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Abstract. In this paper, we study the maximal factorable minorant of the function
6(z) = 6,(z) 6, (z) from the maximal factorable minorants of ¢ (z) and 6,(z), where 0, (z),
6,(z) and 6(z) are contractive operator functions analytic on the unmit disk D=
{zeC/l|z| < 1}.

1. Introduction

In the linear dynamic system theory, the transfer function 6(z) is an important
characteristic. For some system classes, the system corresponding to a given
transfer function is unique. Let §(z) : U — V be a contractive operator function
analytic on the unit disk D = {z € C/|z| < 1}, a theorem of Nagy and Foias [8]
asserts that there exists an outer function ¢(z) on D, whose values are operators
from U to an auxiliary space E such that

p*p<I—0"0ae. ondD
and if ¢(z) is an analytic contractive operator function such that
¢*¢p <I—00ae., then ¢"¢ < ¢p"p ae.

The function ¢(z) is unique up to a constant unitary factor on the left and is called
the maximal factorable minorant (MFM) of I — 6*0.

Some important qualitative properties of unitary systems such as observability,
controllability ... are characterized by the MFM ¢(z) and these properties are
often not conserved through the cascade coupling of two systems. So we can use
the MFM as a tool to consider the conditions for the conservation of qualitative
properties for a cascade coupling.

We have a result that if the system « is a cascade coupling of two systems o
and ay, then the transfer function of o is a product of the two transfer function of
a; and ap. Thus, building the MFM of 6(z) = 6»(z)6:(z) from the MFM of 6,(z)



360 Do Cong Khanh and Nguyen Minh Hang

and 6,(z), as well as searching for the conditions in which the MFM of 6(z) has
simplest form, is an interesting problem. This is the main purpose of the paper.

2. The Maximal Factorable Minorant for the Product of Contractive Analytic
Operator-Valued Functions in the Unit Disk of the Complex Plane

Here we denote by B(U, V) the class of all analytic functions in the unit disk D
having values as contractive operators from the Hilbert space U to the Hilbert
space V. Let Q be a subspace of a Hilbert space H and % an isometric operator
in H such gmt wPQ L A9Q, for all nonnegative integers p,q (p # q), we define

M, (Q) = @ U"Q.
0
An isometric operator % in the space H is called a unilateral translation if
there exists a subspace Q of H such that H = M, (Q).

The Fourier representation ¢ of M, (Q) is a unitary operator from M (Q)
onto H?(Q), defined by

e o) (e 0] o0
<¢“ Z%ka,,> N => ra, (ak e Q> llal® < +oo, 4| < 1),
k=0 k=0

k=0

where H?(Q) denotes the Hardy vector space of Q-valued functions on D.

Propositiod 1. [8] Let % and U’ be o(t)he unilateral translations in the separable
0

Hilbert spaces R = (P U"Q and R' = P U'"Q, respectively. Let Q be a contraction
0 0
from R into R’ such that

ou =u'Q,
then there exists an analytic contractive operator function o (z) : Q — Q' such that
60 = ag”.

The function o/ (z) is

(a) outer if and only if QR = R’ (by definition, the function </ (z) is outer if
AHQ) — HYQ)),

(b) unitary constant if and only if Q is a unitary operator from R onto R', (o4 (z) is
unitary constant if of (z) = o/ where o is a unitary operator from Q onto Q' ).

Let 6(z) = 6,(z)6:1(z) be a factorization of the contractive operator function
0(z) e B(U,V), where Op(z) e B(Ux, Vi), k=1,2, Uy =U, Vi=U,, Vo =V.
We define A = A(e™) = (I — 6(e")*6(e™)) />,

We will build the MFM for 6(z) from the MFM of 6, (z) and 6,(z).

