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Abstract. This paper considers the non-autonomous competitive Lotka-Volterra system of

two equations. Conditions for the existence and uniqueness of a globally attractive, almost

periodic solution defined on (-co, *oo) whose components are bounded above and below

by positive constants are given.

1. Introduction

Consider the non-autonomous system of differential equations

u l :  u t (Ar ( t )  -  a1( t )u1  -  ae( t )u2) ,

uL: uz(Az(t) - a21(t)u1 - a22(t)u2),
( l . l )

where A;(t), ailQ) Q, j : 1,2) are assumed to be continuous and bounded above
and below by positive constants. Given a function g(t) on R:: (-co, *o), we let
gr, Qpt denote 

iyt^00 
and supg(t), respectively.

In [], it was shown that if the two inequalities

dimensions.

AttaZZt ) ap1,4427'1,

Az ta tv ,2  az taAta
(1 .2)
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For each i : | , 2let us denote bv u! the unique solution of the logistic equa-
tion

U/ :  Ui lAi( t)  -  a; ;( t )U;] ,  (1.3)

which is bounded above and below by positive constants. The existence and
uniqueness of this solution were given by Ahmad [2]. our main result is the
following:

Suppose

At(t)  -  apqul( t)  > e6 t  e R,

A z ( t ) - a 2 1 ( t ) r \ Q ) >  e ;  t e  R

hold for some €1 > 0. If there are positive constants ez, d4, a.2 such that

(1 .4 )

u ia i ; ( t )  -  q - ia3- i i ( t )  2  tz1 ,  t  e  R;  i :  1 ,2 , (1 .s)
then the system (1.1) has a unique solution z0 defined on (-m, *co) whose com-
ponents are bounded above and below by positive constants, and,u(t) - uo(t) --+ 0
as / ---+ *co for any positive solution z(t) of (l.l).

If, in addition, Ai, ali (i, j :1,2) are almost periodic, then the solution z0 is
also almost periodic.

It is not hard to see that At/aiia < UP\ < Aia/aiiL (i: l, 2; t e R). There-
fore, (1.2) implies (1.4). Furthennore, from (1.2) it follows that a22yas7)
aztuana. We can choose d.1, d,2 ) 0 such that a21yf ay1 1a1f u2 I a221f a121a,

then (1 .5 )  ho lds  fo r  some e2 >0.  Wi th  A t :1 ,  c t1  :1 ,  a t2 : : ,  A2 :c t22-
3 l I z
1+lsint 

and, a21:4Ar, we can check that the system (1.1) satisfies (1.4) and

(1 .5)  ( fo r  a r :  a2 :  1 )  bu t  no t  (1 .2 ) .
Thus, our result is stronger than that in [1]. The ecological significance of such

a system was discussed in [4].

2. Edstence

In this section, we shall prove that the system (1.1) has at least one solution z0(r)
on (-o, -|oo) as mentioned above. To do this we need the following lemma.

Lemma l. Let u: (ut,uz) be a solution of (1.1) with ui > 0,' i: 1,2. For each
i : l, 2, let U; be a solution of ( 1.3) such that Ui(to) > ui(ts) (or Ui(to) < ui(t;) )
f o r s o m e t g € R , t h e n U i ( t ) > u ; ( t ) f o r t > t 0 ( U i ( t ) < u i ( t ) f o r t l t g , r e s p e c t i u e l y ) .

