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Abstract. In this paper, our main purpose is to give an exposition of the geometric aspects of
joint work with Michael Harris [5, l6]. They contain new results on the cohomology of the
boundary of a locally symmetric variety.

By dednition, a locally symmetric variety, denoted throughout by X, is a complex
algebraic variety given analytically as the quotient of an Hermitian symmetric
space by an arithmetically defined group of isometries. These matters are recalled
in (1.1). Some examples are presented in (1.2). They admit easy, overly explicit
calculations. While such examples can be of great help, the reader is cautioned to
beware of oversimplifying the general theory. The role of parabolic subgroups in
defining compactifications of X is treated in (1.3). Indeed, the choice of compac-
tiflcation defines the very notion of "boundary" mentioned in the title of this paper.
Two such compactifications, both quite different in character, are the Borel-Serre
compactification X from [7], which is a manifold-with-corners whose definition
does not require the Hermitian structure, and the toroidal compactifications *2
from [1], some of which are smooth projective varieties, though they are not can-
onically defined. The two do have a well-known common quotient, namely the
Baily-Borel Satake compactification X* from [2], which is a normal projective
variety with "explicit" stratification.

The results in Sec. 2 are independent of Hermitian structure and, as one might
correctly infer, are about X. In (2.1), we recall how differential forms on X are
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describable in terms of Lie-theoretical objects. We then present in (2.2) and (2.3)
known results on the cohomology of the Borel-Serre boundary, which are already
treated inl27l.

In Sec. 3, we discuss the new material. The first theme is the attainment of
complex-analytic versions of the results in (2.2). We discuss, in (3.1), real quotients

of torus embeddings. This facilitates a nice formulation in (3.2.12) of the analogue
of (2.2.3), which makes use of equivariant cohomology. After that, we focus on
Hodge-theoretic questions on the boundary cohomology. It is natural to mean
here the boundary of X in X2. However, it turns out, somewhat surprisingly, that
it can as well be in X (see (3.4.2)). Thus, it makes sense to talk about the mixed
Hodge structures on the cohomology of (deleted neighborhoods of) the closed
faces of the boundary in X,l and these mixed Hodge structures can be identified
(3.5.5). These groups comprise the -E1-term of the nerve spectral sequence, abut-
ting to the cohomology of the Borel-Serre boundary. We see that (3.5.5) can be
used in eliminating the possibility of so-called ghost classes (see (3.3.4) for the
definition) in the cohomology of the boundary. This is worked out in the case of
Siegel modular 3-folds (as mentioned in [6: (5.7)], though we now employ

[6: (5.6)] instead of [20]) in Appendix A. We have included another appendix (B),

with the aim of demystifying the rather fundamental Cayley transform, which lies
behind much of the aforementioned work. Finally, we have added a third appen-
dix concerning the structure of equal-rank groups, i.e., those admitting a compact
Cartan subgroup.

1. Preliminaries

(l.l) Locally Symmetic Varieties. Let G be an algebraic group defined over the
rational field Q. For any extension E of Q, G(E) denotes the group of E-valued
points of G.

There is no canonical notion of G(Z) however, but one does have the follow-
ing. For any almost-faithful representation p : G ---+ GL" defined over Q, put

G(Z)e :  p- t  (GL,(Z)) .

One checks that for another such representation p' of G, l': G(Z)p, and
f : G(Z)" are commensurable, i.e. f'n f is of finite index in both f and f'. One

' says, mor6 generally, that a group f c G(Q) is an arithmelic subgroup of G(Q) if
f is commensurable with any, hence all, G(Z) 

".It is well known that any arithmetic group f contains a normal subgroup of
finite index (hence arithmetic) containing no non-trivial elements of finite order.
Indeed, the following stronger assertion holds: f contains neat normal subgroups
f I of finite index, i.e., ones for which

l i , / r , : '  ( f t  o H1(Q))/( f '  ̂  11r(Q)) ( 1 . 1 . 1 )

l Said mixed Hodge structures can be deduced from considerations on X* (see (3.3.12)).
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is torsion-free (and arithmetic) whenever H2 c. H1 is a pair of algebraic e-
subgroups of G (see [4: Sec. 17]).

Let 9 be a space of type S-Q for G, as defined inlT:2.31. For instance, if G is
semi-simple, I mtst be the symmetric space of non-compact type associated to
G(R) (with the Lie group topology). If f is arithmetic, it is a discrete group acting
(on the left) on 9, and the quotient Y:f\9 is Hausdorff. If f is also torsion-
free, the quotient is a real-analytic manifold; since a space of type S-Q is homeo-
morphic to a Euclidean space (see [7:2.4]), a fortiori is contractible, IZ is then an
Eilenberg-Maclane space K(f , I ).

We suppose henceforth Ihat G is semi-simple and let D be the associated sym-
metric space. Then G(R) acts transitively on D, with maximal compact isotropy
subgroups. Thus, there exist G(R)-invariant Riemannian metrics on D (ess. unique
if G is irreducible over R). If f is torsion-free arithmetic, then X :: f \D, with the
metric induced from D, is a complete manifold of finite volume.

One says that D (likewise X and G) is Hermitian if D admits a G(R)-invariant
complex structure. The underlying almost-complex structure, determined by the
Lie algebra of the isotropy groups, is automatically integrable and Kiihlerian.
Actually, one can say much more about X:

(1.1.2) Theorem. [2] When X is Hermitian, it is a quasi-projectiue uariety ouer C.

Indeed, X can be embedded in complex projective space by a suitable space of
holomorphic automorphic forms, and its closure is a normal projective variety x*,
which one refers to as the Baily-Borel satake compactffication of x (the underlying
topological space of X* is a Satake compactification in the sense of [30]). In view
of the above theorem, one calls X a locally symmetric uariety. The locally sym-
metric varieties are of significance in number theory as the underlying complex
spaces of shimura uarieties, which can be shown to be varieties defined over
number fields (see [22]).

An important notion is the E-rank of G, denoted by r: rknG. It is the
dimension of a maximal E-split torus T of G, i.e., a subgroup Z with f(E) =
(E")'. For E: C, one recovers the notion of a Cartan subgroup of G(C); for
general E, it displays many of the features of a Cartan subgroup. All maximal E-
split tori are conjugate under G(E), which gives rise to the E-root system of G
[8:4,5]. One can describe X* asa stratified space in terms of the Q-root system of
G, but we postpone treatment of this till later.

(1.2) Examples. (a) SZ2. Consider

( t .2 . r )

A model for the symmetric space for SZz is the upper half-plane H c C, on which
.SZ2(R) acts as Mobius transformations; the invariant metric can be taken to be
the Poincar6 metric ilsz : y-2(dx2 + dy2).If f c SZz(Q) is arithmetic, one calls
X:f \ f /  amodularcurue.
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The method for compactifying X was understood a hundred years ago. We first
describe briefly how a point is adjoined to X corresponding to oo on the Riemann
sphere. Let P denote the subgroup of SZ2 given by the upper-triangular matrices
l n  A  \
( ; ^i1 | . This is a Q-parabolic subgroup of SL2, with Langlands decomposition
\ "  

q  
/

P: UpMpAp, ( r .2.2)

where [/p is the unipotent rqdical defined here by a : l; Ap is the split component
defined here by a > 0 and b :0,2 and Mp (the Levi factor complementary to Ap,
for a basepoint on the y-axis) is just {+l} here.

One writes lr for f nP, etc. (cf. (1.1.1)). Then lp:1u,, a discrete group of
x-translations. The main ingredient is rather easy in this example, and goes under
the name reduction theory:

(1.2.3) Proposition. Letl be an arithmetic subgroup of SL2(Q). Then there exists
L> 0 such that  i f  Imzl  )  L ,  Imz2> L,  and zz:  y-21 for  some y e l ,  thenl  e lp.

(1.2.4) Corollary. If f and L are as aboue, the natural surjection of the punctured
unit disc L* onto X:

a- 4 ryqrr-----+ r\r1 : x
i s  i n j ec t i ue  on  { t eA . :  l r l  <e ( i L ) } ,  he re  e (z ) :L - t ( z ) : exp (2 f t i z lm) ,  whe re
b : m ) 0 giues a generator of lur.

Thus, one can "fill in" the origin (l: 0). Every proper Q-parabolic subgroup
of SLz is an SZ2(Q) conjugate of P above. One compactifies X by adjoining one
point for each f-conjugacy class of Q-parabolic subgroups, and these are canoni-
cally parametrized by the finite set f \SZ2(Q)/P(Q). One thereby obtains X*,
which is smooth in this case.
(b) The Hilbert modular groups. Let E be a totally-real number field and put
n : lE: Q]. We will recall the definition of G : RB7qSZ2. A fundamental prop-
erty of G: RrlqSZ2 is that G(Q) = Sr2(E) and G(R) = SZz(R)', with the
inclusion G(Q)* G(R) induced by using all n embeddings of E into R. When
n : l, this reverts to (a) above. It is an algebraic group over Q, with rkq(G) : I
'and rka(G) : n. The image of l(Q) in l(R)' defines a maximal Q-split torus
of G. The C- and R-root systems coincide, and are isomorphic to nA1, while the
Q-root system is simply l1; restriction3 is given naturally.

One can describe G : RnleSL2 explicitly. For the sake of simplicity, we restrict
ourselves to the case n : 2, so p : Q(/N) for some square-free natural number N.
Now, decompose a,b,c,d eE into rational and irrational parts: a: qt + a"t/N
(a',e" e Q), etc. The equation defining SI2 (see (1.2.1)) is equivalent to a pair of

2 Ap is, in fact, the connected component of a maximal Q-split torus, thus, r : 1.
3 For the general notion of restriction, see [8: 6], and also [2:2.6].
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equations in a' , a" , . . ., yiz.

a'd' - b'c' r N(a"d" - b"c") - | a'd" - b'c" +a"d' -b"c' :0.

These are the defining equations of R67qSZ2 over Q.
We return to the general case (i.e., n arbitrary). The symmetric space D being

determined by G(R) is clearly H". An example of an arithmetic group f coming
from G is not SL2(Z)', but rather SZ2(O), where O denotes the ring of integers in
E. Thus, for any ideal -& c O, the congruence subgroup

f(i l) : {s e SL2(O) : s = I (mod.il)}

is likewise arithmetic and is torsion-free If .il is sufficiently small. One calls
X : f \D a Hilbert modular uariety of dimension n.

One has the Q-parabolic subgroup P : RalqP of G. In this example, reduc-
tion theory takes the following form:

(1.2.5) Proposition. Let I be an arithmetic subgroup of SLz(E). Then there exists
L > 0  s u c h  t h a t  i f  z i : Q 1 , . . . , 2 j , ) e H n ,  f l t . o . , I m z i k >  L  f o r  j : 1 , 2  a n d
22 : y . z1 for some y e l, then y ef p.

We state now without explanation that the Baily-Borel Satake compactifica-
tion X* is obtained once again by adjoining to X a finite number of points, in one-
to-one correspondence with f \SZ2(E)/P(E), and these are singular points of X*
whenever n > l.

(c) Spz,.This is the group of 2rx 2r symplectic matrices, which provides the
simplest example of an irreducible group of Q-rank r. It is a second generalization
of (a), as Spz : SLz. The locally symmetric varieties X associated to Sp2, are the
moduli spaces of abelian varieties of dimension r with level structure. For a
detailed treatment of this example, we refer the reader to [24].