Denote by % (k = 1, 2) the multiplication by e” on L?(Uy). Since A commutes
with #; and H2(U) is invariant for %, the subspace AH2(U) of L*(U) is also
invariant for %,. Thus, %, induces an isometry in AH2(U).
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Let

AH?(U) = M, (F)® N

be the Wold decomposition of AHZ(U) for the isometry. Then

F = AH2(U) © %, AH*(U), (1)
M (F)=@ %} F, N= () %} AH*(U), %|y is unitary and 1|, (r) is a uni-
n>0 n>0

lateral translation.
Let 2 be the orthoprojection from AH?(U) onto the subspace M, (F), then
there exists a contractive analytic outer function ¢(z) : U — F such that

¢F PAv = v

for all v belonging to H2(U), and ¢(z) is precisely the MFM of 7 — 8*6.
Similarly, for k = 1, 2, we have

AH?(Ur) = M, (Fi) © Ny,

where F, = AkHz(Uk) ) %kAkHz(Uk), N, = m ”ZlZAkHZ(Uk). M, (F,) =
@ U} Fy, and ¢ Ao = g for all ve H*(Uy), where g, (z) : Uy — Fy is the
n=0
MFM of I — 6}6;.

Let

Z,:Ah— Ah @ MOk h e HA(U) 2)

be the operator from AHZ(U) into AH2(U;) ® AyH?(U3,), then Z, is unitary
from AH2(U) onto (A; @ A,0,)H?(U) and we have

Z.AH(U) = Z,(M.(F) ® N) = Z, M, (F) ® Z,N
=@ Z U FOZ.N. (3)
n>0
Because Aj, A, and #; commute with the multiplication by e” in the respective
spaces, we have Z % = U Z., where % = (%1, U>) is the multiplication by " on
L*(U; @ U,). From (3), it follows that

Z,AH>(U) =M, (Z.F)® Z,N

and —
|2h| = ||QZ k|, Yh e AH%(U), (4)

where Q is the orthoprojection from Z,AH?(U) onto the subspace M, (ZF).
Note that

n>0 n=0
< ) #"(AHX(Uy) @ AH?(U:))
n>0
= N U MHX(U) @ () #50HX(Us) = N1 @ N,.
n>0 n>0

Since Z, is isometric then Z, N is a closed subspace of Ny @ N,.
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Put K = (Nl @Nz) ©Z.N, then
M+(Z+F) CM+(F1(‘BF2)(\K (5)

Because the subspace AH2(U) is invariant for %; we have %N = N, and it fol-
lowsthat Z. N = Z, % N =%Z N, then

UK =K. (6)
From (5), (6) and [8, Theorem 1.1}, it follows that
Z.F=M.(Z,F) O UM, (Z,F)
— [My(Z-F o (F @ F) ® My (Z,F) nK] ©
(UM (Z.F (F; ® F)) ® UM, (Z.F) A K]
= M (Z,F  (FL ® F)) O UM (Z,F  (F, @ Fy))] ®
(M (Z+F) 0 K) © (UM (Z,F) N K))
= (Z.F n(F @ F)) ® (Z,F) n K).
Thus, Z,AH>(U)=M (Z,Fn(FLOF)®M.(Z,FNnK)®Z, N. Denote

by Q; and Q, the orthoprojections from Z,AH?*(U) onto M (Z.F n (F; ® F,))
and M (Z,F n K), respectively. By 6 = A; @ Aoy, &' = 00, U' = U|p1, (2. i)
Uy = U|yy), we have that & is a contractive operator from H?*(U) into
M. (ZF ~n K). Moreover, note that the operator  commutes with J, so we have

UX = UQ0 = Qz(%|M+(Z+FnK))5 = Q)US = 00U = XU .

This implies
%/%‘ =] 3{0]{_‘_ .

From Proposition 1, there exists an analytic contractive operator function
¥(z): U —» Z.F ~ K such that

¢ F K v = Yo, Yoe HY(U). (7
Moreover, for all v belonging to H2(U), we have
$7FPAOR) 9,5y = = FPAOR) g, (A1 @ As6r)o
= ¢"1%% (2, @ 2,) (A1 ® Arbh)v
= ¢" P1A @ [T 2yA2010
=10 ® pr01v

= ¢109,01v.

