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Abstract. In this paper, we study the maximal factorable minorant of the function

0(z) : 02(z) 91 (z) from the maximal factorable minorants of 1y(z) and 02(z), where d1 (z),

02(z) and 0(z) are contractive operator functions analytic on the unit disk D:

{ z e C l l r l  <  1 } .

L. Introduction

In the linear dynamic system theory, the transfer function 0(z) is an important

characteristic. For some system classes, the system correspohding to a given

transfer function is unique. Let 0(z) '. U --. V be a contractive operator function

analytic on the unit disk D: {z eC llzl < 1}, a theorem of Nagy and Foias [8]
asserts that there exists an outer function q(z) on D, whose values are operators

from U to an auxiliary space E such that

e *e  3 I  -  0 "0  a .e .  on  0D

and it QQ) is an analytic contractive operator function such that

, 0.0 < I - 0*0 a.e., then (.( < Q*9 a.e.

The function 9Q) is unique up to a constant unitary factor on the left and is called

the maximal factorable minorant (MFM) of I - 0*0.

Some important qualitative properties of unitary systems such as observability,

controllability . . . are characterized by the MFM rp(z) and these properties are

often not conserved through the cascade coupling of two systems. So we can use

the MFM as a tool to consider the conditions for the conservation of qualitative

properties for a cascade coupling.
We have a result that if the system a is a cascade coupling of two systems a1

and a2, then the transfer function of a is a product of the two transfer function of

or1 and a2. Thus, building the MFM of 0(z) : ?z(z)?t(z) from the MFM of 01(z)
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and 02(z), as well as searching for the conditions in which the MFM of 0(z) has
simplest form, is an interesting problem. This is the main purpose of the paper.

2. The Maximal Factorable Minorant for the Product of Contractive Analytic
Operator-Valued Functions in the Unit Disk of the Complex Plane

Here we denote by B(U, V) the class of all analytic functions in the unit disk D
having values as contractive operators from the Hilbert space [/ to the Hilbert
space V. Let O be a subspace of a Hilbert space -FI and 0ll an isometric operator
in 11 such thatallpQLaltqdt, for all nonnegative integers p,q (p lq), we define

M*(O): @ot/"Cr.
0

An isometric operator all in the space fI is called a unilateral translation if
there exists a subspace Q of H such that H : M+(Q).

The Fourier representation {o of M+(O) is a unitary operator from M*(O)
onto i12(O), defined by

/  ^s-  \  - .o  /  o  \
{O"t  *oool() . ) : \ tkan lar  ee, l l lool l ' (  *oo, l , l . l  < I  } ,
\ /.:o / 

-*--o 
\ t:o /

where I12(C)) denotes the Hardy vector space of C)-valued functions on D.

Propositiort l. l8l Let 4/ and 4l' be the unilateral translations in the separable

Hilbert spaces n: @ Q/n{|and R' : (D1lt'"dtt,respectiuely. Let Qbeucontraction
0 0

from R into R' such that

Q4l  :Qt tQ,

then there exists an analytic contrqctiue operator function .il (z) : O + Q/ such thqt

d*' Q: 'ud* '

The function ,il(z) is
(a) outer if and only if QR: Rt (by definition, the function ,il(z) is outer if

AFO: H2(dr')),
(b) unitary constant if and only if Q is a unitary operator from R onto Rt , (.il (z) is

unitary constant ,f d (t) : ,il o where ,il o is a unitsry operator from dL onto (lt ) .

Let 0(z):02(z)0r(z) be a factorization of the contractive operator function
0 (z )  e  B (U ,  Z ) ,  whe re  9p (z )  e  B (Up ,Vp ) ,  k :1 ,2 ,  U l :  U ,  V1 :  U2 ,  V2 :  V .

