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Abstract. For a general class of functional differential inclusions with non-convex right-
hand side, being the set of extreme points of a continuous closed convex set-valued map, the
set of local solutions and that of global solutions are proved to be nonempty. Our proof is
based essentially on the Baire category theorem.

1. Introduction

In this paper, we shall consider the functional differential inclusion of the form

* ( t ) e 0 G ( t , x , ) ,  t e l } , T l ,  ( l )

x(o) : rpo (0), 0 e l-h,01, (2)

where dG(r,x,) is the set of extreme points of the set G(t,x,),g0 e Csl-h,O), E
is a separable reflexive Banach space, and G is a given set-valued map from

f0, Zl x Crl-h,O1 into E.
Under quite general assumptions on map G, we shall prove, by using the Baire

category theorem, that the differential inclusion (1)-(2) admits local and global
solutions. The idea of using the Baire category theorem has been proposed firstly
by Cellina [5] for finite-dimensional differential inclusions. Subsequently, in [7, 8],
a method based on the Baire category has been used in order to prove the exis-
tence of solutions to the Cauchy problem for non-convex, set-valued differential
inclusions in Banach spaces. Further developments in this direction can be found
in [3, 6].

* This work was supported in part by the National Program of Basic Research in Natural
Sciences, Vietnam.
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2. Preliminaries and Formulations of Main Results

Throughout this paper, the following notations will be used. Let E be a reflexive
separable real Banach space and E* its tqrpological dual. For Z > 0, h > 0, r > 0,
we denote by CBI-h,T) and Cnl-h,0] the Banach spaces of continuous functions
from [-ft, T] and l-h,01to E, respectively, and B(x,r) the ball in E of radius
r centered at x e E, B:,8(0, 1). For any A c E, ,4 denotes the closure of
A,A" - ^E\l and dl stands for the set of all extreme points of A. The closed
convex hull of I is denoted by coA. By definition,

r ,c:  suP{P 2 0 :  lx e A: B(x,P) c A},

d(x, A) : inl llx - -r,ll.

The Hausdorff distance between two subsets A, B in E is defined by

For any x(.) e C6l-h, Z] and any t e [0, I], we denote by x, the element of the
function space C :: Cnl-h,0] defined by a(0) : x(t + 0),-h < 0 < 0. Then the
map t --+ x1 is continuous on [0,7] and satisfies

,?ffiI, ll"'(') ll. :,.fx^r1 ll"(t) llr'

Assume G: I  x C --28 aset-valuedmap suchthatforeach te I ,  qe C,G(t,g) is
a closed convex set with nonempty interior in .E and g0 e C a given initial func-
tion. Together with (l)-(2) we consider the following differential inclusion

* ( t ) e G ( t , x , ) ,  t e l D , T l ,  ( 3 )

x(o) : qo (o), 0 e l-h,ol. (4)

We say that the function x(-) e Csl-h, Z] with x(0) : g0@), 0 e l-h,Ol is a local
solution of the Cauchy problem (l)-(2) (resp. (3)-(4)) if there exists Z6 e (0,7]
such that x(.) is absolutely continuous on [0, Zs] satisfying the differential inclu-
sion (1) (resp. (3)) for a.e. t e [0,76]. Moreover, 1f T0: Z, then x(') is said to be a
global solution of the respective Cauchy problem.

The main results of this paper are the following two theorems.

Theorem 2.1. Let U c CBI-h,O] be an open subset, e0 e U be gioen and
G : I x U -- 2E a set-ualued map of closed conuex ualues with nonempty interior in
E. Moreouer, assume the following hypotheses are satisfied:

(i) For each g e U , G(- , g) is measurable on I.
(11) For each g e U and any e> 0, there exists a neighborhood Vq of q such that,

f o r a . e . t e I ,

H (A, B):  max{sup d(x, B),  sup d(/ , ,4) }
[ x e , 4  

y e B  
)

H(G(t,e),G(t ,q '))  < e, Yrpt e V, o (1.
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(111) There exists 6 > 0 such that,for a.e. t e I,

r c 7 , e o ) > d > 0 .