(1.3) The role of Q-parabolic subgroups. For any compactification .t of X, one
puts df : X - X and calls the latter the boundary of X in,:i. tne interesting
compactifications of X have boundaries that can be described in terms of the Q-
parabolic subgroups (as in [8:Sec. 4]) of G. The ones we have in mind in the title
of this paper are X* (from l.l), X (the Borel-Serre compactffication l7l, a mani-
fold-with-corners, to be described below), and X2 fthe toroidal compactifica-
tion fll, a non-singular projective variety, also to be described below, depending
on a suitable combinatorial parameter X). These are related by the diagram

( 1 . 3 . 1 )

X*

in which / is continuous (by [30]; see also [32]) and g is regular (from the con-
struction of X).It is quite rare (for G of real rank I or when X is already com-
pact) that one has a mapping from 7 to & (extending the identity mapping of X);
otherwise, there is no mapping of compactifications from either one to the other
(see [16: (1.5)] and [34: Sec. 8]).

X X y
f s
\ " /



284 Steuen Zucker

(a) Rough description of X. For any space g of type S-Q for G (terminology and
notation as in (l.l)), and neat arithmetic subgroup l, Y: f\9 admits a com-
pactification Y that is a manifold-with-corners. Actually, one first attaches a
boundary to 9,yielding a manifold-with-corners g, equivariantly for the action of
G(Q), and then puts y : f \9; to see that 7 is a manifold-with-corners, one uses
the neatness of f and reduction theory.

The codimension-one faces of I are naturally parametrized by the set g(G)^

of maximal Q-parabolic subgroups of G, which is composed of r: rkqG G-
conjugacy classes. For P e 9(G)^^^, P(R) acts transitively on g and the corre-
sponding open face e(P) of I is canonically isomorphic to g lAp, where .4p is as
in the Langlands decomposition (1.2.2) (actually defined for any Q-parabolic
subgroup) and is one-dimensional. Then in I, the open face corresponding to P is
e'(P) = lr\e(P), and P must be taken modulo f-conjugacy. Since e(P) is of type
S-Q for P (which has Q-rank r - l), one can also attach a boundary with corners
to it, yielding e(P), which is in fact homeomorphic, in the sense of compactifica-
tions of e(P) (see [6:(l. l)]), to the closure of e(P) in g.a One has similarly
et(P) = lr \"(p). Thus, the boundary is easiest to describe when r : I . Of course,
to obtain X, one starts with I : D in the above.

We should say something about how the space e(P) is adjoined to D. It is
placed as the set of limit points of lp(R)-orbits in D for an action of lp(R) on D,
not the standard one (given by restriction of the homogeneous action of G(R)),
but rather the geodesic action l7: Sec. 31. [n the case of P c SL2 Q.2(a)), it is easy
to give the two actions explicitly: the standard action of ,4p(R) is given by
z: x * iyr--azz: a2x I iazy; the geodesic action is z : x I iyr--+ x + iazy. The
latter produces a line at infinity, which arises by letting a --+ cn (parametrized by
x), and therefore, a circle at infinity in the arithmetic quotient. There are finitely
many such circles in X, and by collapsing each of them to a point, one obtains X*.
The construction of the mapping X ---+ Xi in general is carried out in [30] (see also

132)).
The face e'(P) can be viewed as an arithmetic quotient associated to

0P : UpMp (0P from [7: 1.1]), which splits P ---+ P f Ap.s Because [/p is normal in P,
one obtains therefrom a fibration

fuP\uP(R) +

( r .3 .2 )

aAnother feature of A is that e(P1) and e(P2) intersect in D it and only if P1 n P2 is para-
bolic. This hints at the role of the non-maximal parabolic subgroups of G in the con-
struction of I [7:5.3]. Note, though, that what is called p,in17:5.4 (4), (5)l should be
labelled pf ; this would avert the incorrect statement 5.4(9), and the ensuing problems with
Sec .10 .
s 0P is an intrinsically defined algebraic Q-subgroup of P. After selection of a basepoint for
D, Mp is defined as the intersection of the corresponding Levi subgroup with 0P.

e'(P)

l "
J

a'e)
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with 2/(P) : lM"\a(P), an arithmetic quotient of the symmetric space a(P) of
Mp.

However, in general, it is false that a OP(R)-orbit in D projects to a nice cross-
section over e'(P) to the geodesic orbits of Ap.6 To make a cross-section that is
well-defined, and extends to et(P), one has to make a change of variables
( [31:  (3.19) ] ,  or  see [5:  3.11.3] ) :  the usual  mapping

o: oP(R) x Ap(R) -  D, a @ , q ) :  ( p a ) . x o (1 .3 .3 )

must be adjusted by a certain mapping g, given as the composite

orln; -- e'97 \ lp(R) r P+,

in which g0 goes to oo at a prescribed rate at the boundary of e'(P); one can
arrange that g is constant on right Up-cosets. This yields

v : or1n) x ,4p(R) ---+ D, Y(p,o)  :  (ps@)o) - *0 . ( 1 . 3 . 4 )

By the construction of g, the restriction of (1.3.4) to a sufficiently "elevated" ray in
lr(R) is just a reparametrization of a deleted collar Op of et(P) c.AX. One
obtains thereby a surjection

Then for any r e R*,

is a cross-section of the desired sort. A picture of the above is:

9-cross'ser,tion

(b) The construction of X2.This is inextricably related to the structure of X*. We
must begin with the Siegel domain picture of D associated to P e 9(G)^ *. We
assume that G is irreducible over Q. Then the Q-root system of G is of type BC (or
its o'degenerate" form C) 12:2.91, so in particular has a linear Dynkin diagram A
with distinguished end.

6 The trouble is that the image of 0P(R) 
I Kp tn D goes outside the known domain of reduc-

tion theory for P. The statement is true, though, over relatively compact subsets of et(P).
See [3 ] :  (1 .3 ) ] .

' / :oP(R) x R+ - or.

,/(0P(R) x {'})

(1 .3 . s )

(  1  .3 .6)
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The G-conjugacy type of P, by the usual system of indexing parabolic sub-
groups, corresponds to the omission of a single simple Q-root B from A. That
divides A into two pieces: L - {B} : Lr u A,7,, with A1 containing the distinguished
end (unless Ln:D. This corresponds to the decomposition of Mp as the almost-
direct product of two normal subgroups:

M P :  G r , P ' G n , p . '

For future reference, we also set

Gap: Gr,pAp Gn,p:  ApGn,p.

For A = a # f , alr" is trivial. The center of the unipotent radical Up is the
product of the root spaces for those Q-roots involving 2p in its expansion in terms
of A; all other roots occurring in Up have B with coefficient L We thus write f.lf)
for the said center. One can see that under the adjoint action of Mp on (Jp, G1,.p
acts trivially on Uf,); in other words, G1,,p and Uf;) commute.

D sits inside the G(C)-homogeneous space D (the compact dual of D) as a
G(R)-invariant subdomain. (In the case of the example (1.2(a)), D: Pt(C).) One
defines D(P) tobe Uf'(C).DcD. It should be kept in mind that P(R) acts
transitively on D, so D(P) is a homogeneous space for P(R) .Uy)G). Via the
(non-)magic of the Cayley transform (see Appendix B), one can make G4p "dis-
appear", leaving ,lhe following favorable situation associated to the group
Gr(R) ur(R) uF',G).

First, one has a principal Uf'(C)-bundle

D(n :3 on :, uF\ (C) \D(P).
and this can be trivialized. Likewise, the projection

r t4:  D1 + Dh,p,

where D4p is the symmetric space of G6,p, can be split. Put rt : fu o rt,2. In terms of
the above, D can be described as a so-called Siegel domain of the third kind in
D(P). For our purposes, we extract from that the following:

(1.3.10) Proposition. There is o Gx,p1n1-ortit in Uf,) (n), that is an open, self-adjoint
cone Cp such that,for all de DA,lt;r(A) is a "positiue" translate of

1u e rrf,) 1c1 .. Imu e C7] ,

and the translation depends real-analytically on d.

(1.3.11) Remlarks (i) In fact, Cp is a_ model for the symmetric space of non-
compact type for the reductive group G7,p(R).

7 For the purposes of this exposition, we will ignore such subtleties as the distinction
betwccn Mp and the quotient oPlUt, or whether C1, (similarly G7,fi isviewed as a subgroup
of Mp or a quotient, i.e., MplG7. These distinctions affect the arithmetic group that we call
ly, or 160." (recall (l . L I )), but these are, of course, well-deflned up to commensurability.

( 1 . 3 . 7 )

( 1 . 3 . 8 )

(1 .3 .e .1 )

(1 .3 .e .2 )
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(ii) We now write L, : {f r, . . . , P,} (as an ordered set) with B, aI the distinguished
end. In the case of G: Spz, 0.2(c)), if P corresponds to the omission of 4+r
(0 < s < r), one has that Gap = GL,, and Cp is, in a simple way, isomorphic to the
cone of real positive-definite s x s matrices (see [24: p. Aa]).

Taking arithmetic quotients in (1.3.9), one obtains the fundamental tower of
varieties associated to P:

xL\ - i lp\ xr. (r .3.r2)
In (1.3.12), Xp is the locally symmetric variety associated to G4p and its arithmetic
group 16r." (that we henceforth denote l4p, and similarly for ls,p); .&p:
(D,r.fu")\D;; XL: (l i ,,r ' fy")\D(P); nz is the quotient mapping associated to
the principal action of the torus {r:lrg\U}i'(C); the fibers of n1 are abelian
varieties (hence compact). Put z : ft1 o ft2'.

In actuality, Gs,p has not completely disappeared for there remains an action of
ly,p on (1.3.12), induced by the adjoint action of Mp. The action is free on Xl,

trivial on Xp, andnontrivial on,ilp (hence awful) unless.c/p : Xp,i.e., Ur: Uf).
One has

fr,p\XL = I)\D(P) = rp\D. ( 1 . 3 . 1 3 )

Reduction theory for P is loosely expressed in the following somewhat circular
statement (cf. (1.2.4)), which says, more or less, that one can consider (1.3.13) for
each P separately.

(1.3.14) Proposition. In a deletedneighborhood ofthe part ofthe boundary of X that
comes from P, the surjectiue mapping Ib\D - f \D ,s one-to-one.

In describing X* (or similarly, D*), one adjoins a copy of Xp to X'"by adding a
single section of n "at infinity" (as determined by Cp), on which l1,p acts trivially.
The comparability and compatibility of these, as P varies, come down to the fol-
lowing elementary observations. Let P be determined pe A. Then as p moves
toward the distinguished end, G1,,p gets smaller while Gr,r and. U;*'get larger. Of
course, the Baily-Borel Satake compactification of Xp is definable in its own right;
(Xp)- sits inside dX* as the closure of Xp in X* .

. Since n1 in (l .3.12) is proper, an available alternative is to add a nice boundary
to the torus .Vp.This can be done by the method of torus embeddings,s yielding
{p c {p,2", on which both {p and ls,p act, with the latter acting freely (away
from the vertex). Here, !p denotes als,p-invariant fan of rational simplicial cones
in the closure of Cp. The edges z of the cones produce smooth divisors .{ at
infinity, and the union of these is, by construction, a divisor with normal crossings
in {p,2r.Then, {p,2, can be sewn in alongn2; viz., put

XL,r,: Xl xr' {p,2,,

287

8 For the general theory of torus embeddings, see [25].

( r .3 .1s)
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on which lx,p acts. Each edge t in}p determines a smooth divisor Z, : XL xr, 9-,
in X'r,rr. The (closed) divisor with normal crossings created by the set of edges
interior to Cp wlll be denoted 2p,2, and we put

Zr,> : ltp\Zp,z ( 1 . 3 . 1 6 )

If X denotes a compatible specification of Xp, as P varies (see [1: p.252]), one
sees that open subsets of the various quotients_1,."\XL,r, (cf. (1.3.13)) patch
together to produce a smooth compactification X2 of X, with AXz:vpZp2 a
divisor with normal crossings. One can arrange that *2 is a projective variety.
(c) Real quotients in torus embeddings. Let {t' denote the maximal compact sub-
group of Vp, i.e., {t' c {p is isomorphic to (Sl )' - (C-)' for some n. Stppose %
is a {p-invariant subset of {p,2 and that U is a {f -invariant subset of //. Then the
space obtained by collapsing the {f -orbits in U to points is Hausdorff. We denote
it by % oy* and call it the real quotient of Ql along U . 