Put % = (Q; ® 0,)5 = 0, then ¥ is a contractive operator from H?(U) into
M+(Z+F M (Fl ('B FZ)) G‘) M+(Z+F M K) == M+(Z+F) and we have

YH(U) = QSH?(U) = Q6H2(U) = QZ,AH*(U) = M4 (Z,F)  (8)
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and
¢Z+F Q&U = ¢Z+FH(F1®F2) Q160® ¢Z+FHK Q250
@ 9
LLt < i )v@nﬁv. ®)
9261
From (8), (9) we conclude that ((gfé? )@ W)(z) : U — Z,F is outer.
Pl

Denote by # = ( rp;* ), from (4) and (9), we have for all v belonging to
HX(U) 2¥

(£ @ w)ol| = |6 Q6o = || Qdv]| = | QZ, v
= ||2Av|| = |47 PAv| = ||gv]-
So we have

1 2n 27
0

2| I @nEOd =5 | letnlar, we R D). (10)
714 T Jo

Particularly, (10) holds for v(1) = p(4)c, where c is an element of U and p(4) is
a polynomial of A. Because every trigonometric polynomial g(e”) derives from
the form e ™ p(e’*), where p(4) is an ordinary polynomial, so (10) holds for
v(A) = q(4)c. Hence,

1 2r ) 1 2r ;

2| RIS @WOeldr =2 | late P lpela (1)
2n Jo 2r Jo

Similar to the proof in [8], the equality (11) holds when g(e") is substituted by a
positive measurable function p(f) bounded on [0,27]. By choosing p(f) to be the

characteristic function of the interval (z, 7 + ¢) and by giving ¢ — 0, we get

I @ W) @D)ell® = llp(t)ell® (12)

for all ¢ outside a set E, of null measure.
Because U is separable, there exists a set E of null measure such that (12) holds
for all t ¢ E and all ¢ € U. Thus, we have

(F @Y1 (F DY) =0)0(1) ac.

Since (# @ ¥) and ¢ are both outer, there exists a unitary operator E : F — Z, F
such that (£ @ ¢) is the MFM of I — #*0. By some computations, we can prove
that E=Z,|.

We can now state our result concerning the MFM for the product of operator
functions.

Theorem 1. Let ¢, be the MFM of I — 6,6; (k= 1, 2), then ( (a; )@ W is the
MFM of T — 0*0. ( P27

Moreover, we have : )G—) W = Ep, where E = Z. | iy a unitary operator

P2t
from F onto Z,F and F, Z ., are defined in (1), (2) and (7).
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In [6], a notion of (+) regular factorization was introduced. The factorization
0(z) = 02(z)6:1(z) is said to be (+) regular if

{Ah® Ao h:he HZ(U)} = Ale(Ul) &) A1H2(U2)

or equivalently, the operator
Z, : Ah> Ath @ A0k, Yh e HA(U)

can be continuously extended to a unitary operator from AHZ(U) onto
A1H2(U1) @ A H(Us).
From Theorem 1, we have the following:

Corollary 1. If the factorization 0 = 0,0, is (+) regular, then ¢ = ( (pé ) is the
MFM of I — 6*6. P21

Proof. From the proof above, we can see that if the factorization 6(z) = 0,(z)6;(z)
is (+) regular, then the space K is reduced to {0} and this implies ¢ = 0.

From the definition for the MFM of I — 6", we introduced an analogue
notion for the *-MFM of 7 — #*6. The *-outer function a(z) € B(E', V) is called
the *-MFM of I — 69" if

ae* < I — 060" ae. on oD
and if f(z) is an analytic contractive operator function such that
BB < I— 60" ae. then " < ax*a.e.

We recall that the function «(z) is *-outer if the function &(z) € B(V, E’) is outer.

One easily sees that a(z) is the *-MFM of I — 68" if and only if a(z) is the MFM

of I — 66, where a(z) = a(2)”, 6(z) = 0(2)". [ ]
Similarly to Theorem 1, we have

6
Theorem 2. Let oy be the *-MFM of I-6,6; (k =1, 2), then ( 2% ) @B is the
*-MFM of I — 60", where %

B(2): Z_F nK' -V, F =AL2(V) ©UAL2(V),

N %"ALZ07) @ AZ*LZ_(VZ)J oz < N %;"A*L{(V)>,
n=0 n>0

Z_ A ALOh® Ay-h, he L2(V),

Uy, is the multiplication by e " on LX(Vy) (k=1,2), A, = (I — 660")'/? Ay =
(I-66)" k=12

K =

Ora .
Moreover, we have ( @ p = E_o, where E_ = Z_|., is a unitary operator
a2
from F' onto Z_F'.