We define t : L(ei,) : (I - 0(eit).0(sit1)1/2 .
We will build the MFM for 0(z) from the MFM of 01(z) and 02(z).
Denote by Atp(k : 1,2) the multiplication by eit on L2((Jp). Since A commutes

with,2t1 and. Hz((l) is invariant for 4t1, the subspace EE @ of L2(U) is also

invariant for 4t1.Thus,4t1induces an isometry in A,HZ(U).
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Let
L H Z ( U ) : M + ( F ) @ N

be the Wold decomposition of nn\U) for the isometry. Then

F :  L H Z ( U ) O a t r L H 2 ( U ) ,  ( l )

M+(F): @qiF, N : ) auiLH2(U),,%tlu is unitary and %.rl,rz*1p) is a uni-
n20  n>0

lateral translation.
Let 0 be the orthoprojection from LHZ(U) onto the subspace Ma(F), then

there exists a contractive analytic outer function rp(z) : U -- F such that

$ F  T L ' u : 9 u

for all u belonging to Hz(U), and q(z) is precisely the MFM of I - 0* 0.
Similarly, for k: l, 2, we have

LkHz(Uk):  M+(Fr) @ N*,

where Fk: LkHTgi Ooltk\knT6, Nk: arui\kHTgn. M+(Fk):

@qi,Fp, and d'o Lo, - qpu for all u e n'(lD, where rpp(z): (Jp --+,Fr is the
n > 0
M F M o f I - 0 [ 0 p .

Let
Za : Lh r-- Aah @ L,201h,h e H2(U) (2)

be the operator from LH2(U) ifio LE(U) @-L1II2(U2), then Za is unitary
from LH2((J) onto (Lt @ Lz?t)Hz(U) and we have

Z+LHL(U) : Z+(M+(F) @ N) : Z+M+(F) @ Z+N

: @ z*ryiF e) z+N. (3)
n 2 0

Because A1,A2 and dl commute with the multiplicationby e't in the respective
spaces, we have Z+4/t - Ql21, where 4l : (41t, olt2) is the multiplication by et' on
L'Gl, @ t/z). From (3), it follows that

Z+LHZ(U):  M+(Z+F) @ Z+N

and 
lshll: l lez*hll,Yh e a,Hz(u), (4)

where Q is the orthoprojection ftom ZaLH2(U) onto the subspace M+(Z+F).
Note that 

/ -\ -
z+N : z*l ) 't/TLH2(u) | : o att"z+LH2(u) -

\ r t 0  , /  n rO

c. 0 au, (LlHr(ur) @ L2H2(U2))
n > 0

: O sli LtHz(ut) @ a q/;L,zHz(uz) : Nr 6l tL.
n>0  n20

Since 2,, is isometric then ZaN is a closed subspace of Nl @ N2.
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Put K : (Nl @ Nr) O Z1N, then

M+(Z+F)  c .  M , , ( f i@F2)oK .  (5 )

Because the subspace LHZ(U) is invariant for %1we have Q/1N : N, and it fol-
lows that Z+N : Za0/1N : 4/Z+N, then

4 /K :  K .  (6 )

From (5), (6) and [8, Theorem 1.1], it follows that

Z.rF : M+(Z+F) OallM+(Z+F)

: \M+(Z+F n (tnl @ r'r)) O M+(Z+F) n,Kl O

lott M+(z+F n (rr @ Fz)) o % Ma(ZaF) a Kl

: \M+(Z+F n (.lnr O Fz)) O aU M+(Z+F n (Fr @ rr))l @

|(M+(Z+F) n rK) O (ouM+(Z+F) .rr)l

: (Z+F n (rr @ ioz)) @ (Z$) a K).

Thus, Z+LHZ(U) : M+(Z+F ^ (Fl @ rz)) @ M+(Z+F n K) @ Z1N. Denote

by Q1 and Q2 the orthoprojections from Z+LHZ(U) onto M1(Z1F ^ (fr O fz))
and M1(Z1F o K), respectively. By d : Ar @ Lz9t, I : Qz6, Q/' : %lu*e1FnK),

Ql1:4/llr1u1, w€ have that % is a contractive operator from Hz(U) into
M+(Z+F n K). Moreover, note that the operator % commttes with d, so we have

419 :0UQ26 : Qz(%la*e*r^ry)d : QzQt6 : Q26% : 9[Q/ .