'this 
determines a subquotient

space of X|,r" from (1.3.15), namely,

Xl xrP ,%os*; (  1  . 3 .  1 7 )

it is a quotient of

%'p:  XL x% oU = X'p,zr .

This construction will play an auxiliary role in Sec. 3. It is a fundamental obser-
vation that the homotopy type of (Xb,z)px;,r,;* is independent of the choice of Xp
(c f .  [ 6 :  ( 1 .4 .13 ) ] ) .

2. Results Independent of Hermitian Structure

(2.1) Dffirential forms. Let D be the symmetric space of non-compact type asso-
ciated to the semi-simple algebraic group G, and let f be, say, a neat algebraic
subgroup of G(Q). By choosing a basepoint for D, we can write D = G(R)IK,
where K is maximal compact in G(R).

_ Let p : G ---+ GL(V) be a representation of G. This gives rise to a local system
Vp on X: f \D, whose associated vector bundle is 7J : f \(D x Z6).

By the de Rham theorem, the cohomology groups

H' (1, Vs) = Hi(pt\, Vc) = H' (X,ir) ( 2 . 1 . 1 )

may be computed as the cohomology of the complex of Vp-valued C@ differential
forms on X.

It is a standard device to express these differential forms as simply vector-valued
functions on f \G(R). This is because the latter space is a principal K-bundle over
X, and. the vector bundles involved are isomorphic to equivariant bundles asso-
ciated to representations of K. Specifically, differential forms on X come from
n'(g I k). , where g and k are the Lie algebras of G(R) and K respectively, with the
adjoint action of K; {y from Vs and pl*. The complex of Vp-valued C- differ-
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ential forms on f \G(R) is isomorphic to

C-(f  \c(R)) @ Vc I  n '(g). . (2.r .2)

One identifies the elemenls in (2.1.2) that come, by pullback, from X ([2]: Sec. 4];
see also [28: Sec. 3]):

(2.1.3) Proposition. The complex of iy-ualued C* dffirentialforms on X is iso-
morphic to

lc-(f \c(R)) e vc @ ̂ '(p)*1",

where p is the Cartan complement of k in g. The dffirential d is the sum of two
operqtors on the aboue, d: D * dr, where D induced by dffirentiating the C*

functions, as one does in taking the exterior deriuatiue ofuector-ualuedforms, and do
is defined by using p to make operators on Vc-e.g., for 0-forms,

[ d o \ s u ) ] ( Q ) : r @ p ( Q ) u

wheneuer Q e p.

Since X c X is a homotopy equivalence, the local system Vr extends canoni-
cally to X , and we therefore regard V; as being defined on X. Then, one has the
analogue of (2.1.1):

H'( lp,Vs) = Hi,({pt} ,Vc) = H'(et(P),Vr) = f / ' ( r} \D,Vl ) .  (2.1.4)

It should come as no surprise that one has an assertion analogous to (2.1.3) for
the open faces of X. Noting that

Kp :: KnP(R) : K ooP(n) : K a Mp(R),

one gets:

(2. 1 .5) Proposition. (r) The complex of i y,-ualued C@ dffirential forms on lp \D r
isomorphic to

[C-(Ip\P(D) A V.@ n'(ur @ p*" @ or)*l*' .

61) The complex ofiy-ualueP C@ dffirentialforms on e'(P) is isomorphic to

[C-(lp\oP(R)) e vc@ n'(p," 6l r")*]^'.

Here p*. denotes the intersection of p and the Lie algebra of Mp, up is the Lie
algebra bf Ur, and ap is the Lie algebra of Ap.

In view of (2.1.3) and (2.1.5), computations with differential forms on arith-
metic quotients can be expressed in terms of vector-valued functions on the real

289

e equivalently, V4-valued.



290 Steuen Zucker

points of the group that are invariant under the actions of the arithmetic group
and the (compact) isotropy group. Given/ eC-(111,\G(R)), one defines a C-
function/p on G(R) by

f (us) dm(u), (2.r .6)

where m is the measure induced by the left Haar measure of Up on the compact
nilmanifold Np: ly"\Up, normalized so that m(Np): l. One calls (2.1.6) the
constant term of f withrespect to P (cf. the constant term of a Fourier series). It
is clear that (2.1.6) makes sense for forms with values in any finite-dimensional
vector space. One sees rather easily:

(2.1.7) Lemma. (i) The function fp is constant on right (Jp-cosets.

Gt If f is left-inuariant under lp, then so is fp. If f is Kp-inuariant, then so is fp.
(iil If df :0, then dfp : O.

(2.1.8) Remark. One should keep in mind that if Q e g (i.e., Q is a left-invariant
vector f ield on c(R)), the formula fot (Qf)@) ts f;1,_,f (sexp(tQ)), and that for
(2.1.7), one is taking Q ep.

It is well known that the cohomology groups in (2.1.1) or (2.1.4) can, in fact,
be computed by means of a subcomplex of (2.1.3) or (2.1.5) respectively, consist-
ing of functions that satisfy a growth condition at infinity.

(2.1.9) Definition. A function f on G(R) is said to be slowly increasing, or haue
moderate growth, if for some, hence any, p as in (l.l), there is a natural number N so
that

l f  @)l < l lp(s)11".

(2.1.10) Remark (see [3: 1,7]). The above is one of the conditions imposed in the
definition of an automorphic form. [t is equivalent to a uniform polynomial
growth condition along all orbits of the geodesic action of a maximal R-split torus.

It is not hard to see:

(2.l.ll) Lemma. If a function f has moderate growth, then so does its constant
term fp.

(2.2) The constant term qnd restriction to the boundary.to Let f be a cocycle for
(2.1.3), thus giving a cohomology class in H'(X,Vr). Consider the diagram:

fr(o) : J*,

r0This section is a reworking of [27: l.l0].
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4a'1r;1o,V+) *

(2.2.r)

in wh arrows are induced by mappings of spaces.

(2.2.2) Proposition. The diagram (2.2.1) commute*

Proof. The assertion would be clear if (1.3.3) gaYe a cross-section to the geodesic

orbits, for we would then have a natural description of 0-' .Since it usually does

not, we will have to circumvent this detail. Note that since e'(P) is the interior of a

manifold-with-corners, it possesses compact deformation retracts Ep. Over Ep,
(1.3.3) does, in fact, stay within a collar of e'(P) (as in (1.3.6); see figure at the end

of (1.3(a))), for a sufficiently large. We can therefore deform Zr to the corre-

sponding part of fp\0P(R)/Kp along geodesic orbits. Since

H '  (e '  (P ) .V . )  :  H '  (E  P ,v r ) .

the assertion follows. I

Consider next the cohomology class [rp(/)] e H'(e'(P),Vp;. Using-the ana-

logue of (2.2.1) for fp\D, we see thatlrp(fl1is also the restrictionof f : lp(f),

which defines a class

[11 e a'ir"1D,Vr").

On the other hand, note that (2.1.7) implies that the constant term of / (or
equivalently, /) also defines a class

l fpl  e H'( f  p\D,V.") .

(2.2.3) Proposition. In f/'(lr \D ,V r,), l.fl : lfrl.

Proof.We use (2.1.5) to give a cohomological proof of this assertion.lr As lp\D is
a compact nilmanifold fibration (cf. (1.3.2)), we consider first the Vp"-valued dif-
ferential forms on the fiber:

V @ n'ui= R'( fup\Up(R),V+)u" c R'( fy"\Up(R),Vr)) , (2.2.4)

where 'oR'" denotes Ct de Rham-complex. It is not hard to write down a cochain
homotopy from R'(ly"\Uo(R),Vry) to V @ n'uf,, and likewise on the bundle,

by simply viewing fu"\Up(R) as an iterated circle bundle (see [29:Sec.4(c)]

11The proof given in 127:1.101 is for automorphic forms/ and uses growth estimates on

f -fp.
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and [31:(2.5)]).The associated projection of the form given by f onto the Up-
invariants is just /p.

(2.3) Calculation of up-cohomology. By definition, the cohomology of

C' (or ,  V)  : t  V I  n ' r - l  Q.3.1)

isthe Lie algebra cohomology H'(or,V).Taking the cohomology in (2.2.4) gives

H' (lu,\ ur(R), v+) = H' (up, V). ( ) 7 ) \

One observesthat C'(up,V) is a complex of finite-dimensional representations of
the reductive group MpAp. Therefore, H'(op, Z) is likewise a representation of
MpAp.By frequently invoked theorems of Kostant, one knows:

(2.3.3) Theorem. tlSl (i) There is an (MpAp)-equiuariant embedding of complexes

H ' (ap ,V ) ' - -  C ' (up ,V )

(where the left-hand side is giuen the zero dffirential), inducing the identity map-
ping on cohomology.
(11) Assume that V is irreducible ouer C, and let t\ denote the highest weight of V.
Then

Ht(up,V)  =-  @ E, ,
w ewP , l (w1: i

where E, ,s the irreducible representation of MpAp with highest weight
( w A + w 6 - 6 ) .

In the above, WP is a specified subset of the absolute Weyl group W of G,r2 a
positive Weyl chamber has been fixed, and d is the half-sum of the positive roots in
g; for more details, see also [27:(2.4)], [31:(3.4)], etc.

Using (2.3.3(i)) and (2.1.5), one constructs an embedding of complexes

R' @' (P),fr '  (o r, V) r *,) - '  R' (e'(P), V6), (2.3.4)

One sees quite readily:

(2.3.5) Proposition. (1) The Leray spectral sequence of rc in (1.3.2) degenerates at E2;
(ii) the inclusion (2.3.4) induces an isomorphism

H' (e '  (P) ,V+) = H'  G'  (P) ,H'  (op,  v) r , , ) ,

splitting the Leray filtration of H'("'(P),Yy") associated to rc.

12 It consists of the coset representatives of smallest length for w I lhp, where wp denotes
the Weyl group of P.
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(2.3.6) Remark. Note that the isomorphism in (2.3.5(ii)) is defined over Q. It can
be written

H ' ( l p ,V )  =  H ' ( f  y " ,H ' (up ,V ) ) .

3. Recent Results in the Hermitian Case

(3.1) The Dolbeaultlde Rham isomorphism for real torus embeddings. Let 7 be (the

C-points of ) a torus and thus isomorphic to (C-)'. By a real torus embedding, we
mean the quotient of a torus embedding Zr by the maximal compact subgroup Z'
(i.e., real quotient, cf. (1.3(c))); we denote it (Zr)n (see also [5:2.1]). The name
has been chosen because one can regard (22)* as a subspace of 72, namely, the
closure of Zfl = (R+)' in Zp, which in turn can be constructed directly from Zfi

and X. Note also that (22)* is always a manifold-with-corners, with interior Zf .
Therefore,

(3.1.1) Proposition. For any torus embedding 72, the associated real torus embed-
ding (72)* is contractible.

(3.1.2)  Examples.  ( i )  CR :  ClSt  = R>0 -  
10,  * ) .

(ii) The real quotient of P'(C) is the n-simplex.

By construction, every point of 7> has a neighborhood contained in a maximal
affine torus embedding isomorphic to C'. Playing the same role in the real quo-
tient (72)* is C'/(S1)' = (Cn)' = (R=o)', which is a corner. In other words:

(3.1.3) Lemma. The local stucture of the quotient mapping p : T2 ---+ (7|2)* is that
of  C" - -  (R=o) ' .