Proof. Let us fix i: 1,2. If U;(tg) : ui(ts), then UiUo) > u!(ts). Therefore, if
U;(ts) 2 z;(16), then there exists h ) ts such that (Ji ) u; on (/s, t1). We claim that
{t > h: U;(t) : ui(t)} :0 which will prove that Ui(t) > ui(t) for I > ls. If it is
false, then it is not hard to see that U;(t2) : u;(t2), wherc tz : inf {t > t1: U;(t) :
ui(t)|. Let sU): U(t) - ui(t), then s'(tz): U!(tz) - ullz) > 0. Consequently,
S' (t) > 0 for r e ltz - 4,tz -14] for some small 4 > 0 such that t2 - 4 > to. By the



Two Species Competition in Almost Periodic Enuironment

definition of t2, we have g(t2 - d > 0. Consequently, g(t2) : Ui(tz) - ui(t2) > 0,
which is a contradiction. This proves the claim. By a similar argument we
can prove that if Ui(to) <ui(to), then Ui(t) <u;(t) for /< fs. The lemma is
proved. I

We now recall the topological principle of Wazewski (see, for example, [5]).
Let f (t,y) be a continuous function defined on an open (r,y)-set C) c R x Rn.

Let O0 be an open subset of O, dOo the boundary and O0 the closure of O0. Recall
that a point (lo,yo) e OndQO is called an egress point of O0 with respect to the
svstem

y' :  f ( t ,y),

if for every solution y : y(t) of (2. I ) satisfying the initial condition

(2.r)

y(to) : vo, (2.2)
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there is an € > 0 such that (t,y(t))e C)0 for /o - e ( / < /6. An egress point (to,yo)
of C)0 is called a strict egress point if (t, y(t)) f O0 for to < t < /o * e for a small
e > 0. The set of egress points of O0 will be denoted by A! and the set of strict
egress points bV O3,.

If X is a topological spac,e, V a subset of X, a continuous mapping n; X --+ V
defined on all ofX is called a retraction ofX onto V ifthe restriction r/V ofnto
Z is the identity. When there exists a retraction of X onto V, V is called a retract
of X.

Remark 1. For ai < bi (i : 1,2), let X be a 2-dimensional rectangle

{(n,rz)i ar 3 xi sbi;i:1,2) in the Euclidean space R2, and Z its boundary.
Then V is not a retract of X. For if there exists a retraction r: X ---+ Z, then there
exists a map of X into itself,

(xr,xz),- (r+,r*) - n(x1,x2),

without fixed points, which is impossible by the fixed point theorem of Schauder.

Theorem 1. (Topological Principle, see [5]) Let f (t,y) be continuous on an open
(t,y)-set Q with the property that inilial ualues determine unique solutions of (2.1).
Let {10 be an open subset of d2 satisfying O9 : O3r. Let S be a non-empty subset of
O0 u O! such that S n O! is not a retract of S but is a retract of Q!. Then there
exists at least one point (ts,ys) in Sa(2u such that the solution (t,y(t)) of (2.1),
(2.2 ) is contained in d20 on its right maximal interual of existence.

Theorem 2. Suppose Ar, qij (i,i:1,2) are continuous and bounded aboue and
below by positiue constants. If conditions (1.4) hold, then (I.l) has at least
one solution u01t1 : @1,(t),$(t)) defined on (-cn,*a) satisfying

q i < u i o Q )  <  t l t o ( t ) ;  i : 1 , 2 ,
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where r7, is a positiue number such that

a i < min{er / aii M, i{RU,g 
(4 

}

Proof. First, it is easy to see that the cauchy problem for (l.l) with the initial
condition u(ts) : uo e {(q,u2) e R2: u1 } 0, u, , 0}, (ro e R) has a unique solu-
tion defined on (-oo, +o) whose components are strictly positive for all I e
( -oo ,  +m) .

Consider the system

u't  :  u1(-A1(-t)  a1(-t)q * ap(-t)u2),

uL: uz(-Az(-t) a21(-t)u1 * a22(-t)u2). Q'3)

S , e t  9 2 0 : { ( t , u 1 , u 2 ) : - o  < t <  +  @ ; 4 i < u t < U ! ( - i ;  i : 1 , 2 } ,  a n d  O -
{ ( t , q , u 2 )  e  R 3 } .

