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Abstract. For a general class of functional differential inclusions with non-convex right-
hand side, being the set of extreme points of a continuous closed convex set-valued map, the
set of local solutions and that of global solutions are proved to be nonempty. Our proof is
based essentially on the Baire category theorem.

1. Introduction

In this paper, we shall consider the functional differential inclusion of the form

x(1) e 0G(t,x,), te0,T], (1)
x(0) = ¢°(8), 0¢€[-h,0], )

where 0G(1,x,) is the set of extreme points of the set G(z,x,), ¢° € Cg[-h,0], E
is a separable reflexive Banach space, and G is a given set-valued map from
[0, T] x Cg|—h,0] into E.

Under quite general assumptions on map G, we shall prove, by using the Baire
category theorem, that the differential inclusion (1)—(2) admits local and global
solutions. The idea of using the Baire category theorem has been proposed firstly
by Cellina [5] for finite-dimensional differential inclusions. Subsequently, in {7, §],
a method based on the Baire category has been used in order to prove the exis-
tence of solutions to the Cauchy problem for non-convex, set-valued differential
inclusions in Banach spaces. Further developments in this direction can be found
in [3, 6].

*This work was supported in part by the National Program of Basic Research in Natural
Sciences, Vietnam.
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2. Preliminaries and Formulations of Main Results

Throughout this paper, the following notations will be used. Let E be a reflexive
separable real Banach space and E* its topological dual. For T > 0, 2 > 0, r > 0,
we denote by Cg[—h, T'] and Cg[—h, 0] the Banach spaces of continuous functions
from [—h, T] and [—h,0] to E, respectively, and B(x,r) the ball in E of radius
r centered at x € E, B= B(0,1). For any 4 = E, A denotes the closure of
A, A° = E\A and 04 stands for the set of all extreme points of 4. The closed
convex hull of 4 is denoted by coA4. By definition,

rqy=sup{p=>0:3Ixe 4d: B(x,p) c A},
d(x, 4) = inf }x - y.
yeA

The HausdorfT distance between two subsets 4, B in E is defined by

H(A,B) = max{supd(x, B), supd(y,A)}.
xeA yeB

For any x(-) € Cg[—h,T] and any t € [0, T|, we denote by x, the element of the
function space C := Cg[—h,0] defined by x,(6) = x(t + 6), —h < 6 < 0. Then the
map ¢ — X, is continuous on [0, T'] and satisfies

. ey t -
tren[(z):f)T(] I2: ()Nl tsrfljfﬂ x|k

Assume G : I x C — 2F a set-valued map such that for each 1€ I, p € C, G(¢,9) is
a closed convex set with nonempty interior in E and ¢° € C a given initial func-
tion. Together with (1)-(2) we consider the following differential inclusion

x(t) e G(t,x;), te[0,T], (3)
x(6) = ¢°(0), 0e[-h,0]. 4)

We say that the function x(-) € Cg[—h, T] with x(8) = ¢°(0), 6 € [-h,0] is a local
solution of the Cauchy problem (1)—(2) (resp. (3)—(4)) if there exists Ty € (0, T
such that x(-) is absolutely continuous on [0, To| satisfying the differential inclu-
sion (1) (resp. (3)) for a.e. t € [0, Ty]. Moreover, if Ty = T, then x(-) is said to be a
global solution of the respective Cauchy problem.

The main results of this paper are the following two theorems.

Theorem 2.1. Let U < Cg[—h,0] be an open subset, ¢° € U be given and
G:I x U — 2% g set-valued map of closed convex values with nonempty interior in
E. Moreover, assume the following hypotheses are satisfied:
(i) For each ¢ € U,G(-,¢) is measurable on I.
(ii) For each ¢ € U and any ¢ > 0, there exists a neighborhood V,, of ¢ such that,
forae tel,

H(G(t,9),G(1,9") <&, Vo' eV,nU.
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(iil) There exists & > 0 such that, for a.e. tel,
r(;(t, (00) >02=0.