We need to define the de Rham complex of a real torus embedding. Since the
notion of a differential form is local in nature, it is enough, by use of (3.1.3), to
consider the case of (R>0)' as the real quotient of C'. Then, we have the n-fold
product of (3.1.2(i)), and one eventually realizes that it will suffice to consider that
case.

If we regard the real quotient as a subspace or even as an abstract manifold-
with-corners, a C* diflerential form can be taken to be just a smooth form that is
(locally) extendable across the boundary. As a quotient, it fits into the following
general framework. Let I be a C- manifold, on which the compact Lie group 11
acts. If the action were free so that Y f H were smooth, one would have that the
forms on Y lH pall back injectively to I, yielding the space of those C- forms on
Y that are both:

(i) invariant under the action of iI,
(ii) annihilated by interior multiplication with the elements of (3.1.4)

the Lie algebra of 11 (the latter defining vector fields on I).

293
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One can define differential forms on Y /H in general by means of the above
description [9].

There is a disparity between the two notions for I : C, H : Sr, Y I H ! R.u,
coming from the fact that I is not the only element of Sl nR*. Let (r.9) be the
usual polar coordinates in C. For the subspace, we have 0:0, and at the origin,
0-forms/(r) and l-forms g(r)dr for any smooth functions/ and g. For the quo-
tient, the forms cannot involve either d or d0 and must be invariant under rotation
by 0: z, i.e., multiplication by -1; so the de Rham complex of the quotient is the
subcomplex of the preceding generated by I and rdr over the even C- functions.
We always understand the de Rham complex of a real torus embedding to be that
of the quotient.l3 The sheaf of forms thus determined on (?"2)* will be denoted
airs^'

We are now in a position to state the most direct, though not final, form of the
Dolbeault/de Rham isomorphism. The Dolbeault (d-) complex of sheaves on 72
will be denoted nl;i.Keeping in mind that

frir')* t @.q'h)'' ,

we have:

(3.1.5) Proposition. The projection of an i-form onto its (0,i)-component induces an
isomorphismra of complexes of sheaues

8ir,t*3 @-qoi)'' .

Proof. This is a local assertion on (7:)n. In view of (3.1.3), it is enough to check it
for C' -- (Rt0)n. Using the product structure, we see that it will suffice to con-
sider the aase n:1, at 0e R>o. There, the left-hand side is generated over the
even C* functions by I and 2rdr : d(z7), whereas the right-hand side is generated
by I and zdz. (Here, z : reiq as usual.) One checks that dr projects onto

leig dz . +(d, - ird7), so 2rdr projects to zdZ. It remains to recognize that d proj-
ects to A, but this is evident.

(3.1.6) Remark. By making use of simplicial constructions, one obtains the sim-
plicial analogue of (3.1.5), which applies, for example, to the boundary divisor of a
torus embedding.

Since we will need to consider fiber bundles of torus embeddings (recall
(1 .3. 15)), 15 we need a more flexible version of (3. 1 .5). So let 7 be a torus, as above
andZ a space on which Tc acts, such that nz:Z -Bis alocally-trivial fiber

13However, both complexes are seen to give the same de Rham cohomology.
laMore than just a quasi-isomorphism!
lsWe actually must also allow such bundles to degenerate, although we will not treat this
here. See the latter half of [1 5: 2.8].
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bundle. Let
z L z * 3 n  ( 3 . 1 . 7 )

be the factorization of nz through the real quotient (i.e., the quotient for the
action of T').

(3.1.8) Proposition. ll5:2.8.71 Let E be a locally free sheaf on B and put
gr : (nz).8. Then the canonical inclusion

q- tE,- -  (p.F) ' '
is an isomorphism.

Proof. Since this is a local question, we can assume B is a polydisc, so d, hence F,
is free. Carrying out the argument with parameters, we reduce to the case where B
is a point. So once again, we see that the crucial case is Z : C. The asserted sur-
jectivity says: an Sl-invariant holomorphic function on an Sl-invariant planar
domain is constant. This follows from the Cauchy-Riemann equations in polar
coordinates.

(3.1.9) Remark. When B is a point, we have that (3.1.5) is the version of (3.1.8)
obtained from the latter after taking fine resolutions.

We state next a further assertion of the same genre. If the reader wishes, (s)he
may do the proof as an exercise.

(3.1.10) Froposition. l l5:2.8.a1 In the situation of (3.1.8), Rip*9 : 0 for all i  > 0.

(3.1.11) Corollary. The natural mapping p*9 - Rp*F is a quasi-isomorphism.

(3.2) Holomorphic analogue of Proposition (2.2.3). We take, in (3.1.7), B: dp.
For Z, we have three subsets of X|, in mind:

( 1 )  Z r : 7 " ,
(ii) 22, a Tf- and lx,p-invaiant neighborhood, of 21 that is

contained inside the realm of reduction theory for P, Q'2'l)

(1i1) 4 - Z2 - 21, a deleted neighborhood of 21.

Here, nz is just n2lr, where n2 is as in (1.3.12). Of course, we have inclusions:

21 '--+ Z2<'Zt. 3.2.2)

We note the following features:

(3.2.3) Lemma. (i) The spaces 21 in (3.2.1) all haue the property thatl4p actsfreely
on Zi and on 21lTf.
(il) For 21, on which Tp acts, (3.1.7) becomes

z, L zr lr ;3 zr lrr :  sn.
One can identify the space ZtlTf, and see that it has fibers of the homotopy

type of Cp,the quotient of Cp by its cone dilations (see [6:(1.4.12)]), which is, in
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particular, contractible. As a result, we reach a curious conclusion (keep in mind
the discussion of the action of l7,p on (1.3.12)):

(3.2.4) Proposition. The mapping q : Zl lTf ---+ .ilp is a homotopy equiualence, and
hence is a modelfor the Borel constructionfor the action of ls,p on ,ilp.

(3.2.5) Remark. In fact, the same is true fot Z2lT$ and ftlTf .

Next, let F be the so-called canonical extension, as defined in [23], of an
automorphic vector bundle (holomorphic homogeneous bundle /i-). From its
construction, one sees that I is determined by the construction of an fri,, on each
X'r,r, and 9lz : I @ Oz is of the form n\E, as required for (3.1.8).

For all Zi from (3.2.1), we have diagrams compatible with (3.2.2):

H. (fs,p\21, lg l r,lr) :. nir,(Zi, F l r,) z HiQ Qi I T f , Rp.19 l r,l)

(3.2.6)

Hi,,(ilr, s) :', Hi,,Qi lTf , s-t s) 3 ni,,Qi I

I

J=
Hi*QiITf ,p.19lt,l)'$

With the exception of the vertical arrow labelled "inu", every morphism in (3.2.6)
is an isomorphism, as follows from (3.1.8), (3.1.1l), (3.2.3), (3.2.4) and, (3.2.5). The
former is induced by taking the decomposition of p*l.F l, ] as the direct sum of its
weight spaces for T$, and then projecting onto a direct'factor. However, in the
case of 21, orr.^ sees that rnu is also an isomorphism for global reasons [15: 3.9].

This leaves us with the following picture:

(3.2.7) Proposition. There is a commutatiue diagram

1=
Hi,,Qi I Ti, n.ls lt,l)

uJ'"
Ti, {p.lslr, l} ' i)

H'(Zp,>,9 @ 02",,) : Hir,(ilr,8)

1
I

H'(fx,p\22,917,) : Hir,(ilr,s)

H.(fx,p\ft,e17) : Hfl.,(ilr,E)
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The Dolbeault complex of an automorphic vector bundle on x can be
expressed as vector-valued functions on G(R) in a way completely analogous to
what was done in (2.1) for deRham complexes. As such, we again have the notion
of slowly increasing forms, as given in (2.1.9). (see [15: 3.8] for more on this.)

Let j2 x - *2 denote the inclusion. The condition that a form be slowly
increasing (together with its D-derivative) is actually local on *2, andhence defines
a complex of sheaves on *2, viz.

qor (g),i - U).@oi' @ j;g). (3 .2 .8 )

It is easy to see that it contains gDi:@)

(3.2.9) Proposition. |4] Let .F be the canonical extension of an automorphic uector
bundle on X. Then, the inclusion

so;@),---+ qo'(s)si

is a quasi-isomorphism. In particular, the cohomology of the Dolbeault complex of
C* forms of moderate growth is the sheaf cohomology of F on *2.

(3.2.10) Remark. A weaker version of (3.2.9) is that a D-closed C- (0, i)-form 11
on x with values in (j2).9, whose associated function f, has moderate growth,
defines a cohomology class in Hi(*2,F).

Now, let 4 be as in (3.2.10). It admits a restriction to all Zi, so induces com-
patible elements of the left-hand sides of the rows in (3.2.7) . In particular, from the
first row, we get the restriction of 4 to the part of the boundary of ,ip associated
to P:

Vplry] e H' (Z r,t, F @ 0 2",,) = Hi"(dr, E). (3.2.tt)

on the other hand, we may again take its constant term r1r. This defines a class in
fl'(lp\D, F), which can be restricted to l7,p\23, thereby producing an element
[r1 p] e H' (f1,p\Zz, 7 lz).

(3.2.12) Theorem. [15:3.10.3] In Hi.,(ilr,5), inu(lr1rl : ip[rt].

With (3.2.7) already done, the proof of this is quite easy. As both inu(fi1) and
TplA] of Hi,,,(.ilr,8) come from a common element of H.(fx7\Z2,glz,), it is
clear that

inv[4] : trp71. (3.2.r2.r)

Tp\t l :  inv(frytz)1;. (3.2.r2.2)
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To finish, one needs to check that averaging r1Q) over (Uplug))(n) does not
change the cohomology class onl4p\Z7 For that, see [5: 3.5.12].

There is a direct analogue of (2.3.5) that enables one to calculate Hi"Gilp,E).

(3.2.13) Proposition. |5:3.7.71(j) The Leray spectral sequence

EP,s : Hep,(xr, Rq (n).E) + Hfl:s (. i lp, s).

degenerates at E2.
(ii) Rt(n1).8 is isomorphic to /fq(a-,E), the automorphic uector bundle on Xp

ussociated to the representation of Kn,p o, ga @- , E).
(111) There is a canonical splitting

Hi,,(ilr,8) = @ HL,VI, trq(a-, E)).
P}Q:T

(3.2.14) Remark. (We refer to [15] for the notation u- and K4p).The Lie algebra
cohomology H'(o-,E) can again be computed by means of Kostant's theorem
(2.3.3), whose setting, we recall, is unipotent radicals of parabolic subalgebras of
reductive Lie algebras. See [5:3.6].

(3.3) Hodge theory at the boundary: a motiuation. We motivate the Hodge theo-
retic constructions to come by first considering a very general question. Let X be
any manifold-with-corners, with interior X, Y a local system on X (equivalently
X), andlet A denote the closed covering of the boundary 0X by its closed faces of
(real) codimension one. Consider the restriction mappings:

H'(x ,v1z n '1x,v)3 H' (AN,0 3 @ H' (B,V) .  (3 .3 .1)
B e Q

(3.3.2) Definition. The spectre of X in 0X with cofficients inY is the set

imt ,nker r  c .  H ' (0X,1) ,

and is denoted Specf (X,i).