Since (2.3) is the inverse time system of (1.1), Lemma I implies that any point
( t ,q ,u2)  in

A:  { ( t ,q ,u2)  e  Oo,  u1  :  U ,o( - l ) ; r  e  n }

v  { ( t ,q ,u2)  e  C)o :  uz :  u l ( - t ) ; /  e  R}

is a strict egress point of Q0. It is not hard to see from the definition of q, (i : | , 2)
that any point (t, q,u2) in

B:  { ( t ,q r ,uz)  eOu} ,  { ( t , r r , r t z )  eCf }

is a strict egress point ofC)0.
Therefore, O9 : O3, : A v B. Let us take

, S :  { ( 0 ,  u 1 , u 2 ) : 4 i  S  u t  <  U , o ( 0 ) ;  i : 1 , 2 } .

Then S is a rectangle. By Remark l, S n O! is not a retract of S. Define

n: dlf; -- S n O!,

(t, ur, ur1,-. (0, 4, + 
ffi! ^( 

u,0 (0) - 4 ), 4z. 66:n( 
ur'(o) - d) .\

clearly the map z is continuous relative to subtopologies on oj and s n C)9 of
Euclidean space R3, and its restriction to s n o! is ttre idlntity. Therefore, s n C)9
is a retract of -o3. By Theorem l, (2.3) has at least a solution uo(r) satisfyini
ry <u?(t) < UP?t) for t > 0. In fact uiO: r0(-4 is a solution of (l.l i fo;
I < 0. By Lemma I and the definition of 4, Q : 1,2), it follows that the solution
il(t) of (2.1) with t(0) : u0(0) satisfies

r y i < u i ( t )  <  t l t o ( t ) ;  f o r / >  0 ,  i : 1 , 2 .
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Let

u o ( t \ : { y ) ( ! ) , t < 0 ,"  \ " /  [ r ( 0 ,  r ) 0 ,

then a0(l) is a solution of(1.1) satisfying

qi  < u?( t )  <  UIQ);  I  €  R;  i :  r ,2 .

The theorem is proved.
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3. Uniqueness and Asymptoticity

In this section we show that the solution rz0 in Theorem 2 is unique and asymp-
totically stable if Conditions (1.4) and (1.5) hold. The following lemma is sharper
than Lemmas 3.2,3.2t,3.3 and 3.3' in [6].

Lemma 2. Suppose ut,uz are two dffirent solutions of (1.1) defined on (-m,*a)
and such that ul( t )  >0 for qny te (-oo,+oo);  i , i :1,2. Then only one of the

following alternatiues is met:
(i) u,t (t) + ul(t) for any t e (-oo, *oo); I : l, 2.

Oil iniie ,riti ii eR ipd i,'i e {r,2} such that u!(tx).:.u?-iUo), 
"!(t) 

> 
"?-i U)

for t < ts, u! (t) < u:-t (t) for t > ts, and 
"tz-,U) 

> ui1,(t) for t eP..

Proof. Suppose_(i) does not hapfren. Then there ate i,i e {1,2} and t6 eR such
that u!(tg):u!-t(to), utt_,Uil>ui1,(ts). Without loss of .generality, we can
asso-. i : l, i : l, i.e.,-we have uf (ls) : u?(to), ul?o) > 

"l1o).Therefore, 
we

have to prove that ul(t) < ul(t) for t > ts, ul(t) > ul(t) for t < ts and

" ) ( t ) > u z r ( t ) f o r t e n .. 1
Let ut, : - (i : l, 2). Then

u i  
i t  '  r , t  i  ,  -  / . \  r  -ui :  -Ar(t)ul  + a1(t)  i  atz(t)ulul ,

ul '  :u i (nr r , -ozt4) \ - r r t l r i \ ;  i  : r ,2 .  
(3 ' l )

- \  u i  /

Since ul'(ts) , ,?'(to), there exists t1 2 ts such that rl(l) > ul(t) andul(t) > u2r(t)
for / e (lo, tr). Define

t r :  in f  ( { t  >  11:  u f  ( r )  :  u?( t ) }  t  {  +  m})

and

r ,  :  in r ( { r  >  4 :  u ) ( t ) :  "3U) } ,  {  +  * i ) .