This implies

Q/ ' f f : 9 'A+ .

From Proposition 1, there exists an analytic contractive operator function
tlr(z) : U ---+ Z1F n K such that

6z+FaK g[u: fut), vu e uz(J). (7)

Moreover, for all u belonging 6 H2(l), we have

6z*Fa(\@F2) eiu : 6zaFa(\@F2) 0r (Ar @ L20)u

: o\@F2 (9t @ nz)(h @ L,zot)u

: 6F glLau @f 
F, g2L20p

:9P  @ 9201u

: rpptp29p.

Pfi U : (Qr @ Q)d : Q6, then U is a contractive operator from a2(U) into
M+(Z+F ^ (^Fl @ fz)) @ M+(Z+F ^,K) : M+(Z+F) and we have

0!H2(U):  Q6H2(U) :  QAH\U):  QZ+LHL(U):  M+(Z+F) (S)
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and

Oz*F Qdu 
- 

4pz+Fa(r'sF) QOu 6 6z*FnK gr\u

/ q r \  ( e )
:  I  l u@r l ru .

\,pret /

l lv a t)ull : l ld'.F 86,11 : 1106,ll : l lQzlLull
:  l leLu l l :  ldF sMl l :  l lq r l l .

So we have

1 1 2 " - l l 2 o
: I l lV a V)(t)u(t)l l 'zdt: + | l le1)u(t)l l2dt, vu e H2Q). (10)
L n J o  "  t f t J o

Particularly, (10) holds for u(1) : p()')c, where c is an element of U and p(,1) is

a polynomial of ,1. Because every trigonometric polynomial q(ei') detives from

the form ,-in'p(""), where p(,1) is an ordinary polynomial, so (10) holds for

,(1) : q(7)c. Hence,

I  f o , ,  i r , i , r  - ^ , \ , - \  1 2 r -  [ 2 o ' , , . ' , "  . ' ]

^), lutr"l l ' l lg a r!)1t)cll2dt : 
lo ld"")l ' l l , t1t)cll2dt. (l l)

Similar to the proof in [8], the equality (ll)holds when q(et') is substituted by a
positive measurable function p(r) bounded on [0,2n]. By choosing p(t) to be the
characteristic function of the interval (r, r + e) and by giving I -- 0, we get

l l (y @,t)Q)' l l '  :  l lq(t) ' l l '  (r2)

for all t outside a sel E, of null measure.
Because U is separable, there exists a set .E of null measure such that ( 12) holds

for all t 4 E and all c e U. Thus, we have

V a ,1,)(t). (/ @,t')O : eQ). eQ) a.e.

Since (/ @ r/) and rp areboth outer, there exists a unitary operator fl, i p '--+ ZaF

such that (! @ rlt) is the MFM of I - 0.0. By some computations, we can prove

that E : Z+lr.
We can now state our result concerning the MFM for the product of operator

functions.

from F onto ZaF and F, Za, t! are defined in (l), (2) and (7).
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In [6], a notion of (+) regular factorization was introduced. The factorization
0(r) : 02(z)01 (z) is said to be (+) regular if

{ A r f t O  A , 2 0 f t : h e H z ( U ) }

or equivalently, the operator

: ^ETv) @ ̂mu)

2,, : A,h r-+ Aah @ A,201h,Vh e H2(U)

( ' : : ' )@r is  the

i _  I  /  _ \x' : | ) w'r' L1. rzlvS a tz. u_-@) | e t- | ) u;' t.Efn l,
Lr>O I  \ r>0  /

Z- : L,*h + Aa.7ih @ Lz.h, h e L2_(V),
alt 'o is the ,multiplication by s-it on L2(Vp) (k:1,2), L*: (I - 00*)t/2, L,1"- :
( I - o o 0 ; 1 ' r ' , k : 1 , 2 .