(iv) There exists an integrable function a(t) >0 on I (or briefly, a(-) € ,Sf’ll{+ ()
such that, for a.e. t € I and all ¢ in a bounded subset Q < Cgl0, T,

G(t,9) < a(t)B.
Then the Cauchy problem (1)—(2) admits a local solution on [0, T).

Theorem 2.2. Let G : I x C — 2F be a set-valued map of closed convex values with
nonempty interior in E and ¢° € E be given. Assume G satisfies the following
hypotheses:
(1) For each p € C,G(-, @) is measurable on I.
(i) For each bounded set U < Cg|—h,0] and any & > 0, there exists 6 > 0 such
that, for all p € U and all ¢' € B(p,6) " U,

H(G(t,9),G(t,¢")) < e.

(iii) For each bounded set U = Cg[—h,0), there exists py > 0 such that, for a.e.
tel,

inf r > Py
ot G(tw) = PU

(iv) There exists an integrable function a(-)e i”}h (I)) such that, for all
¢ € Cg|—h,0] and for a.e. tel,

G(t,9) = (1 + [lol))a(2) B.

Then the Cauchy problem (1)—(2) admits a global solution on [0, T).

We note that the condition of Theorem 2.1(ii) is equivalent to the following
(ii) For each compact set K < U and any e > 0, there exists § > 0 such that, for
ae tel,

H(G(t,9),G(t,¢")) <&, Vo' e€B(p,0)nU, peKk. (5)

Indeed, Theorem 2.1(ii) implies that, for any ¢ € K, there exist J, > 0 and a
subset I, < I of complete measure such that, for all z € I,,

& !
H(G(t,9),G(t,9")) <3 Vo' eB(p,5,)-

Assume {B(¢;,d,,)}, is a finite covering of K. Set

. 0
d= min —,
1<i<n2

n
Ie= (1,
i=1

Then it is clear that Ik, is of complete measure and (5) holds for all ¢ € Ix .
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3. Proof of Results

First, we recall two well-known facts (see [6]) which will be used in the proof of the
main results.

Lemma 3.1. Let (Q, /) be a complete measurable space and I be a measurable
multi-valued map from Q into a complete metric space (E,d) and p(-) be a measur-
able function from Q into R, such that, for each o € Q,

INw)=intl(w), and rr(w) > p(w).
Then there exists a measurable function S : Q — E such that
d(S(w),I'(w)) > p(w), YweQ.
Lemma 3.2. Let E be a Banach space and M, M| be closed convex sets with non-
empty interior in E such that M, M{ are nonempty and H(M, M;) < +co. Then

(i) H(M¢,M{) < H(M, M) = H(0M,0M).
(ii) For each & > 0 and for any x € C, we have

d(x,0(M +¢B) <d(x,0M)+¢ VxeM.

Now, we proceed with establishing several technical results which will enable
us to use the Baire category in proving Theorem 2.1.

Lemma 3.3. Let G satisfy the hypotheses of Theorem 2.1. Then there exist a number
To € (0,T] and a function x(-) : [—h, To] — E, continuous on [—h, Ty, absolutely
continuous on [0, Ty|, such that x(0) = o°(0),—h <0 <0, and

ess infT d(x(1), G°(¢,x)) > 0.

te [0Y o]

Proof. By Theorem 2.1(iii) and Lemma 3.1, there exists a measurable function
up : [0, T] — E, such that

d(uo(2), G°(,¢")) > 6, ae. onl.
Set
X(f) = 9°(0) + Jyuo(e)dr, forrel
), for t € [—h,0].

By Theorem 2.1(ii) and Lemma 3.2.a, there exists a neighborhood Vj» = U of o°,
such that for a.e. t € I we have

0
H(Gc(t7¢)7Gc(ta ¢0)) <§7 V¢E I/q,o,

and hence,

d(uo(1), G°(1,9")) = d(uo(2), G°(1,9°)) — H(G(t,9), G*(1,¢")) > %, Vo e V.
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On the other hand, since the map ¢ — x! is continuous at ¢ = 0 and x) = ¢°, there

exists Tp > 0 such that x¥ e Vo, for all ¢ € (0, Tp]. Therefore,

d(uo(t), G°(1, x°)) > g Ve € [0, To).