(iv) There exists an integrable function d(t) > 0 on I (or briefly, a(.) e S|.(t))
such that,for a.e. t e I and all g in a bounded subset Q c. CB[0,T1,

G(t ,q)  c .  u( t )8.

Then the Cauchy problem (l)-(2) admits a local solution on l0,Tl.

Theorem 2.2. Let G : I x C --- 2E be a set-ualued map of closed conuex ualues with
ionempty interior in E qnd e0 e E be giuen. Assume G satisfies the following
hypotheses:

(1) For each rp e C,G(.,rp) is measurqble on I.
(i1) For each bounded set U c. CBI-U,O1 and any e > 0, there exists 6 > 0 such

that, for all q e U and all rp' e 8(9,6) a U,

H(G( t , e ) ,G ( t , q ' ) )  <  e .

(iii) For each bounded set U e Csl-h,O], there exists pu > 0 such that, for a.e.
t e I,

)!f"ot"'l' o''

(iv) There exists an integrable function a(-) e V].(t)) such that, for all
g e CBI-h,0] and for a.e. t e I,

G(t,q) c (l * l lel)a(t)a.

Then the Cauchy problem (l)-(2) admits a global solution on l0,T).

We note that the condition of Theorem 2.1(ii) is equivalent to the following
(ii) For each compact set KcU and any e>0, there exists6>0 such that,for
a.e. t e I,

H(G(t ,Q),G(t ,9 ' ) )  < e,  V9'  e B(p,6)  a (J ,  q e K.  (5)

Indeed, Theorem 2.1(ii) implies that, for any eeK, there exist 6r>0 and a
subset I, c I of complete measure such that, for all t e Ir,

H(G( t ,e ) ,  G( t ,a 'D  <  : ,  Ye '  e  8 (9 ,6 r ) .

Assume {B(,p,,6r,))'i:1 is a finite covering of K. Set

6i6 : ,22,i' Ix,': O Iq,'

Then it is clear that Ia,, is of complete measure and (5) holds for all t e la,r.
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3. Proof of Results

First, we recall two well-known facts (see [6]) which will be used in the proof of the
main results.

Lemma 3.1. Let (O, d) be a complete measurable space and I be a measurable
multi-ualued map from dl into a complete metric space (E,d) and p(') be a measur-
able function from (2 into Ra such that, for each at e {2,

f(al) : intf(ar), and rv(a) > p(at).

Thenthere exists smeasurable function S:O - E such that

d(S(a),f"(r)) > p(ct), Var e C).

Lemma 3,2. Let E be a Banach space and M, Mt be closed conuex sets with non'
empty interior in E such that M', Mf are nonempty and H(M, Ur) < *q. Then
( l )  H(M' ,  ,  Mf)  < H(M, M1) :  H(aM ,1Mr) .
(11) For each t > 0 andfor any x e C, we haue

d(x,O(M + eB) < d(r,aM) * e, Yx e M.

Now, we proceed with establishing several technical results which will enable
us to use the Baire category in proving Theorem 2.1.

Lemma 3.3. Let G satisfy the hypotheses of Theorem 2.1. Then there exist a number

.rr, j tt l .t d(x(t),G"(r, x')) > 0.

Proof. By Theorem 2.1(iii) and Lemma 3.1, there exists a measurable function
ug : 10, Tl --+ E , such that

d(us(t) ,G'( t ,e\)  > 6, a.e. on 1.

Set

xo1t1:  { t^ |o. l+ f ius(t)dr '  ror  teI
'  

I pu(l), for t e [-1,, o].

By Theorem 2.1(ii) and Lemma 3.2.a, there exists a neighborhood V6o c. (I of p0,

such that for a.e. t e I we have

H(G ' ,  ( t , 9 ) ,  G ' ,  ( t , ' po ) )  . 6 ; ,  Y9  e  V .o ,

and hence.

d (us ( t ) , c ' ( t , , p ' ) )  >  d (us ( t ) ,G" ( t , q \ )  -  H (G" ( t , e ) ,G" ( t , , p \ )  >6a ,  v ,p ,  u r , .
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On the other hand, since the map t ---) x! is continuous at / : 0 and x$ : p0, there
exists Zs > 0 such that x0, e Vro, for all r e (0, 7s]. Therefore,

d(us( t ) ,G ' ( t , x?) )  ,uo ,  , re  [0 ,  7s ] .