(3.3.3) Remark. (i) It is immediate that

Spect ' (x, i )  :  krr{r '1uU, i1 --  n '6,aX; i )@ €)-a '1r ,V;} .
I  o e a  )

(ii) Suppose 0 has only two elements, i.e., 0X : Bt v 82. Then ker r : im6, wherc

6 : H'-1(81 a 82,V7 --. n'1aX,i1

is the connecting homomorphism in the Mayer-Vietoris sequence for 0X. This is
an instance of a more general statement. Let {$ : / < 0} denote the simplicial
filtration associated to the nerve of A.Then

ker r :  S- tH '@N,V) .
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(3.3.4) Definition. A nonzero element of Spect'(X ,Y) is called a ghost (class) .

In general, e arrd r are quite unrelated, so there is little to be said. But suppose,
in the above, we take X: f \D to be a locally symmetric variety and X its Borel-
Serre compactification, as in (1.3(a)), and V : Yr, as in (2.1). Then

9A : {e' (P) : P e 0(G)^u*}. (3.3.  s)
There is some mild feeling that the following should be true:

(3.3.6) Assertion. If X is the Borel-Serre compactification of a locally symmetric
variety, then Spect'(X, Vr) : 0.

It was once hoped that the statement in (3.3.6) would hold for any arithmetic
quotient of a symmetric space (not necessarily Hermitian; recall (l.l)). The name
"ghost" was given in [5:4.1] in this setting only. I think it was chosen to suggest
that although such things had not been seen, the possibility of their existence still
haunts us.16 It should be added, however, that a non-Hermitian aase in which
ghosts have been found is presented in [1 l: Sec. II! (see also [0: Sec. 7]).

We want to suggest here that Hodge theory may be useful as a technique for
ruling out ghosts in the Hermitian case. It turns out, as we explain below, that the
cohomology groups in (3.3.1) have natural mixed Hodge structures, derived from
the functorial constructions of 126], and !u! t and r are morphisms of mixed
Hodge structure. It follows that Spect'(7,Vr) gets a mixed Hodge structure;
perhaps more to the point, im e and ker r are both mixed Hodge substructures of
H'(AX,Vp), and if they are'odifferent enough", their intersection would have to
be trivial.

The main difficulty in effecting this plan is that X is far from being a variety!
On the other hand, a nice toroidal compactification X2 is a smooth projective
variety. We consider the analogous set-up for AX2, which has a closed covering

9 :  {2r, ,  :  P e f \9(G)^,*} . (3 .3.7)

299

Let rp denote the inclusion 0X2,- X2. For any-subset I of 0(G)^ax, we have
likewise fut, the inclusion Zs,>: )rrrZp,z,- Xp. One defines the complex of
sheaves

Gin(Z o,r,vr) : lb nj, -v r. (3 .3.8)

Since our space is reasonable and Zsr,2 is compact, the latter has a fundamental
system of open neighborhoods Nsz,p such that the hypercohomology of (3.3.8),

Hin(Z.E,>,Vp), satisfies

Hin(Zs,>,Vr) = H'(Ns,r-  AX2,Yy). (3.3.e)

16 If an automorphic form could produce such a class, it would have to be by means of some
hitherto unknown construction. Another interpretation: a ghost class is there, but if you
look in any particular place, you don't see it.
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For this reason, (3.3.8) is called the deleted neighborhood complex of Zs2with
coefficients in Vp, and the left-hand side of (3.3.9) is called deleted neighborhood
cohomology, whence the subscript"dn". Similarly, one has H;^(A*>,V;) as the
cohomology of ijRTp*Vp. The latter can be reconstituted by a simplicial con-
struction from (3.3.8).

It is well known by now that the local system Vp on X underlies a (polarized)
variation of Hodge structure [9:l.l].17 According Io 1261, the deleted neighbor-
hood complexes (3.3.8) then underlie mixed Hodge modules, imparting canonical
mixed Hodge structures to (3.3.9).

Of course, in actuality, we are interested in

(3 .3 .10 )

where fljn is defined by the formulas analogous to (3.3.8) and (3.3.9); the iso-
morphism holds because we are on a manifold-with-comers. Concerning the
intersection in (3.3.10), the situation prior to taking arithmetic quotients is easily
described. One has, by iteration of l7:7.41, for I c. g(G)^ 

*,

lt ,Q): e(Qd if Qe: [] P is parabolic,
P e 9  P e 9

(3 .3 .1  r  )

(and is empty otherwise). Here, e(Qg,) denotes the face of codimension l7l in D
associated to Qs. One sees that after the quotient by f is taken, et(Qg,) is one
connected component of )pree'(P) (and the others are of a similar nature),
whenever I is as in (3.3.1l) and represents g. (See [6: App. to (3.5)].)

Although we know that it is rarely true, suppose for the moment that there was
a mapping (necess surjective) t : X -- &, such that l, is the identity map-
ping of X and r(e'(P)) :2p,2. The respective fundamental neighborhoods Fp
and Np,p may be chosen so that Np: rtNp,z and Np,p : r(Nr). Then

N p - A N  ! N p , >  - 6 x r ,

and likewise for intersections. Thus, the deleted neighborhood cohomololgy would
be the same in both & and X, and we could simply transport the mixed Hodge
structures from one to the other. However, since z seldom exists, one has to do
something more serious (see also the recent article [33]).

(3.3.12) Remark. Looijenga has pointed out that the existence of these mixed
Hodge structures follows from the interpretation of (3.3.10) as iterated deleted
neighborhood cohomology on X*, via the mapping/ in (1.3.1). However, this

rllf V is real. In any case, it is a direct factor ofone, which is sufficient for our purposes.
There is no canonical determination of the weight, however, given that we began with G a
semi-simple group in (l.l); one is chosen ad hoc in [28]. For this reason, when a Shimura
variety is defined, as in [9], one needs a central torus to determine weights. However, the
variation of Hodge structure is easily seen to be uniquely defined modulo Tate twists.

,;,(Lv(n, o.) = r. (p,ne, v,),
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observation does not help in calculating them, for the latter seems to require
(3.4.2)  and (3.5.5) .

Q.4) Hodge theory at the boundary: a bqttle of nerues. We came to suspect that the
nerves of the coverings of deleted neighborhoods associated to I (for AX) and I
$or AX) are homotopy-equivalent. More precisely, it was an issue of proving:

(3.4.1) Proposition. [16:(2.7.8)] There is a system of compatible homotopy equiu-
alences of afundamental system of deleted neighborhoods

N p - AN and Np.2 - 0*2,

as P ranges ouer l\9(G)^u*.

The proof of this turns out to imply the same for intersections. In particular, we
obtain the following.

(3.4.2) Corolfary. [6: (3.5.5)] The spectral sequences associated to the simplicial

filtration S:

30r

El 'n :  @
lel:p+1

and

FYtc - H!,(Zr,r,Vr) + Hp+c (a*z,i r)

are isomorphic.

In other words, we can now proceed as though a continuous mapping t t X - *>,
as at the end of (3.3), existed.

The key idea in the proof of (3.a.1) was to understand the structure of the
simplicial complexes i" : 1X" - {0})/R*. Similarly, let ip be the quotient of Cp
by its cone dilations. First, we have an observation, whose proof is not very dif-
ficult.

(3.4.3) Proposition. tl6:(2.1.1)l Ir,.\i" is a triangulation of the Sutake compactifi-
cation fx,p\C| of fap\Cp that is associated to {Br}.

Before proceeding, we recall a feature of the quotient mapping f : X - )(
( f rom (1.3.1);  see [31: (1.6)]) .

(3.4.4) Proposition. The fiber of f ouer a point of Xp ( from (l .3.12)) rs lr.r \ ir.

These facts hint at a role for the quotient mapping

" , ( l  
aO,n,)* g*e@X,Yr)

/T\w
lel :p+1

rr,"\0.\rr,r\e; (3.4.s)
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from the Borel-Serre compactification of lr,r\Ce to the Satake compactification in
(3.4.3). This mapping can be regarded as a non-Hermitian analogue of / above,
and it is againa case of the content of [30] (also, cf. [16:(1.3(c))]). The strata in
AD7\C; are parametrizedin much the same way as those of X*, viz., by lr,r\
9(G4p)^u*.The stratum corresponding to Q e f7,p\9(G4r).u* will be denoted E g
and is of the form lx,p,\Cp,, where P'ef\9(G)^* corresponds to the omission
of the same f e Lr as Q. Similarly, if P is given by the omission of 8,, then there
are I stratum types S; (1 < i < l), whose dimensions increase with 7 in lr,r\Er.
They correspond to the chains of length at most r - I containing Bt and also the
empty chain ( recal l  (1 .3.11( i i ) ) ) .  -

A question emerges: is it possible to construct lr,r\Cr from lr,r\Xr (given that
we know from (3.4.3) that we have lr,r\Ci)? This necessitates finding a boundary
with corners. Towards an answer, let o be any simplex of ip. We partition the
vertices of o according to the strata type that they lie in. Let o; denote the face
(possibly empty) of o spanned by the vertices of o in 57. Clearly, o is the iterated

loln

o : o l * " ' * 0 1

(where one is taking the convention a x @ : 6s).

(3.4.6)

In the case of a single join, i.e., o : ot t( oz, one has that a is the two-way
mapping cone of the two projections of o1 x o2. Explicitly, a is the quotient of
o1 x f0, llx o2 obtained by collapsing or x {0} x o2 onto o1, and likewise,
o1 x {l} x oz onto oz. Define A/1@), the blow-up of o along o1, to be the poly-
hedron obtained by making only the second identification above. There is the
quotient mapping A/1@) ---+ o, which can be rewritten as ne(o) x 62 +

ot * oz. This can be seen as the real quotient of blowing gp of Pd Po+b+I, where
pa-rb+t is viewed as the linear join of Po and a disjoint Pb, with morphism

po x pl x pb ___+ pa+b+l

( recal l  (3 .1.2( i i ) ) ) .
By iterating the above I - I times (recall (3.4.6)), in the proper order (see

[6:(2.3.7)]), we obtain a polyhedron 1d/(o) from o. Since we have used alr,r-
stable, canonically ordered^partition of the vertices, the above procedure produces

a polyhedral complex g/(I,p) from Xp and then a mapping

r 4 p\s / (i p) ----- Q,p \ir. (3.4.7)

Our construction gives 10, l]-variables coming from the join parameters and this
produces a boundary-with-corners, possessing canonical collars inf1p\gf(ip).18
In this situation, given that (3.4.5) exists, it is automatic that the boundary of
f/p\gl(>,p) has the stratified homotopy type of the Borel-Serre boundary

116 (2.6.\1. From here, it is not hard to complete the proof of (3.a.1).

18For this, we must assume that Xp is not too coarse, e.g., that it be a barycentric sub-

division (compare the proof of (2.2.8) in [5]).



On the Boundary Cohomology of Locally Symmetric Varieties

(3.5) Hodge theory at the boundary: determination of the mixed Hodge structure on
the Eyterm. We can now give the formula for the mixed Hodge structure on the
Eyterm of the nerve spectral sequence) which is written out in its two isomorphic
forms in (3.4.2).

We begin, though, with the related cohomology of Xi (from (1.3.12)), the so-
called mixed Shimura uariety associated to P (P e 9^u*).We can see easily that Xt"
has the homotopy type of an Np-fibration over Xp. From (2.3), one has formulas
for this sort of thing. We get

H' (XL,V+) = H' (X",f i .@p, V)rj , ,) = 
I 

rI '  (Xp, (E,)f, ,") l /(w)1. (3.5.1)

Here, "l-f(w)]" merely indicates a shift and the other notation is as in (2.3.3(ii));
we are identifying Xp with the rational cross-section of z associated to a Levi
subgroup of P.le Recalling from (3.1.7) that the Levi subgroup decomposes
as Gp,p.G7,p, onl can write E, as a product: (Er)n@ (E*)r. Inserting this into
(3.5.1) ,  we have

H. (X L,vr" ) = @ n' (X r, ( (E,)r )r,." ) @ (E*) r l- t (*)1.

303

(3.s.2)

(3.5.3) Theorem. ll6:$.a.21)l The isomorphism (3.5.2) is an isomorphism of
mixed Hodge structures (when the two sides are giuen their natural mixed Hodge
structures ).2o

(3.5.4) Remark. Note that (3.5.3) asserts that the mixed Hodge structure on
H'(X|,V;") decomposes into the direct sum of mixed Hodge structures of lower
dimension, which is much stronger than the statement that H'(Xt,Vq) has a
filtration for which the gradation is as given.