Moreouer, we haue (t::t 
) 

@ f : E-a, where E- : Z-lr is a unitary operator

from Ft onto Z-Ft.

In [6], it was also introduced a dual notion of (-) regular factorization. The
factorization 0(t) : 02(z)01 (z) is said to be (-) regular if

{Lt. 0;h @ Lr. h / nEfivD : Au Lr-(v) @ Lz. L2_(vz)

can be contlngegqy_extended to a unitary operator from A,HL((J) onto
L tHz(Ut )  @ L2H2(U2) .

From Theorem 1, we have the following:

Corollary l. If the factorization 0:020t is (+) regular, then / : ( ,9'^\ i, tn"
MFM of I - 0.0. \Qzat /

Proof. From the proof above, we can see that if the factorization 0(t) : 02(z)01(z)
is (+) regular, then the space K is reduced to {0} and this implies t :0.

From the definition for the MFM of 1- 0*0, we introduced an analogue
notion for the *-MFM of 1- 0-0. The *-outer function u(z) e B(E', Z) is called
the *-MFM of I - 00- lf

uu* < I - 00. a.e. on 0D

and, if BQ) is an analytic contractive operator function such that

pp- < I - 00. a.e. then pp- < q,q.*a.e.

We recall that the function a(z) is *-outer if the function &.(z) e B(V, Et) is outer.
One easily sees that a(z) is the *--MFM of I - 00* if and only if d(z) is the MFM
of I  -  0*0, where &(z) :  u(2)*,0(z) :9127..  I

Similarly to Theorem 1, we have

Theorem 2. Let ap be the *-MFM of I-0p0[ (k:1,2), then
*-MFM of I - 00*, where

BQ) : Z -F' o K' - V, F' : LE@ OU;IE1V1,
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or equivalently, the operator

Z- : L,*h r-- L1.0)h @ Lz-h,h e L2 (V)

can be continuously extended to a unitary operator from A-I2-(Zr) onto
LF L2_(V t) @ L2. L2_ (V2) .

From this notion, we have the duality of Corollary 1.

Corollary 2. If thefactorization 0:020t is (-) regutar, then g : (t'-l'\ U ,r,
*_MFM-of I_00. . '  

-  
\az  /

3. The Necessary and Sufficient Condition for SI : ( 't^\ to be the MFM
o f l _ 0 * 0  

-  
\ q z a r /

Given a contractive operator function 0(z) analytic on the unit disk D, Branges
and Rovnyak introduced the Hibert space ,8f of vector-valued analytic functions
with reproducing kernel [3]

where 0(z) : 0(z)..
Let us consider the following two subspaces of -d

81  : { (0 ,e ) l (0 , i l e f r } ,

no_ :  { f  ,o) |  ( , f ,0) e rP}.

In the linear dynamic system theory, the subspace B\ characterizes the non-
observable subspace of the unitary system having 0(z) as the transfer function,
while Jfd- is the non-controllable subspace of it.

In [4], Ball and Kriete proved the following result:

Theorem 3. The subspace B0* is precisely the following subspace

{o,Af)f f  e Hz(u)},
where rp(z) e B(U, E) is the MFM of I - 0*0. Moreooer,

l l(0, Qf)l l 
" '  

: l l  f l l  n's'

Similar to Theorem 3, we can state for the subspace B! the following:

Theorem 4. The subspace B! csn be represented as follows:

Be_:  { (ah ,o) lh  e  H, (E ' ) } ,
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where u(z) e B(E' , V) is the *-MFM of I - 00.. Moreouer,

ll(ah, 0)ll p : llh x s' 1t,1 .