We claim that t2- t1.: *oo. If it is false, without loss of generality, we can
assnme t21 ft. Therefore, tz < I oo. It is not hard to see that ul(tr1 : u2t(t2).By

the uniqueness, it follows that u)(t2) > u?(t2).Therefore, ul' (tr) , u7' U). By the

same argument as in the proof of Lemma l, we get ul(t) > u?(tz), a contra-
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diction. This proves the claim. Therefore, 
"l(t) 

< ul(t) and 
")(t) 

> ullt) tor
/ > /s. We now consider the case of t < ts. Let u!(t) : u/(-t); i, j : 1,2. We get

u! '1t1 :  r ! ( t )(-  Ai(- t)  + a; i (- t )u!( t)  + a3-i(- t )ut- ,( t )) ;  i , i  :  t ,2.  (3.2)

By the similar argument and using (3.2), we get

u!1ty > u2r1ty, ul14 > u2r1t1 for / > - /s.
This implies 

"l(t) 
> u2r(t), ulQ) > 

"?(t) 
for t 1 ts.

The lemma is proved. I

Theorem 3. Suppose A;, a;i (i, j :1,2) are as in Theorem 2. If, in addition, (1.5)
holds, then the system (1.1) has a unique solution uo defined on (-cn,lcn), whose
components are bounded aboue and below by positiue constants.

Proof. The existence follows from Theorem 2. We now prove the uniqueness.
Suppose by contradiction that ut, u2 are two different solutions of (1.1) defined on
(-co,+oo), whose components are bounded above and below by positive con-
stants. By Lemma 2, only one of the following alternatives is met:

(i) There existsT e {1, 2} such that 
"!U) 

> ul-i 1t) (i : 1, 2; / e R).
(ii) There exist i, j e {1,2}, such that

"!U) 
> ,?-i U), "l_,(t) 

< ul1,1ty, for r e R.

(iii) There exist /o e R,.i, j e {1,2} such thatu!(ts) =,.1?-iUil, u!(t) <"1-i1t1tor
t> ts, u!(t) > ri-tU) for / < ts, a;ndu't_,U) > ui],(t) for reR.

Suppose (i) happens, without loss of generality, we can assume j : l, i.e.,

" ! ( t )  
> ul( t)  ( i :  l ,2 i  r  e R).  I t  is not hard to get f rom (1.1) that

Since u/(l) is bounded above and below by positive constants for i, j:1,2, it

follows that there exists a positive number M such trrat [r f lnpldt < M,
1_,  \d t  u i ! )  /

for any T > 0. Therefore, from (3.3), it follows that

f @

I _ *or' 
(,) ("1 p7 - ul 1t1) * a12(t) ("lO - u]1ty) at < a .

o [ '  ( i^H\a,: l* all(t)(u!(t) - u?(t)) + a12(t)(u)(t) - ulr4)at.
J_* \dt  ui \ t ) /  J_-
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Consequently, ar(t)("|(t) - ul@) + a12Q)(ul(t) - 
"?(t)) 

: 0. It follows that
ut 1t1 : uz(t) for any t e R, a contradiction. Hence, (i) does not happen.

Suppose (ii) happens. Without loss of generality, we can assume that i: l,

.r : l, i.e., we have 
"lU) 

> ul(t), ul(t) < u?(t), for I e R. From (3.3), we get

d / .  u?(t) \  d 1, u2r(t) \  r- .  -.,t,\t"*) - 
"rAl^ffi) 

: (a1a11(t) - u2a21(t))(ulp1- u"1t1) 
(3.4)

* (-  app(t)  + u2a22(t))("?r(r)  -  
" ; ( t )) .

Since 0 <uL<u!, < +a (i,i:1,2), it follows that there exists a positive
number M such that

[r  (  d ( .  a?(r) \  d / ,  u"( t) \ )  .