This completes the proof. I

For the sake of simplicity, we introduce the following notations: lt : 10, Z1] is
a fixed subinterval of 1; Sr (resp. 52) is the set of all solutions to the Cauchy
problems (1)-(2) (resp. (3)-(4)); So is the set of continuous functions x(.) :
l-h,71] -- E such that x(.) is absolutely continuous ofl 11,xs : rptD,

essinf d( i ( t ) ,G'( t ,x1)) > 0

and x(.) satisfies the inclusion G(t,x,)ca1(t)8, for a.e. teIl and with some
function u, e v[(Ir).

Lemma 3,4. Let G satisfy the hypotheses of Theorem 2.1. Then 52 is closed in
Cul-h,71] with respect to the topology of unifurm conuergence.

Proof. Let (')) b" a sequence converging to the function x(.) e CBI-h,I1].
Since x"(.) o(.), Vr, on l-h,0], it follows that x(.) satisfies the initial condition

h
u'(t):Dlix'+i(t),  with ^f > 0,

t :1

which converges to u(.) inthe normed topology of 9].(1r). It follows that, for a.e.
t e l1,l lu"(t) - 

"(t)l ln 
---+ 0 as n -+ @. Therefore, we have

x( t ) :  po(o)  +

which implies that x(.) is absolutely continuous on I and *(t) : u(t) a.e. on 11.
According to (ii)1, for any e > 0 and nlarge enough, we have

G( t ,x )  -  
|n  

+  GQ,x , )  .

Hence, u"(t) e 
|n 

+ C1t,x7) a.e. on l. This implies

*(t)  :  
)X""@ 

e eB r G(t ,x,) ,  a.e. on 11.

The proof is complete. I

33s

h
L i : r ,

i : l

hmI u'g)ds,
n-+oo J 0
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Now, for o > 0 we define the following subset in CBI-h,T1]

s"  :  { " ( . )  .  So '  [n  dg( t ) ,G' ( t ,x , ) )a t  < o) .
L  J o  )

We shall consider So as a metric space with the metric induced from Csl-h,T1].

Lemma 3.5. Let G satisfy all hypotheses of Theorem 2.1. Thenfor euery o > 0, S" ir
open in Ss.

Proof. Let {""(.)} c Ss\S" and x'(') converges to x(') in the metric space Ss.
Clearly, xo : g0 on l-h,0]. Thus, it suffices to consider the situation on fi . By the
same reasonings as in the proof of Lemma 3.4, there exists a sequence {a'(')} of
the form 

t, r,
u'(t): lt i*"*'1t1, with l i > o, Dli : t

i : l  i : l

converging a.e. on Il to x(t). According to (ii)1, for n sufficiently large, G(t,x7) c.

f f / / F. \'\

I a14t1, G"(t, x,)) d, > | dl *(t), I G(t, x,) t ..L B ) ) dt - e
J t '  J r t  \  \  t l  /  /

f / / n \ " \
>  l i m  I  d l u ' ( t ) ,  { c ( r , x ' )  + ; B l  l d t - e

n - @ J L  \  \  t l  /  /

> lim f .^'; I a( *'+i1t1, ( e1,,*,y+ ]r)") a, - ,
n - m A  J L  \  \  t t  / /

' n t

> l im I l l  I  d(*"+i( t) ,G"(t ,x l+i))dt  -  e
n-a  ?  J4

t,

,  D t i a  -  e : 6  -  e .
i : l

Since e can be arbitrarily small, this implies that

I  a6p7,G'(t ,x,))  dt > 6.
J h

Thus, x(') . S\S", completing the proof. I

Lemma 3.6. For any o > 0, the set So is dense in Ss.