Before giving the proof of this theorem, let us consider the functional models
of Nagy and Foias for a given contractive analytic function 0(z) e B(U , Z) of the
forms

1{0 : lL?+(V) @ LLr(U)1 O {(0a, A,a) la e L?+(U)},

N0. : lL2_(u) @ L"LT(V)] O {(a-r.o, A-ar) la; e Lz_(v)},

where A* : (I - 00-)t/2, L?*(U) : n2(u), Lz_(U) : Lzg) O L?+(U).
We have the operator

{t t (f ,d - @.f I L,g, L,.f - 0g)

which acts unitarily from Nd onto Nf.
Let ju be the operator on Lz(U) defined by (juf)("") : e-itf (e-it). One can

easily see that j11is a unitary involution on Lz(U) which maps L?*(q onto L2_((l)
znd L2_((l) onto L?*(U). The basic connection between Nd and Bd is that they are
unitarily equivalent under the map fd defined by f0 (f , s) : (f , Ju(0.f + Ag)) for
( f  ,s) e Ne.

Proof of Theorem 4. Letf be the unitary operator defined by

| : fd' @ lo, ; Nd' @ No, --- ph 6 goz,

then we have

Bo- : fo No-,

where

N o _ :  { ( f  , g ) .  N u  l 0 - f  +  A g : 0 } .

For each (f ,0) e 80, there exists an element (-f ,i l.N'such thatl?(f ,g):
( f ,0) .

Let m: L-f - 09, wehavef : L*m ar'd

m e A,*LZ(V) O L.(L2_(V). (13 )

Note that

iv(L.rz1v1o L.(LZ_(V)) : A,-(e-i l)Lr(V) o L.(e-it)LI(v), (14)

and accordingto f4, Theorem 5], we have

L. (e - it ) Lz (V) O t. 1e 
- i' 1 r'* V) : g (eit ). L2- (E' ),

where ?(e't): V ---' E'is the solution of the equation

(1s)

( 1 6 )&.(eit  )  :  
g (eit  )  L.(e*i t)
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with 9(eit):0 on (L,.(e-it)(V))t u.". and 9(eit)* is isometric a.e., &(z) is the

MFM of L2gki'): Ll@-it).

From (14) and (15), we have

LEO\ o L@@ : ivs(eit)* L'-(E') : Flei'1r?*1n'7. (17)

From (13) and (17), z has the form

* :  @h,h  e  Lzr (E ' )

and it follows that

f  :  L*m:  L* fuh :  ah .

Moreover, we have

| | (aft , 0) ll r, : ll(f ,0) ll a, : llf' (f , illl a, : llu, dll n, : llw'q (f , dll ul
: l l(0, m)llw: ll(0,aDllN, : l lehllx_o: llhllt1u,1,

This completes the proof. I

Let E be the following partial isometry [3]

Z: Bo' 6 poz ___, f ,0 : 0201;

(.fr,s) @ (fz,sz) - (-fz+ ozfi, st + 6sz)

We denote by

X + : X l r 1 , * r u , B o ; @ n  - f r *

(0, sr ) @ (0, g) ,--' (0, gr + otgz)

and by

x- : !lr', asut t Boi @ Bo] -' Bo-

("1i, 0) @ (f2,0) - (fz + 02fi ,0).

Note that if 91,Q) is the MFM of 1- 0i0k (k:1,2), then the function
/  rp , (z \  \

/(r): 
lrr})riel.) 

which belongs to the class B([/, h@ Ez) is minorant of

I - 0*0 @ : 0201). When does this function tQ) become the MFM? The answer
is given by

Theorem 5. The function / (z) is the MFM of I - 0.0 if and only if the operator 2 is
unitary from no; A Ao; onto Bo*.

proof. Let 
"/(z): 

( yt,(:),. ) o. rn" MFM of I - 0*0.
\92\z)41\z) /
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According to Theorem 3, the operator X1 has the form

X,1 :  (0,  Qthr)  @ (0,qzhz)  r -  (0,Q1h1 + 61tp2h2) :  (0,  yh) ,

whe re  h :  h  @ h2 ,  hp  e  H2 (E ) ,  k :1 ,2 .
We have

l l (0,qth) @ (0,qzhz)l l 'n,t etB0z: l l(0,Qrhr)l lzs',  + l l(0, qzhz)112"',

:  l lht l l ' r ,r", l  + l lhzl l lu,e,t :  l lhl l 'u,tu, @ Ez) : l l (0, yh)l la, .