J_,t-' A\^q6) 
- 

",i\^td jdt < M, for any r > 0

By (1.5), it follows that

[** "r1r11,1 
- r?(t)) + e2(u?r1t1 - u]1t\at < a'

J - -

Consequent ly,  ul( t )-"?(t)  ---+0 and 
"7O-ul1t7--- ,0,  

as l ---+*oo. Since 0<

uL < ulu < *o (i, i : 1,2), it follow, tt ut 1ig -- l, H* I as , ---+ +co.
u i l t )  '  u ; \ t )

Therefore, from (3.4), we get

o: [*- (  d / .  u?(r)\  4G4\\0,J-- to' dr\'"fiuil 
' o' o, \ u)\t)/ )

= J__ 
,,11u11,1- u?(t)) + (ul(t1-,j('))] dt > 0.

Consequently, ut =22. This is also a contradiction. Therefore, (ii) does not
happen.

Suppose (iii) happens. We can, without loss of generality, assume that i : l,
j : l, i.e., we have ul(ts1 : u?(tl), ul(t) < ul(t) and, 

")(t) 
> ul(t) tor t ) ts.

From (3.3)we get

^L(^ffi).*#("ffi)
: (ap1(t) - u2a21Q))@'zr1t1 - ul1t1)

.r (- u1a21(t) + a2a22(t))(u)(t) - u]O)

> ',11"797 - ulUD + @)(t7 - 
"?(ilf,

for I > fs. By the same argument given before, we get ut1t1:u2(t) for t> to.lt
follows thatur(t):uz(t) for any leR, a contradiction. Therefore, (iii) does not
happen. Since the possibilities (i), (ii) and (iii) are exhaustive, the theorem is
proved. I
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Theorem 4. suppose the system (1.1) satisfies all the conditions in Theorem 3. Then
the solution u0 in Theorem 3 satisfies

" l( t )  
-  u;( t)  --+ 0, as r  ---+ f  e6; i :1,2,

for any positiue solution u(t) of ( I .1 ) .

Proof. Let x : (xr, xz), xi > 0; i : l, 2. Letus denote by u(t,x) the solution of the
system (1.1) defined by the initial condition z(0, x): x, Ui(t,x), the solution of
(1.3) given by 4(0, x):  x i .

I t  is enough to show thatui( t ,x)-ulQ) ---+0, as t*+oo ( i :1,2).  From
(1.4), it follows that there exists 7, > 0 (i: l, 2) such that

A{t)  -  y ia i i ( t )  -  a iz- i ( t ) (4_,O + 1, , )  > 0;  i :1 ,2. (3.s)
Let us f ix i :1,2. I t  is not hard to prove that Ui( t ,x)_U:(t  _+0, as

/ * +co. Therefore, there exists ls > 0 such that

U i ( t , x )  <U: ( t )+y i ,  fo r  />  /s . (3.6)

We claim that

ui(t,x) > yi : min{z;(ls, x),Ti}, for t ) ts.

If it is false, let us define gi(t) : yi - ui(t,x). Then there exists h > to such that
gi(t11:> 0. Since Si(t1) < 0, there exists /2 > to such that g;(t2) > 0, s!(t2) > 0. It
implies

0 < - A;(t2) -f qii(tz)ui(t2,x) + a3-i(t2)4_;(t2,x)

< - Ai(tz) -l a;;(t2)y, * ap-i(t2)4-i(t2,x).

By Lemma 1, it follows that ui(t,x) < Ui(t,x) for I > 0. From (3.6) and (3.7), we
have

0 < - Ai(tz) + aii(tz)yi -r as_;(t2)(4_,U) + y,),

which contradicts (3.5). Hence, the claim is proved.

It is not hard to see that u;(t, x) . ^u*{ *,,4j{ } ': r, for I > 0. Therefore, by
I aiit )

the claim, we have 0 < /,- <ui(t,x) < fi < *oo for I > ts.
Using the similar argument as in proving Theorem 3, we get

ui( t ,x) -  u!97 --  o,  as /  -+ f  c6; i  :  1,2.