We now address the main task of determining the mixed Hodge structures in
the -E1-term in (3.4.2). For this, we will have to use the formulation in terms of
deleted neighborhood cohomology on X2. There are two observations to be made.
First, as far as the divisor Zp,2 is concerned, we do not need to distinguish *2 and
fr,p\X'p,2,, as sufficiently small neighborhoods of Zp,2 in both are analytically
isomorphic. Second, the fiber of n2: X', ---+ dp is a torus and the inclusion of nice
deleted neighborhoods of toric boundary stratum in the torus tends to be a homo-
tbpy equivalence (e.g., tr* .-- C*), implying that the deleted neighborhood coho-
mology is isomorphic to the cohomology of the torus itself; thus is isomorphic in
the sense of mixed Hodge structures, by functoriality. These considerations must
be carried out in the presence of parameters (i.e., .&p) and the ls,p-action.

le Here, we may have to pass to a flnite covering of Xp before said cross-section exists. This
is a minor detail (compare the footnote to (1.3.7)).
20This is discussed before (3.3.10). Of course, for (3.5.3) to be true, the weights on Xt, and
Xp must be compatibly normalized. This is built into Deligne's definition of an admissible
Cayky morphism (see [15: 1.2.2.11).
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Let R be a Q-parabolic subgroup of G. We identify R with the set g of all
maximal parabolic subgroups containing it. Assume R is strictly subordinate to
P e 9(G)^ *, i.e., P e 9, and P has the largest A7, among all maximal parabolic
subgroups in 9. PnI l4s : lr,p n R(Q). Then:

(3.5.5) Theorem. [16:(5.6.10)] There is a decomposition of mixed Hodge structures

Hl^(Zr,r,Vr) = (D e Hi- i-k(xp,(6,)a)n") @Hk(rr,s,(8,)).
i.k /lw)=j

Here, H'(l4y, (E,) ) has the Hodge stucture of type (0, 0). "

Appendix A: No ghosts for Spa

We will carry out the calculations that rule out ghosts for G: Spa. In other
words, if X is the quotient of the Siegel upper half-plane of genus two by an
arithmetic group f c ,Sp4(Q), then Spect'(7, Vr) : 0 for all local systems arising
from (irreducible) finite-dimensional representations Z of Spa. This will be achieved
by topological considerations followed by a determination of weights.

We remind ourselves that dims X : 3, so dimp X : 6. The root system for Spa
over Q, R and C is of type C2, which has simple roots {p1, B2} (as in (1.3.1 1(ii))),
and corresponding fundamental dominant weights {h,tr2}.There are orthogon-
ality relations

(h, fz) :  (Az, f t )  :  0;  (h,  f )  :  l ,  ( ) ,2,  fz) :  2. ( A . l . l )

The highest weight of V is then of the form mrh * m2A2, where mt and m2 zre
nonnegative integers, and this determines the weight of the variation of Hodge
structure on Vp up to a Tate twist. There are two standard maximal parabolic
subgroups, P1 and Pz (labeled according Io the omitted simple root), correspond-
ing to boundary components Xt : Xp, and, X2: Xpz of complex dimensions I
and 0, resp. We put Pp : Pt o Pz.

In X, the boundary decomposes into three strata types, coming from the con-
jugates of P1, P2 and Pp. The closure of each of these is the disjoint union of
closed faces of the given type. Moreover, each e'(sPn) is contained in exactly one
face of type "l", viz. et(0Pt).,-note the canonical surjection f \G(Q)/Plr(Q) -
f \G(Q)/P1 (Q)-and there is a parallel assertion for P2 (see [6: App. to (3.5)]).

Although both 2/(P1) - Xt and A'(P2) ate arithmetic quotients for SZ2, the
Hermitian nature of the latter is "accidental"; e'(Pz) is collapsed to the point
Xz: A'(Pn) under the quotient rnappingf (in (1.3.1)). While the discussion at the
end of (3.5) suggests associating e'(Pn), which lies in both e'(P1) and et(P2), to
the latter closed face, one can also view it as going with (the boundary of ) X1 (see
(A.1.9)  below).

21This is misstated in [6].
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We consider the problem of determining Spect'(X,Vp). Let N1 be a nice
deleted neighborhood of U e'(sPt), etc. From (3.3.2), (3.3.3(i i)) and (3.4.3), our
task centers around determining weights in

( im61i = H'- ' (Nrr,Yr) l (H'- t  (Nr,  v.)  @ f l t - l (Nz, Vr)) ; (A.r .2)

this is finally achieved in (A.1.18), by means of explicit computations involving the
Weyl group of Sbo.

First, we consider the quotient groups in (A.1.2) from a topological point
of view, i.e., without regard to Hodge structure. Note again that, since X is a
manifold-with-corners,

H ' (Nn ,V r )  =  H ' (e ' (Pp ) ,V r )  =  H ' (ue ,V )  
(A .1 .3 )

= H' (urz lu t  A ' ( r ,  ,v ) )  =  H' (upf  u lH '1u2,v11;

H'  (N t ,Vr)  = H'  (e '  (P 1) ,Vr)  = H'  (a '  (P 1) , f l '  @1,  v) )
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:  H ' ( X r , H ' ( u 1 , V ) ) ;

H'  (Nz,Vr)  = H'  (et  (P2) ,Vr)  = H'  G'  (Pz) ,H'  (u2,  v) ) .

This gives rise to the diagram

/1 ' ( lVr ,Vr)  = H' (Xr ,11 '1q,V1;

(A .1 .4 )

(A.r.s)

= H'(uzfu2,fr '@z,V))  (A.1.6)
1

= H'(a ' (P2), f i '@2,v))

a'(lrir,v.) =
t

H'(N2,Vr)

T
H ' ( u p f  q , H ' ( u 1 , V ) )

11'(Nz, Vr)

(A .1 .7 )  Lemma.  Wr i t e  w :wr -w t  w i t h  w teWl  and  wr  eWt .  Then ,  unde r  t he
isomorphism in (A.1.3), the Kostant constituent E* of H'(un,V) is the Kostant
constituent of H/(*')1ytrf u1,E*,) corresponding to w1 e lYy

(Of course, the corresponding assertion holds for W2.) There are two Hodge-
theoretical decompositions of Ho(N",Vr;;. fne first is the one given by (3.5.5):

Ho (N" ,V r )  =  @ (z ,gHo( f t ,E , , t ) )
weW2, t ( t ry ) - -k

@ @ (7 ,@H|( f t ,E , , r ) )
w e w2. !1w1:k-t

(|7 is cyclic for Spa), and the other one comes from iterated deleted neighborhood
cohomology:

Hk(NI2,V.) = @ HL^(Ur,E,)@ e HL,(U2,8,).
w e W ' , l ( w ) : k  w e l l ' , 1 ( w ) : k - 1

(here, T* is a Tate Hodge structure on the point X2, U2 denotes a deleted neigh-
borhood of X2in the closure of X1, a punctured disc.) We write the above in terms
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of the Kostant decomposition

H'(NIZ,V;) = H'(ut ' ,v) = @ v,l- l(w)]
we ll/

= @ u.(orr lur ,E, ,1= @ n.furr lu l ,E, , )1 
(A'1 '8)

wr er ; r / t  w1 err l

note that this also equals the corresponding thing for W2:

H'(N12,V.) = @ H'(u12fu2,E,,) .
w2 e Vl/2

We substantiate directly something that is already implied by the naturality of
the construction of the mixed Hodge structures inl26l:

(A.1.9) Proposition. The weights in H'(u12, V) are the same, whether one uiews it as

H;^(e'(PD), i r)

or as the iterated deleted neighborhood cohomology

Hi^(xr.,qer,6i,vf)). (b)

Proof. In the above, it is clearly equivalent to verify the assertion for the absolute
parabolic weights. LeI 2l/' denote the Kostant subset of the Weyl group W of G
over C _(as in (2.3.3(ii))), associated to P1, etc. Note that Wtz : W and Vl/ :
W t - W' , where W 1 is the Weyl group of P1 . Note that our notation gives Z1 to
be generated by the reflection with respect to /2. The Kostant constituents ,8, of
H'(on, V) have the highest weights of the form w(). + 6) - d. For w e W , write it
as lr : wr ' trt , with wr e W'r and wt e Wt . To get the absolute parabolic weights
(see Question below (A.1.11)), one must respectively:
(a) take the cofficient of fz in wQ.+d) - 6 (written in terms of the simple roots),
for the weight is determined by (E*)n.
(b) start with p:wt(l+d) - 6 and resftict it to the line spanned by Fz; call the
restriction p. Then take the cofficient of B2 in wr(F -f dr) - dr.

If one writes F: p - ch as h vanishes on 82, one sees that

wr (F  *dr )  -  d r  :  wr (P  -  ch  !_dr )  -  d r

:  wr(wt(, t  + d) -  d) -  cw1Q.) * wr (dr) -  dr

:  l r ()+d) -  dl  + [(d -  dr)  -  r t (6 -  61)]  -  cwyQl).

The last two terms vanish for w1 permutes the roots occurring in u1, and
wr(Lr): 1r, which annihilates 82. Thus, the two determinations of weight agree.

I

The following elementary fact will get applied to X1 and A'(Pr), and vastly
simplifies the problem:

Steuen Zucker

(a )
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(A.1.10) Lemma. Let S* be a compact, connected orientable real surface, let S be
the complement of a nonempty finite set of points J in S*, and denote the inclusions

by S J.,S- 3 .f. Leti be a non-triuial irreducible local system on S. Then:
( i )  Ho(S,V)  = A ' (s . , t .V)  :0 ,
(1t) The mapping Ht(s,V) - I10(S*,RhV) = eo.r(Rl-tr)o is surjectiue.

For tr ftiuial, the cohomology group I1o(,S, V) i" (l is one-dimensional, as
is the cokernel in (ii): f/o(S*, R];C) -- H2(S* ,C) = C.

Moreouer,fo, anyi, rr21S,V; : o.

The distinction in (A.1.10), raises the following general question:

(A.1.ll) Question. Let V be the representation of G of highest weight ), and
w e WP. Under what conditions is E, trivial on 2'(P)?

One can see that E, is usually nontrivial. Recall that the fundamental dominant
weights are dual to the simple roots by means of a pairing that is obtained by
rescaling the inner product, viz.,

() ', a) : 2Q", a) I @, a).

Let P correspond to the omission of the set of roots @ c Ac. One needs to look at
the nonnegative numbers

( w ( ) , + d )  - d ,  a ) :  ( ) , * 6 , w - 1 ( a ) )  -  ( d , a )

for all a { @, and determine when all of them are actually zero. This is a system of
linear equations in ,1. Furthermore, if @: {oo} (P maximal), the quantity
(wQ,+d)-d,,17.),gives what we wil l call the absolute parabolic weight of f ' , (2*
determines (-")-t of [ 5: 1 .2.2.11); it must be subtracted from the weight of Vr to
give the Hodge-theoretic weight.

We address (A.1. l l )  in  the case of  G:  Spq.