Thus, X is an isometry. Moreover, from the assumption that /(z) is the MFM of
I - 0*0, the subspace {(0, /h)lh e H2(\ @ Er)} is precisely the space B0*, then
X1 is unitary.

Conversely, let X1 be unitary, then we have

Bl :  { (0,  iDln e H2(q a E)} :  { (0,  qf) l f  e H2@)},

where rp(z) e B((I,E) is the MFM of I - 0*A.
So with each element h e Hz(fi @ Ez), there exists an element f e Hz(E) such

that

yn :a f .  (18 )

Since p(z) is outer, rp(z)has dense range for all z in D and hence, kerQQ): {0},
zeD. Thus, if/ is in Hz(E), the element Af of H2(U) determines/. So we can
define an operator y from H'(n, @ E2) into H2(E) by

x h :  f  ( 1 9 )

with h, f in the expression (18).
The operator; is evidently linear and surjective. Moreover, from Theorem 3,

we have

l lhl l l ,6,an) : l lhtl l lu'rn,t + l lhzll ln,o,t: l l(0, qrhr)l l 'u', + l l(0,Ozh)ll2B,,
: l l(0, Qth) @ (0, o2h)ll2au, @ B0z : l l(0, y Dllk : l l(0, anll '", : l l f l l '",r"t.

Thus,; is unitary.
From (18) and (19), we have

I  : 9 ,

where Q and O denote the ope-rator s on H2 induced by the multiplicatio n by j (21
and gQ), respectively. Since I and I commute with eit, so does the operator X.
According to Proposition 1, the operator I is unitary constant, then /(z) is the
MFM of I - 0*0 and the proof is complete. I

Similarly, we have the following result for the *-MFM.
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Theorem 6. Let a1"(z) e B(E'o,Vp), k:1,2, be the *-MFM of I - 0p0[. The func-
/ a'>( z\ \

t ion F(z\ : ( ^ i ' .- ' . . I e B(E', @ E4, V) is the r-MFM ofI - 00. ifand only iJ
\42 \z )u1 \z )  /

the operator 2- is unitary from B0] @ B0: onto B0-.

References

1. D.Z. Arov, The stability of dissipative linear stationary dynamical scattering systems,,/.
Oper. Theory 2 (1979) 95-126 (Russian).

2. D.Z. Arov, Passive linear stationary dynamical systems, Sibirsk. Math. Zh. 20(2) (1979)
2ll-228 (Russian).

3. J. Ball, Factorization and model theory for contraction operators with unitary part,
Memoirs AMS 198 (1978).

4. J. Ball and T. Kriete, Operator-valued Nevalinna-Pick kernels and the functional model
for contraction operators, Integral Equa. Operatot Theory 10 (1987) l7-61.

5. M. S. Brodskii, Unitary operator colligation and their characteristic functions, Uspekhi
Math. Nauk 33(4) (1978) 141-168; Russian Math Suru.39(4) (1978) 159-191.

6. D.C. Khanh, (+) Regular factorization of transfer functions and passive scattering
systems for cascade coupling, J. Oper. Theory 32 (1994) l-16.

7. D. C. Khanh, Minimality of passive scattering systems for cascade coupling, Dolk. Acad.
Nauk USSR 311(4) (1990) 780-783 (Russian).

8. B. Sz. Nagy and C. Foias, Harmonic Analysis of Operators in Hilbert Space, Elsevier,
New York, 1970.