In [6], it was also introduced a dual notion of (—) regular factorization. The
factorization 6(z) = 0,(z)0;(z) is said to be (—) regular if

{A1Oh @ Ap-h/h e L2(V)} = A1 L2 (V1) @ Ap- L2 (V)
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or equivalently, the operator
Z_: A ALOh® Aphhe L2 (V)

can be continuously extended to a unitary operator from A,L2(V;) onto
ALLEZ(V) @ Ap L2 (V).
From this notion, we have the duality of Corollary 1.

6
Corollary 2. If the factorization 0 = 0,0, is (—) regular, then F = ( 20‘1) is the
“-MFM of I — 66". %

3. The Necessary and Sufficient Condition for 7 = ( ¢19 ) to be the MFM
of 1 — 69 2o

Given a contractive operator function 6(z) analytic on the unit disk D, Branges
and Rovnyak introduced the Hibert space B? of vector-valued analytic functions
with reproducing kernel [3]
I —-8(2)0(w)"  0(z) —0(w)
[ —zw z—Ww
0(z) — O(w) 1 —0(z)0(w)"

z—w [ —:zw

,)i.’"”[n',:'] =

where 6(z) = 0(2)".
Let us consider the following two subspaces of BY

BI ={(0,9)}(0,9) € B},
B? ={f,0)|(f,0) e B}.

In the linear dynamic system theory, the subspace Bi characterizes the non-
observable subspace of the unitary system having 6(z) as the transfer function,
while B? is the non-controllable subspace of it.

In [4], Ball and Kriete proved the following result:

Theorem 3. The subspace BY is precisely the following subspace

{(0,8)/f e H*(U)},
where ¢(z) € B(U, E) is the MFM of I — 0*0. Moreover,

100, @)l 3o = 1/l 2w -
Similar to Theorem 3, we can state for the subspace B? the following:

Theorem 4. The subspace B® can be represented as follows:

B? = {(ah,0)/h e H*(E")},
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where a(z) € B(E', V) is the *-MFM of I — 06". Moreover,
11, 0) 1 g0 = [1All 2y -

Before giving the proof of this theorem, let us consider the functional models
of Nagy and Foias for a given contractive analytic function 6(z) € B(U, V) of the
forms

N = [L2(V) ® AL*(U)] © {(6w, Aw) |w € L2 (U)},
N = [L2(V) @ ALA(V)] ©{(0"w, Aw) |w e L2(V)},
where A, = (I - 69")"/%, L2 (U) = HX(U), L2(U) = L*(U) © I2(U).
We have the operator

WO (f,g) > (6°f + Ag, A f — 0g)

which acts unitarily from N? onto NY.

Let ju be the operator on L*(U) defined by (jyf)(e) = e #f(e™"). One can
easily see that ji is a unitary involution on L*(U) which maps L2 (U) onto L2 (U)
and L2 (U) onto L2 (U). The basic connection between N? and B that they are
unitarily eqmvalent under the map I'? defined by T'Y(f, g) = (f, Ju(0*f + Ag)) for

(f,9) e N°.
Proof of Theorem 4. Let T be the unitary operator defined by

r=r"er#:n% @ N - B% @ B,
then we have
BRI N
where
N? ={(f,9) e N°|0°f + Ag = 0}.