This completes the proof. |

For the sake of simplicity, we introduce the following notations: I; = [0, T}] is
a fixed subinterval of I; S (resp. S2) is the set of all solutions to the Cauchy
problems (1)-(2) (resp. (3)—(4)); So is the set of continuous functions x(-):
[—h, T1] — E such that x(-) is absolutely continuous on Iy, xp = ¢°,
ess tlnlf d(x(1), G°(¢,x,)) > 0
€14

and x(-) satisfies the inclusion G(z,x,) = oy(¢)B, for a.e. tel; and with some
function o € L (I).

Lemma 3.4. Let G satisfy the hypotheses of Theorem 2.1. Then S, is closed in
Cg[—h, T1] with respect to the topology of uniform convergence.

Proof. Let {x"(-)} be a sequence converging to the function x(-) € Cg[—h, T1].
Since x"(-) = ¢°(-), Vn, on [—h, 0], it follows that x(-) satisfies the initial condition
(2). By the definition of S; and Theorem 2.1(iv), for a.e. 1€ I} = [0, T], we have
x"(t) € G(t,x]') < oy (f)B with oy € .,‘!’,L (11). It follows that {x"(-)} is contained in
a metrizable weakly compact subset of .,‘z”,l. (1y). Therefore, we can assume, with
no loss of generality, that {x"(-)} converges weakly to a function u(-) € .5",13_{ ().
By Mazur’s Theorem, there exists a sequence {u"(-)} defined by

In

In
W) =Y A, with A7 =0, Y =1,
i=1 i=1

which converges to u(-) in the normed topology of ,%’A (I1). It follows that, for a.e.
tel,||u"(t) — u(t)||p — 0 as n — co. Therefore, we have

x(t) = ¢*(0) + lim Jtu"(s) ds,

n—oo 0

which implies that x(-) is absolutely continuous on I; and x(#) = u(¢) a.e. on I;.
According to (ii);, for any ¢ > 0 and »n large enough, we have

G(t,x") < %B Gt %)

Hence, u"(t) € %B + G(t,x;) a.e. on [;. This implies

x(t) = lim u"(f) e eB+ G(t,x;), a.e.on I;.

n—0

The proof is complete. |
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Now, for o > 0 we define the following subset in Cg[—h, T1]

$7— {x(-) 5oy J: (D), G<(t, %)) dt < a}.

We shall consider S, as a metric space with the metric induced from Cg[—A, T1].

Lemma 3.5. Let G satisfy all hypotheses of Theorem 2.1. Then for every a >0, 87 is
open in 8.

Proof. Let {x"(-)} = So\S° and x"(-) converges to x(-) in the metric space So.
Clearly, xo = ¢° on [—A,0]. Thus, it suffices to consider the situation on I;. By the
same reasonings as in the proof of Lemma 3.4, there exists a sequence {#"(-)} of

the form
In

I
wi(t) =Y _ATE"(r), with A7 >0, Soar=1
i=1

i=1

converging a.e. on I to x(). According to (ii);, for n sufﬁciently large, G(t,x}) <
;,—:B + G(t, x;) a.e. on I;. Therefore, X"(1) = u"(1) € —B—I- G(t, x,) a.e. on [;. By
Lemma 3. 2(1:} and the fact that the function ui—d(u G(r X¢) + — B) ) is concave

on G(t,x;) + ? B, we can deduce
1

L d((1), G(1,x,)) dt = L d<x(,), ( S %B)C) ot

> lim J d(u"(t), (G(t, X;) +iB) dt—¢
n—w Jp T

n n l € ‘
> ,,111.10102 A J ( (1), (G(t,x,)+FlB))dt—a
> hmE:A"J (1), GE(t, X)) di — &
n—eo 1

Iy
> MNo—e=d—c¢.
=l

Since ¢ can be arbitrarily small, this implies that
J (1), GS(t, x,)) dt > 6.
I
Thus, x(-) € So\S?, completing the proof. [ ]

Lemma 3.6. For any ¢ > 0, the set S° is dense in Sp.