Proof. We shall prove that S" is dense in Ss. For arbitrary x(') e Ss and e > 0, we
set 

r :  ess inf ,d(x(t) ,G"(t ,x)) .
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By the definition of the set 56, r ) 0. Define a : rr,in{f ,!) urra
l z  ) t l  )

G t ( t ) :  { y ,  n ,  d ( y , G " ( t , x , ) )  >  6 } .

By virtue of the hypotheses of Theorem 2.1, the multi-valued map tF-) G(t,x,)
is measurable and hence, its graph is g @ 0(E)-measnrable itself (i.e., its graph
belongs to the smallest o-field containing all sets of the form M x A with M e g
and A e g(E)) [3]. It follows that the graph of the multi-valued map t + G" (t, x)
also belongs to g @ B(E), which in turn yields the measurability of this map itself
[3]. Consequently, the map *-d(y,G'(t,x1)) is measurable for every y e E. This
implies that Graph G1e I @ g(E) and therefore, G1 is measurable [3]. More-
over, the map G1 takes closed convex values, with nonempty interiors, and for any
t e 11 and y e 0G1(l), we have

d(y ,G ' ( t , x , ) )  :6 .  (6 )

Now, choose p > 0 such that

H(G' ( t ,e ) ,G ' ( t ,g 'D  <  612 (7 )

for al l  ee{xt:  tel l } ,p 'e B(p,p)aU and al l  te11. Note that such a p exists,
according to the hypothesis (ii)1 and Lemma 3.2(i). Clearly, *(t) e G1(l) a.e. on I
and

337

(8)

I vo{o) + fi x(s) ds if r e fo, 11]
t eo(4 ir r e [-i, o].

lows that z1 e B(x1, p) o U and hence,

H (G" (t, x1), G' (t, z 1)) < 6 / 2.

J,,ot ' { ' ) ,G"(t ,2,)) 
at <}ar, < o'

T.?i ll[r<') 
-'(t]d"ll < min{p,e}

Define

z(t) -

From (7) and (8), it fol

In view of (6), we can write

1

;6 
> d(2(t), G' (t, x,)) + H (G' (t, x1)G" (t, z1))

> d(z(t) ,G'( t ,2,))

>  d (2( t ) ,G ' ( t , x , ) )  -  H(G ' ( t , x1) ,G" ( t ,2 , ) )  >  612

a.e. on l .
Consequently,

ess inf  d(2(t) ,G'( t ,2,))  > 0

and
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Thus, z(.) e S". Moreover, from (8), it follows that llx(l) - t(t)ll < e, Yt e \,
and xs : z0: p0. This completes the proof. I

Proof of Theorem 2.1. We have to prove that St * 0. By Lemma 3.3, there exists
Zs e (0, Z] such that So t' Q, where Ss is defined as above with Zr : Io. There-
fore, by Lemma 3.4, Ss can be considered as a complete metric space (w.r.t. the
topology of uniform convergence). From Lemmas 3.5 and 3.6, it follows that, for
every d > 0, (S")' is a set of the first category in $. Therefore, according to the
Baire category theorem, we have

f l " i *o '
P:1

On the other hand, it is obvious that

fl s,'. s,.
p : I

Thus, 51 is nonempty, as was to be shown. I

To prove Theorem 2.2, we need the following

Lemma 3.7. Let x(.) be a solution of the Cauchy problem (3)-(4) on the interual
l -h,T l ,  then

1",r( t ) l l  < ( l le0l l  + r lexp([ 'o(")a")  -  t ,- \ J o  
/

for euery t e [-h, T].

The proof of the above lemma can be found in [2].

Lemma 3.8. Let G be a multi-ualued map satisfying the hypotheses of Theorem 2.2.
Then there exists a continuous function x:l-h,Tl--+ E such that x6- g0 on
l-h,01, x(.) is absolutely continuous on l0,T) and satisfies:

ess inf  d(*( t) ,G'( t ,x,))  > 0.