(A . l . l 2 )  Lemma.  Fo r  G  :  Sp4 , lw l  : 8 , l l l t l  - -  
lw ' l :  4 ,  and

0) Wl vW2: W - {ro},wherewsdenotes the longest element of W;
( 1 1 )  w t  o w 2 :  { t } .
Using (A.1.1), we have (6,),1): (6,o2):2 in the C2 root system, so we obtain:

(A. t . l3)  Lemma. Let  w e Wt.  Then;
(1) E, has absolute parabolic weight

s,1 :  (w()"+ d)  -  6 ,  Lt )  :  (mt  + l ) ( \ , r - t  7)  - l  ( *z  + l )Q,z,w-t  Lt )  -  2 .

(ii) E, is triuial on X1 if and only if

( r y  - f  1 ) (7 t , r - t  az )  - t  (mz  +  l ) ( 72 ,w - t  u2 )  :  2 .

Similarly, since (d, lz):3 and (d,ar): l, we have:
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(A.1.14) Lemma. Let w e W2. Then:
(i) E* has absolute parabolic weight

Steuen Zucker

.  :  (mt  + 1)(21,  , - t  ) "2)  r  (mz + 1)( ) '2 ,w-\  ) '2)  -  3 .

(ii) E, is triuial on A'(P2) if and only if

(mr + l ) (h,  r - t  u t )  *  (* ,  + l ) ( ) "2,  w- t  u1)  :  l .

lnthe C2 root system, there are four positive roots:

shor t :  41,  d4 + d2;  long:  a2,2at  *  az.

One can verify the following table of facts about the Weyl group:

wl

I ,-t (q) w-t (ez) w-t (az) parab-wt high-wt

0 er  E2 )4 ct2 mt*mz m2

I  e z  a l  t z  2 e t  m z - l  m t * m z l l

2  - e z  a 1  - e z  2 e t  - m z - 3  m t * m z + l

3  - e r  t z  - ) t  a z  - m r - m z - 4  m 2

w2

I *-t (et) parab-wt high-wt

0 er ez ).2 ar m1 | 2m2 ml

I  e r  - e z  a t  e r l e z  m t - 2  m r * 2 m z I 2

2  e z  - e l  - q 4  r l r l e z  - m t - 4  m t - l  2 m z + 2

3 -ez -rl -).2 ctt -mt - 2m2 - 6 ml

( A . l . l s )

This gives the status of (A.1.11) in our example:

(A.1.16) Proposition. In the aboue,E* is triuial if qnd only if:

m 2  : 0 , w  e  W r  , / ( w )  :  9 , 3 '  m l  : 0 , w  e  W 2 , l ( w )  :  9 , 3 .

The complement to (A.l.12) is

(A . l . l7 )Lemma.
( i )  w l W t v w 2 l V 2 : W - { l } ,
( i i )  wl l l / r  aw2W2: {}ro}.

We now look again at (A.1.2), (A.1.6), and (A.1.7). Generically, E is nontrivial
(when 21,m2)0), then, (,4,.1.10) gives that the only contribution to (A.1.2) is
Ho(Nrr,fr), for l: l. Otherwise, we get some Ha as well (as in Hr(...,H')),
correspondin g to w : ws and,l. : 0, when the local systems on both Xy and At (P2)
are trivial; the latter is for i: 5.
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Behind (3.5.5) is the fact that the deleted neighborhood cohomology of N12,
being associable to P2, carries trivial Hodge theory. However, there are Tate twists
hidden h H0(X2), the first factor of (3.5.5) corresponding to the weights. Since the
weight of Yy contributes equally to both objects in (3.3.2), we may subtract itfrom
both. The resulting numbers will be called the adjusted weights.

The adjusted weights in (imd)' are computed with the help of (A.1.15). Keep in
mind that for a point on a curve, the deleted neighborhood cohomology Hj' is
carried by the lowest Hodge weight, we must add the highest weight to the para-
bolic weight to get the negative of the adjusted weight.

i : l  :  - ( * t + 2 m 2 )  < 0 ;  i : 5  ( m t : m z : 0 )  :  6 . (A .1 .18)

A necessary condition for Specti(X,Vr) # 0 is that the set of weights (occurring
nontrivially) in (im6)'have nonempty intersections with that for Hi(X,V;;. For
i: l, there is an isomorphism

I H r ( X * , V r )  -  u t  1 x , v r t .

The intersection homology is pure of adjusted weight I (see [29: (3.20)]; it is also
implied by the [proven] Zucker conjecture, for which see [3]:(3.2)]). The positive
adjusted weight do not match the non-positive weights in (A.1.18). The weight for
i :5 looks plausible, bf i  H'(AX,C)=nf$,C),  so there are no ghost classes
here either. This gives what we wanted to prove.

Appendix B: The Cayley Transform (semi-simple or non-arithmetic version)

Calculating with the inherently simple Cayley transform has caused the author
enough confusion that he wishes to present here an exposition in his own image.

(B.1) SZ(2). We start with sz(1, 1) as a real form of the Lie algebra sI(2,C), so that
,SU(l,l) c. SL(2,C) is our corresponding initial real Lie group. The correspond-
ing symmetric space is then seen to be, in the familiar way, the unit disc:

D s : { z e C : l z l  < l } ( B . r . 1 )
(,SU(I,l) acts by linear-fractional transformations). As such, it is visibly a
bounded symmetric domain. One chooses 0 e Ds as basepoint. Its stabilizer K in
SU(I,l) is the subset of diagonal matrices, isomorphic to U(l). For future use,
denote by r  the inclusion K=U(l) .--+St/( l , l ) .  (One sees that (B.1.1) is the
Harish-Chandra realization. )

(B.1.2) Definition. The matrix

, : 2 -+ (1 ,  j ) . r . 1 r , c ;
\ r  r )

is called the Cayley element.

We list some of the more relevant properties of c:
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(B.1.3) Proposition. (1) c takes 0 e Ds to i (a point on the boundary of Do); c-l
takes 0 to -i (also a point on the boundury of Ds).
(11) Ad(c) sets up an isomorphism su(1,1)3st(2,R), thus, Int(c) defines an iso-

morphism,St/(l,l) - SL(2,R), and c mqps Ds onto the upper half-plane.

^  a ' ,  ' 1 0  l \  - ,  '( i i i) ca : -1, c2: t( 
; O ),"-t 

: E (usual complex conjugation here) and Int(c2)
\ /

is an inuolution of SL(2,C) that preserues both St/(1,l) and SL(2,R), also K.

(B.1.4) Remark. Of course, the factor of 2-tr in the Cayley element may be dropped
when computing Ad(c) or Int(c).

Let ft@ a@ube the Iwasawa decomposition of sz(l,1). Then

' ( 1  o \  /  o  l \  
a n d  ( :  t . ) . , .  

( B . r . 5 )' ( . o  _ r ) ' o '  t [ - t  
o ) ' o '  \ r  - i /

The complex structure on p is given by J : ld ( '-'"lo 
-,f,o ) una is determined

/ o  o \  - , - - .  \  u  e ' " ' - /
by the assertion that (i ,)ep+. 

(Keep in mind that complex conjugation on

sl(2,C)with respect to sn(l,1) is given by Xe-HtXH,wnere n : ( l^ 9).f-  
\ 0  - t  ) ' '

Of course, Ad(c) takes these things to the corresponding ones for s/(2,R). How-
ever, with the real form fixed as sr(1, l), one sees:

(B.1.6) Proposition. (1) Ad(c) maps k to ia, a to ik, and u into p-.
(11) Ad(cz) switchesp+ andp- (andis -l onk).

We will later see (from (B.2)) that the "nicest" formulation of (B.1.6) is:

(8.1.7) Corollary. Ad(c)(p+ @ ftc) : uc @ ac.

(8.1.8) Weights. We have that

k : { (  1  
o  

) , R e o : o } .
[ \ o  - u /  )

In the standard representation 51 of SZ(2), the vectors ,t : (l) and e2: (?)

are weight vectors with respect to ft, with weights a, and -a respectively. One
declares a to be positive. It follows that

Zr :  c(er)  and ?z:  c(ez) (B. l .e)

are weight vectors for a. We transport to dc (by Ad(c) : kc ---+ ac) the notion of
positivity, and denote the respective weights by & and -a. We can write:

e +  :  Z t  -  i ? 2 :  s r ,  e -  : 4  +  i A z :  e t . ( B . 1 . 1 0 )

The second symmetric power of 51, denoted by 52, is isomorphic to the qdjoint
representation. Under this identification, it has /c-weight vectors ("*)' . p*,
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e+e- e k, and (t-)' , p-. Here, we see thatp+ isthe lowestweight space in sl(2,C)
(convention as in [28] and its predecessors). Note also that

c2e1 : isr, c2e2 - ie1; c2A1 : iVr, czAl - iA2. ( B . l . l 1 )

Let P+ , Kg and P- denote the subgroups of SZ(2, C) corresponding to p+ , kg
and p- , resp. Explicitly,

3 l l

- : { ( ;

*  :  
{ ( ;  , .9 ,  )  

,  o .  c . } ,

The following is well known:

?)'"") '
- :  

{ ( ; 1) ' "  " )

( B . 1 . 1 2 )

(8.r . r4.2)

(8 .1 .14 .3)

(B.1.13) Proposition. (1) The stabilizer of 0eDs cPt(C) in SL(2,C) is p+Kg; the
stabilizer of n is KcP-.
(ii) P+ KcP- contains c^ SU (1,l) for m : - I , 0, I .

(B.1.14) Remark. One can make (B.1.13, ii)explicit:

verification. In fact, the solution of

(B .1 . r4 .1 )(; ?X; .e')( l  t) :( i  3)
o : d ,  u : a - l f ,  w : a - l y .

In.particular, the canonical mapping

P+ x Kg x P- -+ P+ KgP- c. SL(2,C)

rs lnJectlve.

Along these lines, we note that if U6 denotes the exponential of C.(21)2, then

Int(c)Ug: P-, and c e UgP+Kg. (B . l . l  s )

For the latter, it suffices to verify the corresponding assertion for Int(c)SU(l,l) :

SL(2,R),  but then we observe that ( l  ; t )"  n*er 0 (cf .  (B. l . l4. l )) ,  and we
appeal to (B. l . l3( i )) .  \v |  /
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At this point, it is convenient to mention the canonical automorphy factor

; / : P + K g P - x C - - + K c : C * , ( 8 . 1 . 1 6 )

which is characterized by the properties:

I @, ,) is, for fixed g, holomorphic in z, (B.1 . 16. I )

/Gh,t) :  / (g,hz)/(h,z) (whenever this makes sense),  (B.1.16.2)

{lqt*"t,,c 
is thg,gyftback of the canonical projection P+Ks-- Ks (B.1.16.3)

(so is ahomomorphism, independent of zeC).

From (B.14.1.2), one sees that t is determined by its values at z :0:

"{ @, h . o) : I @h,o) t (h,o)-' ;

it then follows that

/ @,0) is the K6-component of g (recall (8.1.14.2)).