The theorem is proved. I

4. Almost Periodicity

In this section we assume in addition that Ai(t), a;1Q) (i, j:1,2) are almost
periodic. Suppose .f : (f r,... ,f"): R --+ R'; n > 1, is continuous. Let us recall
that / is almost periodic if for each e > 0, there exists a positive number (. : l(e)

(3 .7)
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such that each interval (u,a I (), u e R, contains at least a number z : t(e) satis-

fying sup llf (t + 
") 

-f (t)ll < e, where ll/(4ll : tg?f ,{lf' 
(41}. we recall Boch-

/ e R

ner's criterion for almost periodicity:/(l) is almost periodic if and only if for every
sequence of numbers {t-}i, there exists a subsequence {r^r}f,:, such that the

sequence of translates {S(+r^)}Lr converges uniformly on (-co,+oo) (see,

for example, [3]).

Lemma 3. For i : l, 2, the solution U! (t) of ( 1 .3 ) is almost periodic-

proof. Let us fix i : l, 2. Take e/ > 0. By Bochner's criterion, it follows that
(A,(t),aii(4) is almost periodic. Therefore, there exists a positive number I such
that each interval (u,u* l), ae R, contains at least a number t: r(e') such that

supl,4;( l  + i  -  Ai( t) l  < et,  supla;;( t+r)  -  ai i ( t ) l  < e' .  (4.1)
t e R

Take an arbitrary z as above. Define W;(t):=+- From (1.3), it follows that
ui@

s

ft lw't l 
- wi(t+r)] : aii(t) - ai;(t * t) - A{t)lw,(r) - w;(t + l l 

A.2\
+ lAlt + ") 

- Alt)lw{t +'c).

Consider the following equation

z'  :  ai i ( t )  -  ai i ( t+ r)  + (AtU + r)  -  A{t))wi( t  + r)  -  A1(t)z '  (4 '3)

Since ,4a > 0, it is not hard to see that if z(t) is a bounded solution of (a.3)

defined on (-co, +co), then

is{at(t) - a;i(t + r) + (Ai(t + < z(t)
Ai ( t )
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) )l - A { t ) ) w ; ( t + r

' : :R{4 A{t)

Therefore, from (4.1), it follows that 

I \

lz(t)l Jry, for anv r e R.
l l

Si"c" 
1,j@ 

- 
WTnis 

a bounded solution of (4'3), we have

1 1
I UYQ)
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Consequently,

l u : ( t - u ! ( t + ' ) l < ' '

t i@ - 
"h_,U)r4: ,G) 

> ' r ;  i :  r ,2;  I  e R.

Similarly, from (1.5), it follows that

uiaiQ) -  a3- iai_, ,( t )  >tz;  i  :  1,2; reR.

By Theorems 2 and 3, it follows that

u'i : uil,q: Al - ai,Q)u; - air_,(t)4_il; i : t, 2

has a unique solution z0* defined on (-oo, *oo) such that

ry ,<u ! *91<L, , ,
where 4r, Ar are positive numbers satisfying

Trinh Tuan Anh and Tran Van Nhuna

(4.s)

(4.6)

(4.7)

('.#) @,0,),
Air

/  1 \  ^  t
(1*; ;u-)@?*) '

Therefore if t: 
"' 

' "LA-L , then lUlO - u!(t + ?)l < s and we can

take (.(e) : l.(d). This proves that u!(t) is almost periodic. The theorem is proved.
In proving the following theorem, we use the idea from [l]. I

Theorem 5. Suppose A;(t), a;1O (i,j :1,2) are as in Theorem 4 and, in addition,
they are almost periodic. Then the solution u0 (t) tn Theorem 4 is almost periodic.