For each (f,0) € BY, there exists an element (f,g) € N? such that T?(f, g) =

(f,0).
Let m = A, f — 6g, we have f = A,m and

me A LAV) © A(LZ (V). (13)

Note that

(AL (V) © AL(L2(V)) = Au(e ") LA(V) © Au(e*) L3 (V), (14)

and according to [4, Theorem 5], we have

A LX (V) © A(e MLE(V) = (") LL(E'), (15)
where 2(e) : V — E' is the solution of the equation

a(e") = P(e")A(e™™) (16)
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with 2(e") =0 on (A.(e7®)(V))" ae. and P(e")" is isometric a.e., &(z) is the
MFM of A}(e") = AZ(e™").
From (14) and (15), we have

ALZ(V) O AIZ(V) = jyP(e") L2(E') = P(e") L3 (E'). (17)
From (13) and (17), m has the form
m=Ph,he L2 (E")
and it follows that
f=Am=APh=ah.

Moreover, we have

[1(h, ) g0 = (£, Ol 3o = IT°CF, Do = N(F, D)o = 1#7°(S, 9l
= [0, m)llys = 10, Zh)llys = 12hll 3 (v) = lIAtl 2 () -

This completes the proof. |

Let T be the following partial isometry [3]
T:B% @ B% - B0 = 6,6y,
(f1,91) ® (f2,92) — (o + Oofi, g1 + O192)

We denote by
T = Zlgn g o Bl @ B: — B}
(0,91) @ (0,92) — (0,91 + 6192)
and by
=3 ®B% " B} ® BZ — B’

Note that if ¢,(z) is the MFM of I —6;0; (k=1, 2), then the function

F(z) = ( ?1(2) ) which belongs to the class B(U, E; @ E;) is minorant of
,(2)01(2)

I — 6*6 (6 = 6,6,). When does this function #(z) become the MFM? The answer
is given by

Theorem 5. The function #(z) is the MFM of I — 6*0 if and only if the operator X is
unitary from Bfl ® Biz onto Bﬁ.

Proof. Let #(z) = (%((”Zl)(;) (Z)) be the MFM of I — 6*0.
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According to Theorem 3, the operator X, has the form

Z+ : (Ovélhl) ('D (07¢2h2) = (07 ¢1h1 + é1¢2h2) = (Oajh)7

where h = hy @ hy, Iy GH2(Ek), k& =112
We have

10, 611) @ (0, G312) 0y @ 5 = 11(0, G/l o, + 11(0, Gyf2) I o
s =
= ||h1||312(51) + ||h2||§12(52) = Al 25, @ £2) = 110, £h)| go -
Thus, Z is an isometry. Moreover, from the assumption that #(z) is the MFM of
I — 6%0, the subspace {(0, £h) |h e H*(E, @ E,)} is precisely the space BY, then

24 is unitary.
Conversely, let £, be unitary, then we have

BY = {(0, #h) |he HX(E @ E2)} = {(0,¢f) | f € H}(E)},

where ¢(z) € B(U, E) is the MFM of I — 6"6.
So with each element h € H*(E; @ E,), there exists an element f € H*(E) such
that

Fh=gf. (18)

Since ¢(z) is outer, p(z) has dense range for all z in D and hence, ker §(z) = {0},
ze D. Thus, if f is in H*(E), the element ¢f of H?(U) determines f. So we can
define an operator y from H?(E; @ E;) into H*(E) by

=T (19)

with 4, f in the expression (18).
The operator y is evidently linear and surjective. Moreover, from Theorem 3,
we have

Il 2@y = a2z + W2l Fragey = 110, G50 + 110, Goha) | 26,
= 1100, 1h1) @ (0, 622) 1 30s @ 52 = 110 )30 = 110, @) 10 = 11/ B2 ey-

Thus, y is unitary.
From (18) and (19), we have
G =2,
where % and 2 denote the operators on H? induced by the multiplication by _#(z)
and ¢(z), respectively. Since ¥ and # commute with e, so does the operator y.

According to Proposition 1, the operator y is unitary constant, then #(z) is the
MFM of I — "8 and the proof is complete. [ ]

Similarly, we have the following result for the *-MFM.
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Theorem 6. Let oy (z) € B(E,, Vi), k =1, 2, be the *-MFM of I — 0,6,. The func-

tion F(z) = %2(2) . | e B(E| @ E}, V) is the *-MFM of I — 00" if and only if
62(z)ou (2)

the operator X _ is unitary from B% @ B% onto BY.
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