Proof We shall prove that S° is dense in Sy. For arbitrary x(-) € So and ¢ > 0, we

set
r = ess mf d(x(1), G°(t, x,)).
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f 2
By the definition of the set Sy, 7 > 0. Define § = mm{%,%} and
1

Gi(t) = {yeE: d(y,Gt,x)) = 5}.

By virtue of the hypotheses of Theorem 2.1, the multi-valued map 7+ G(z, x,)
is measurable and hence, its graph is ¥ ® #(E)-measurable itself (i.e., its graph
belongs to the smallest o-field containing all sets of the form M x 4 with M € &
and 4 € 4(E)) [3]. It follows that the graph of the multi-valued map ¢ G°(t, x,)
also belongs to ¥ ® %(E), which in turn yields the measurability of this map itself
[3]. Consequently, the map ¢+ d(y, G°(t, x;)) is measurable for every y € E. This
implies that Graph G, € ¥ ® #(E) and therefore, G; is measurable [3]. More-
over, the map G takes closed convex values, with nonempty interiors, and for any
tel and y € 3G, (t), we have

d(y7 Gc(ta xt)) =0. (6)
Now, choose p > 0 such that
H(G(1,9),G(1,0')) < 9/2 (7)

for all pe {x,:teli},¢' € B(p,p) n U and all ¢ € I;. Note that such a p exists,
according to the hypothesis (ii); and Lemma 3.2(i). Clearly, x(¢) € G;(¢) a.e. on I
and

max
tel

< min{p, e}. (8)

J'[x(s) — u(s)]ds

0

Define
) = { ¢Z(0) +lyx(s)ds if 1€ (0,7
9 (1) if te[~h,0].
From (7) and (8), it follows that z;, € B(x;, p} n U and hence,
H(G(t,x,), G (1, z)) < &/2.

In view of (6), we can write

%(5 > d(2(1), G°(t,x,)) + H(G (2, x,)G (¢, z,))
= d(Z(t), Gc(tvzt))
> d(z(t), G(t,x1)) — H(G(t,x;), G°(¢,2,)) > 6/2
a.e.on [.
Consequently,
ess tmlf d(z(1), G(t,z,)) > 0
and

j d(3(6), G°(t, 20)) dit < %(m <o
5
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Thus, z(-) € 7. Moreover, from (8), it follows that ||x(¢) — z(¢)|| < e, Vte I,
and xo = zg = ¢°. This completes the proof. ]

Proof of Theorem 2.1. We have to prove that S; # (. By Lemma 3.3, there exists
Ty € (0, T] such that Sy # @, where Sy is defined as above with T; = Tj. There-
fore, by Lemma 3.4, Sy can be considered as a complete metric space (w.r.t. the
topology of uniform convergence). From Lemmas 3.5 and 3.6, it follows that, for
every o > 0, (S%)° is a set of the first category in Sy. Therefore, according to the
Baire category theorem, we have

o 1
() S? #0.
r=1
On the other hand, it is obvious that
2 1
ﬂ Sr < S].
=1
Thus, S; is nonempty, as was to be shown. ]

To prove Theorem 2.2, we need the following

Lemma 3.7. Let x(-) be a solution of the Cauchy problem (3)-(4) on the interval
[—h,T), then

T
=01 < (el + Dexp( [ a6y ) -1,
for every t e [—h, T}
The proof of the above lemma can be found in [12].

Lemma 3.8. Let G be a multi-valued map satisfying the hypotheses of Theorem 2.2.
Then there exists a continuous function x:[—h,T| — E such that xq = ¢° on
[—4,0], x(+) is absolutely continuous on [0, T) and satisfies:

ess ilngd()'c(t), G°(t,x,)) > 0.