( B . 1 . 1 6 . 4 )

( 8 . 1 . 1 6 . 5 )

(8.2) General groups of Hermitian type. Let D be an irreducible Hermitian sym-

metric space of non-compact type, G its connected isometry group (a real Lie

group), and g the Lie algebra of G. Fix a basepoint zs € D, whose stabilizer is a

maximal compact subgroup K6.
There is a fundamental structure homomorphism (Harish-Chandra; see

[ 1 : p . 1 7 8 ] ) :

O :  U(1)  x  SU( I ,7 ) '  - -+  G, ( B . 2 . 1 )

where r is the R-rank of G. (To do this and the sequel over Q, which is what one

really wants, one must group the SU(l,l) factors into bunches, and then map in

SU(1,1)'s multidiagonally. We wil l not carry this out here (see [2:2.91 or

[1:p.193]) . )  To descr ibe the features of  O,  le t  n i :S( I ( l , l ) ' - - -+SU( l , l )  denote

project ion onto theTth factor  for  |  < i  <r ,and' le t  A" :  SU(I ,1)  - - -+ SU( l , l ) 'be

the sth partial diagonal (0 < s < r), i.e., ni o Ls is thc identity mapping for 7 < s

and the trivial homomorphism for 7 > s. Then O: @l{r}",qu1t,r;' is a finite

immersion and the image of A', where,4 denotes exp a, under O is a maximal R-

split torus A6 of G. Moreover, Ou : O o (l x A, o l) maps U(l) onto the center

of K.
One takes the composite of the adjoint representation of G with @, yielding a

representation of U(1) x SU(I,1)'. Its irreducible constituents (as a real repre-

sentation) are tensor products of an irreducible real representation of U(1) and r

irreducible representations of SU(l,1). On the other hand, under (Dv, g decom-

poses as the Cartan decompositiot g: kc @p6 as a representation of U(l), in

which *c is trivial and p6 is the direct sum of copies of the two-dimensional rep-

resentation R1 of lowest possible nonzero weight. It follows that Ad6 o (D decom-
poses into rather small pieces. Indeed, the only possible irreducible constituents

are listed below:
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(a) I  @s2(7);

(b) 1 @ (sr(r)  @ sr(k)) ,  i  < k;

(c) Rr @ Sr(,r);

(d) Trivial.

(8.2.2)

Here, S1(7) denotes the representation of SL(2)' that is trivial except on the 7th
factor, where it is given by 51, etc. There are precisely r summands in g of type (a),

spanning the image of sr(1,1)'. All factors of type (d) lie in ft6. From (8.2.2), it is
not hard to determine that the R-root system of G must be of classification type
BC (or its "degenerate" form C).

Next, we need to describe the standard maximal R-parabolic subalgebras q"
(l < s < r) of g associated to A6. Let A6,, denote the one-dimensional subtorus

O(4"(,4)) and a6,, its Lie algebra, with positivity induced from acsr(l, l).
Then

3 1 3

where:

Then w, : n" @ u" is the nilpotent radical of q, u, the center of wr; g, is a Levi
subalgebra, with a6,, its R-split component. Bases for these are easily identified in
terms of (8.1.9) and (8.2.2):

( a )  l g  G r ) ' ^ . z , i f  s >  j , g , i f  s <  j ;  l @ G r A )  e g ,  ( a l l c a s e s ) ;
l @ ( Z z ) " e g , i f s 1 j 1 '

( b )  l 8 ( 4 @ Z t ) e u , i f  k > s >  j , g " i f s (  j , u , i f  s > k ,
l  @ (Zr  @Ez)  e  o , i f  k  >  s  >  i ,  gs i fs  <  i ,  g "  i f s  )  k ,
|  @ (Zz@Zr) e g" i f  s (  j ,  g, i f  s > k,
|  @ (Zz@ ez) e g, i fs < j ;

( c )  r + @ 4 , r - @ Z l e n s i f s > 7 ,  g r i f  s <  j .

Moreover, there is a decomposition

9 s : g s , / @ g r , t ,

such that (B.2.5) induces a direct sum decomposition of Lie algebras:

g,lae,r: (9,//ae,') @ 9,,n,

which can be most directly described as being determined by a partition of the
basis vectors listed in (8.2.4), viz.,

(B.2.5.1) g",7 is spanned by the vectors l8 (ar @e2) and l@Gz@21), f rom
representations of type (b) with s > k, together with their Lie brackets;
it contains the vectors | @ (AG2) from representations of type (a) with
r > / .

Q s : u s @ u t @ g s ,

z" is the weight space for -2&,

u, is the weight space for -&,

g" is the weight space for 0.

(B.2.3)

(B.2.3.1)

(8.2.3.2)
(B.2.3.3)

(8.2.4)

(B.2.s)
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(8.2.6) Definitions. For 0 < s < r,
(i) The srh Cayley element of Gc associated to Q ts c" : (ti o A")(c).

(11) Int(c,)(resp.Ad(c,))  isthesth(part ial)  Cayleytransformof G(resp.of g).

Let PI and, Po denote the subgroups of G6 correspondin1 to p[ and pG,
respectively. We wish to view the partial Cayley transforms in terms of their effect
on P[(K6). (the stabilizer of zs in Gc) orp[ @ (/<6)" (cf. (B.1.7)). To that end,
recall the discussion of weights in representations of Sl,(2) from (B.1.8). In the
representation R1 of t/(1), let r+ be a positive weight vector, and r-: rT. We
have that p[ has negative ft-weight and po positive. In terms of (B.1.10) and
(8.2.2\:

(a )  I  o  ( " * ) '  rp t ,  |  @e+e-  ek6 ,  |  6 (e - )2  ep6;
( b )  1  8  ( e +  6 e + ) e p [ ,  t  8 ( e *  @ e - ) ,  I  @ ( e -  @ e + )  e k 6 ,

1 8 ( e - @ e - ) e p 6 :
( c )  r * 8  e *  e p t ,  r +  @ e - , r -  @ s +  e ( k c ) c ,  r -  @ e -  e p o .

It is easy now to decompose the action of c" according to (8.2.2): on every
trivial or R1 factor, cr acts as the identity; on S1 (la) or S2(m), cr acts in the usual
way (i.e., as in (B.1.2) or (B.1.3(i i))) if s > m, and as the identity if s < m. Let
kr,n : kc o !r,1,, ks,t : kc a gr,r, and define p;, analogously. One can verify with-
out difficulty:

(B.2.8) Proposition. (1) The maximal O(,SU(I,l)')-inuariant subspace of gs on
which Ad(c,) is the identity is 9,,1,.
(11) The dffirential of Q oA, : SU(l, 1) ----r G takes u to u,, p+ to p[, k to k6, and

p- b pe.
(111) Ad(c,) takes u, into po, g,,7 into (kc)c, and k,,x into itself.
(iv) Ad(c,)(p6 @ (ftc)c) = (p,)c @ Q,/)c @ ((p,,ft) l @ (ft,,a)c)
(v) Ad(c!) is an inuolution of 9c that preserues (frc)c.

(B.2.9) Remark. The formula "opposite" to (B.2.8, iv) gives that

Ad(c, t ) ( (k6)c @pc) = (s , , )co ( ( f t , , r )c  @ 0"*)E) .

Let n" : w, @ 9r,r, and N" : WrGrl the corresponding Lie group.
The canonical automorphy factor for G is defined as for G: St/(1,1) in

( B . 1 . 1 6 ) :

/6: P[(K6)cPZ x D ---+ (K6)g,

and is similarly characterized; we write that here in the form

9e@,t) is holomorphic in z,

flc(S,to) is the (K6)g-component of g,

.{c@h, z) : ./c(g, hz) l6(h, z).

(8.2.7)

(8 .2 .10)

(8 .2 .10 .1)

(B .2 .10 .2)

(B .2 .10 .3)

It follows from (B.2.10.2) that 1[o ishereditary for subgroups. Also, the expression

/c@h, zs)/6(h, zs)-l (B .2 .10 .4)
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is invariant under ft v-hk (k e Ke), which shows that lo is completely determined
by its ualues at z: zs. We have, moreover, the following:

(8.2.10.5) Lemma. If q e P+ (K6)n and g e P+ (K6)oP o, then

,/c(qs, to) : /c(q, zo) gc@, zo).

(8.2.11) Lemma. (l) s e P[(K6).P. is in PE(KG). if and only rf /c@,2) is inde-
pendent of z.
(i i) For all s, c! is contained in Pt(KG)cPo for m: -1,0, I (c/ (8.1.13, (i i))).

One writes E for Int(h\G : hGh-r . There is an easv formula:

fa]nt(h)s, hz) : 1n111t1 19c@, t)) (8.2.r2)

(with hzs as basepoint for the left-hand side).

(B.2.13) To conclude, we recall the canonical automorphy factor gc,p" of the pair
(G, P") (where P, is the subgroup of G corresponding to {,), with domain
G(R)0 x D,treated in [13:(5.2)] (see also [15:(1.8.7)]). It has the basic properties
(cf.  (B.2.10)):

flc,p"(g,t) takes values in K6, and is holomorphic in z, (B.2.13.1)

/ c , p " ( k , z o ) : k I f  k e K ,  ( 8 . 2 - 1 3 . 2 )

/c,p,(gh,r) :  /c,p"(g,hz)/6,p"(h,z).  (B.2.13.3)

There are also the further properties:

3 1 5

/c,p"(g,z) is independent of z if g e N,,

/c,p"(g, ro) : 9c,.0@, cazs) lf g € G,,h,

(8.2.r3.4)

(8.2.13.s)

plus some finer ones (see [15: (1.8.7.5),(1.8.7.6)]), which contain the specification of
the homomorphism of N, given by (8.2.13.4).

Note that [Hl] gives a formula gc.p" in terms of 16 and the Cayley transform:

.{c,p"(g, zo) : /ckr', to)-' loG;t g, ro). (8.2.r4)

Since lrl(c;')lf" - Pt6o)n (cf. (B.2.8(iv))), we have from (8.2.10.5) that for
g € N , ,

/ek, 
I 
s, zs) : /6Qnt(r;\s, zs) !6k, 

t, zg);

hence,

9e,",(g,zo) :  Int( /ck; ' , ro)- t) f io(Int(c,)- tg,zs) i f  9 e { , .  (B.2.14.1)

Moreover, if g e (/, then Int(cr)-'g , Pt, and it follows that

f l c , r " (g ,zo) : l  i f  geU, . (8.2.r4.2)
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Finally, since c, centralizes G1r,", we have
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(B.2. ls)

/c,""(g, zo) : fick, 
t, to)-' 4o(gc, 

r, zo)

:  Int( f iek, '  , to)- t) /o(g,c,r  zo) i f  g e G1,, , .  (8.2.14.3)

We can actually rewrite (8.2.14), for arbitrary g e G as:

!c,p"(g , to) : Int(!6Q,1 , zs)-t) y.(tnt(t,)-t g , ,, I to) .

This suggests the formula

flc,p "(g, 
t) : Int(hck, t, zg1- | 

7 g.1tnt(c,)-l g, c;t z),

which is actually correct;property (B.2.13.3)follows directly from (B.2.10.3).

Appendix C. Equal-Rank Groups

The material outlined below is, or deserves to be, well known:
(l) Let gbe a real Lie algebra whose complexification is simple. There are two

involutions of the Dynkin diagram of the c-root system: lo, induced by multi-
plication by -1, and thus a feature of 96, and /0, induced by complex con-
jugation, which, of course, depends on the real form. According to [6: Sec. 1], g
admits a compact Cartan subalgebra (is equal-rank)zz if and only if to : yo. lt
follows that the Dynkin diagram of the C-root system of a Lie algebra that is
not eq\al-rank has a nontrivial automorphism. It follows that its classification
type must be one of the following: A, (r > 1), D, Ee .

(2) As in [17: Sec. 4], Harish-Chandra's theory of strongly orthogonal roots carries
through in the equal-rank setting, and one obtains a homomorphism of real Lie
algebras: (r/z)@' ---+ g. While there is much less structure than in the Hermitian
case, one can see at once that there is a set oforthogonal real (restricted) roots
that span.23 This rules out A, (r > 1) and E6 as the real root system.

(3) Note that DI can go either way, depending on the ranks. Indeed, -l is an
element of the Weyl group of D,, and therefore, tc : I if and only if r is even.

(4) g is of Hermitian type if and only if its Cartan involutions come from inner
derivations.
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