Proof. Denote

^  / r r  \
n :  ( l l e ' l l 1 t ) . * p ( J o  u @ d s ) -  t

and p - pnp,n1. By Lemma 3.2(i) and the hypothesis of Theorem 2.2(ii), there
exists d satisfying

a(s) ds0 < d <1r + nyf

for a.e. t e 1, onesuch that, for any rp e B(O,R) and has H (G" (t, r!), G' (t, q')) <
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p12, Ye' e B(rp,6). On the other hand, since a(.) e S)_(t), it follows that for any
d > 0, one can choose an integer m' e N such that

I a(s)as < d/(l + R)
J t

for any interval "r c 1 with p(J) < T lm'.
By Lemma 3.1 and the condition Theorem 2.2(i11), there exists a measurable

function ae : [0, /'] - E,t' : !, such that

d(us(t) ,  G"(t , ,po)) > p a.e. on [0, / t ] .
Now, we define

x(t) : { 
"^':.' 

+ JI us(s) d's ror t e fo' t']

I p'(r) for t e l-h,ol.
Then, since the map tr--+x, from 10,/'lto Cr[-h,0] is continuous on 10,/tl,for any
d > 0, there exists rnl N such that, for every tel},/' l with ll-01 < Tfmil,we
have l lx '  -  xol l  :  l lx,  Aol l  < 6.

Set rn: max{m',m"},/ : T/m and divide the interval [0,2] into m equal
par ts  by  the  po in ts  0 , / ,2 / , . . . , i / , . . . ,7 ;  i :1 ,2 , . . .  jm.  We sha l l  in te rpo la te  the
function.rr(.) on the whole interval [-h,T) by induction. First, since llp0ll < R and

as(s)e G(t,qa) c a(s)[1 +l laol l lB,

a.e. on [0,/], we have

l l"(r) - po(o)ll < [ 'o(";1r * R] ds < d.
J O

On the other hand, for each tel0, /1,  l lx,-xol l  <d and hence, x,eBQpU,d). I t
follows that

d(*(t), G'(t, x,)) : d(uo(t), G" (t, x'))

>  d (us(s ) ,e"Q,q} ) )  -  H(G"( t ,eT) ,G, ( t ,d )  >+

a.e. on l0,ll.
Assuming the function x(.) has already been defined on l},i/) with i < m and

satisfying all required properties, we interpolate it on [if ,(i + l)/] as follows. Let
ui : lil, (i + l)/l --+ E be a measurable function such that

d(ui( t) ,G"(t ,x is))  > p

a.e. on li/,(i+ l)/] (such a function ur exists in view of the hypothesis Theorem
2.2( i i i )  and Lemma 3.1).  On l i / , ( i+l) f l ,  we def ine x(r)  :x( i / )- f  ! , ' ru;(s)ds.
Since z;(s) eG(s,xix) a.e. on l i / , ( i+l) / l  and l l ral l<R (by Lemma 3.7),  we
obtain, for any t e [i/,(i + l)/1,

l l r (4 -  x( i / ) l l  < [ t ' *" ' l l r , ( r) l  1d, = ["*" t  a(s)( l  + R)ds < d.
Ji t  J i t
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Moreover,  s ince lr  - i l l  <l  for al l  te l i / , ( i+l) / ) ,  we have l l* , -  *ol l  < d. Con-
sequently, x1 e B(xy,6) and

d(*(t) ,  G' ( t ,  x,))  :  d(ui( t) ,  G' ( t ,  x,))

>  d (u ; ( t ) ,G ' ( t , x1) )  -  H(G ' ( t , x ix ) ,G ' ( t , x , ) )  >  p l2

a.e. on l i l , ( i  + l ) /1.
Thus, by induction, the function x(') with the required properties can be

defined on the whole interval l-h, f]. This completes the proof. I

Proof of Theorem 2.2. It is clear that the multi-valued map G satisfies all the
assumptions of Theorem 2.1 on 1 x -B(0, R), with the number R defined as in
Lemma 3.8. Again, as in the proof of Theorem 2. 1, by using Lemmas 3.4, 3.5, 3.6,
with Zr : T and applying the Baire category theorem to the set So (which is
nonempty, by Lemma 3.8), we deduce that l[,S,' 7 fl. Thus, Sr * 0, with
Tr : T. This completes the proof. I
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