  - .x)  > 0,  i  :1 ,2, . . . ,  m.  This impl ies
m m

B(y - x) : D BiO - x)c; e C. Thus, D F,r, is quasimonotone.
i : l  i = l

(b) The proof is completely similar. r

Now, let f be a lower semicontinuous vector function from a Banach space X to
+

R' U {oo}. Represent / as
m

\ - ^
f  (x )  =  l f i@)c i ,

I = I

f o r s o m e  f i e R U { * m } .

Theorem 6. Assurne that the lower semicontinuous vector function f is continuous on

domf anddom0tfi - domlI fz: " ' : dom1I f-. Then
(a) f is quasiconvex if and only if Ar f is quasimonotone.
(b) / ts cotvex if and only if AI f is monotona

Proof. Since / is continuous on dom/, by Theorem 2, we have

m
^ f  ^  S r ^ t0 T  f  :  L 0 ' f , r , .

i = l

(a) One has

/ is quasiconvex # fi is quasiconvex, i : l, 2, ..., ffi, by Lemma 3 above.

+ 0I fi is quasimonotone, i : l, 2, ..., m,by f6, Theorem 3.21.

+ AI f is quasimonotone by Lemma 8 above.
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(b) One has

/ is convex <+ f, is convex, i : l, 2, ..., m,b! Lemma 3 above.
+ AI f i is monotone, i : l , 2, ..., m,by [6, Theorem 3.2].
o 0I f, is monotone, by Lemma 8 above.

The theorem is proved. I

Remark. We note that in [11, Theorem 4.2] some sufficient conditions for quasiconvex
set-valued maps between Banach spaces were given. However, in some cases [11,
Theorem 4.21 is not valid while Theorem 6 above is still applied. For instance, put

X  =  R ,  m :2andC:R f .De f i nea func t i on  f  :  R - ->  n2u1& l  as fo l l ows :

[  (x ,  -x)  . r  €  [ -1,  0]
I

f  (x ) :  |  
(x ,  -2x)  r  €  [0 ,  l l

t e otherwise.

Denote by ft, fz the component function of /. Obviously, / is continuous on [-1, 1].
By computing, we obtain

oT fi1x1:

( - o o ,  l ]  x : - l

{ U  - 1  < x < 1

[ 1 ,  + o o )  x = L

A otherwise.

aI 721x1 :

( - m ,  1 l  x = - l

{ - 1 }  - l < x < 0

l -2 ,  - I l  x  :0

{ - 2 }  0 < x < 1

[ - 2 , * a )  x = r

0 otherwise.

It is not difficult to see that 611 and Dr f2 arc quasimonotone and so is 3t_f . Hence, by
Theorem 6 above, / is quasimonotone.

However, in this case, the sufficient conditions in [11, Theorem 4.2] do not hold.
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