Proof, Let {"^}7,:, be an arbitrary sequence of numbers. Since l;(l), a;1Q), U!(t)

u i  :u t (A : ( t ) -a iQ)u ; ) , (4.4)

,7, . -in{r, I oir, i{^ui. (,)} : mo{rr I ow, iyf^u: O},

Li: Ulit: qr.
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Let us denote S: [4,, Lirlqz,A2]. We claim that u$(t+z-o) converges to
u0* (t) , uniformly as I ---+ co , which will show that u0 (t) is almost periodic. Suppose
the claim is false. Then there exist a subsequence {"^0,} of {r^o}, a sequence of
numbers {Sa}, and a fixed number a > 0 such that

llro(s, I r^u,) - u0*1,s7;11 > a, for all (..

Since ,4;, ou, Uf (i, i : 1,2) are almost periodic, we may assume) without loss
of generality, that'Ai(t + rmkt + Sl, a;iQ I rmp, + Sl, U!(t * r^r", I S7) converge

uniformly to A;Q), ayQ1, 0!O respectively as L---+ oo on (-o,*o). Hence,
AiQ + S2) --- i;(t), ai,Q * S2) --+ dilQ + S2), u!.(t + Sz) - O,p(4, uniformly
with respect to I in (-oo, +oo) as l. -- f oo and A1 : A1, 4,, : A;y, diit: aiL,
A,ja : o,ir, 0,0": tllt and 4* : 4, U, i : 1,2).

Since zo(t) e S for all t in (-oo, *co), we can assume without loss of generality
that z0(S7 +r*r,) * ((0,40) as (,---+ @, where ((o,rlo) eS. Similarly, we may

assume that uo*(Sr) -- ((;, a[) as (. ---+ oo. Clearly ll((o, rto) - G\,,l76)ll > a.
For each l. (L : 1,2,. . .), u0(t + rmr, * S7) is a solution of the system

u! :  u t lA i ( t * r^o , l  Sa)  -  a i i ( t+ rmkt+  S i lu i -  a3- i ( t+ r^o , l  S t )uz- t f ;  i :1 ,2 .

(4.8)

Consider the solution rio of

ui :  r t lA,U)  -  6 ; ; ( t )u i  -  as- i ( t )4-s l ;  i :1 ,2, (4.e)

having the initial value i0(0) : (6,ryi.
We have two systems (4.8) and (4.9) where the right side of (4.8) converges

uniformly to the right side of (a.9) on any compact subset of R3, as / ---+ a66.
Also, the initial values satisfy the property uo(r-r,*57) -- (h,qi, as l--+ +co.
Hence, it follows that uD(t+rmkt+S| ---A0$) uniformly on compact sub-
intervals of the domain of 00 ( l) . This implies that fio (t) e S for all l e R.

Now recall that u0* (t) is the unique solution of (.7 ) with n0* (r) e S for all l.
For each integer l, u0*(t * 57) is a solution of

u!:  ui(AiU + sz) -  ai ,Q + s)r ,  -  ai t - t ( t  + si lut- i ) ;  i :1,2, (4.10)

with rzo-(S7) --' ((d,46), p (, --+ a.
Since ll(l * 57) ---+ Ai(t), ai,Q * 52) --- 6ilU) (i, j : 1,2) as (.---+ co uniformly

with respect to t in (-oo, +m),"it follows that if i0.(4 is the solution of (4.9) with
i0-(0): (|i,,rti l, then ao*(lf Si) -- r0*(4 as l- q uniformly on any compact
subintervals of the domain of ffo*. By the same argument given before, we have
if.(t)eS for any teR. We also have AIQ)eS for any leR. Using the same
argument in proving that(4.7) has the unique solution z0*11; in S for leR, we
may see that (4.9) has a unique solution defined on (-oo,*m) which is in S for
any te(-oo,+co).  Therefore, we must have A0: i0*.  But ,0(0) :  (6,qi ,
i0-(0) : (q,qi) and ll((s, rti - Gi,,46)ll > a, a contradiction. This proves the

Itheorem.
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