Proof. Denote

R= (o't + Do (| (9 &) -1

0
and p = Ppo.r)- By Lemma 3.2(i) and the hypothesis of Theorem 2.2(ii), there
exists J satisfying

T
0<d< (1+R)J a(s) ds
0

such that, for any ¢ € B(0, R) and for a.e. t € I, one has H(G“(t,9), G(t,¢')) <
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p/2, Vo' € B(p,d). On the other hand, since a(-) € f,h (I), it follows that for any
0 > 0, one can choose an integer m’ € N such that

J a(s)ds < 8/(1+ R)

for any interval J = I with u(J) < T/m’.
By Lemma 3.1 and the condition Theorem 2.2(iii), there exists a measurable

T
function ug : [0,¢'] - E, ¢ = e such that

d(up(1), G°(1,¢°)) > p a.e.on [0,7].
Now, we define

9°(0) + Jy uo(s)ds for t €0, 7]
x(t) = .
@' (1) for ¢ € [—h,0].

Then, since the map ¢+— x, from [0, #'] to Cg[—h, 0] is continuous on [0, /'], for any
6 > 0, there exists m" € N such that, for every ¢ € [0,¢'] with |t — 0| < T/m", we
have ||x; — xo|| = ||x; — ¢°|| < 6.

Set m = max{m',m"},/ = T/m and divide the interval [0, T] into m equal
parts by the points 0,7,2¢,...,i¢,...,T; i=1,2,...,m. We shall interpolate the
function x(-) on the whole interval [—£, T] by induction. First, since ||¢°|| < R and

uo(s) € G(s,9°) = a(s)[1 + |l¢°[l] B,

a.c. on [0,7], we have
¢
x(2) — @°(0)] < J a(s)[1 + Rl ds < 4.
0
On the other hand, for each ¢ €[0,7], ||x; — xo|| < & and hence, x, € B(¢°,d). It
follows that

d(x(t), G°(t, x;)) = d(uo(2), G°(2, x;))

2 d{uo(s), G°(1,¢°) — H(G“(t,6"), G(1, %)) > 2

a.e. on [0,7].

Assuming the function x(-) has already been defined on [0, i#] with i < m and
satisfying all required properties, we interpolate it on [i, (i + 1)¢] as follows. Let
u; : [it, (i + 1)¢] — E be a measurable function such that

d(u;(t), G°(t, xi2)) > p
a.e. on [iZ, (i + 1)¢] (such a function u; exists in view of the hypothesis Theorem
2.2(iii) and Lemma 3.1). On [i, (i 4+ 1)¢], we define x(¢) =x(i/)+fit( u;(s) ds.
Since u;(s) € G(s,x;z) a.e. on [if,(i+1)/] and ||xi|| < R (by Lemma 3.7), we
obtain, for any ¢ € [iZ, (i + 1)¢],
(i+1)¢

() - xtie)l < |

it

(i+1)¢
[|lui(s)|]ds < J a(s)(1 4+ R)ds < 6.

it
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Moreover, since |t — i¢| < £ for all ¢ € [i£, (i + 1)£], we have ||x; — xi¢|| < J. Con-
sequently, x, € B(x;,d) and

d(x(2), G°(1, x,)) = d(ui(t), G*(t, x,))
> d(ui(f), G°(t, x,)) — H(G (4, xi0), G*(t,x1)) > p/2

a.e. on [i£, (i + 1)/].
Thus, by induction, the function x(-) with the required properties can be
defined on the whole interval [—A, T']. This completes the proof. ]

Proof of Theorem 2.2. 1t is clear that the multi-valued map G satisfies all the
assumptions of Theorem 2.1 on I x B(0, R), with the number R defined as in
Lemma 3.8. Again, as in the proof of Theorem 2.1, by using Lemmas 3.4, 3.5, 3.6,
with T} = T and applying the Baire category theorem to the set Sp (which is
nonempty, by Lemma 3.8), we deduce that ﬂ;ozlS:lz #0. Thus, S; # 0, with
Ty = T. This completes the proof. B
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