Vietnam Journal of Mathematics 25:3 (1997) 229-240
Vietnam Journal

of

MATHEMATICS
© Springer-Verlag 1997

Two Species Competition in Almost Periodic Environment*

Trinh Tuan Anh and Tran Van Nhung
Faculty of Mathematics, Mechanics and Informatics
College of Natural Sciences, Hanoi National University
90 Nguyen Trai Str., Dong Da, Hanoi, Vietnam

Received February 2, 1996
Revised January 10, 1997

Abstract. This paper considers the non-autonomous competitive Lotka—Volterra system of
two equations. Conditions for the existence and uniqueness of a globally attractive, almost
periodic solution defined on (—oo0, +-00) whose components are bounded above and below
by positive constants are given.

1. Introduction

Consider the non-autonomous system of differential equations
w = w (A1(1) — an (D — an(Dw),
wy = wp(A2(t) — an(Ouy — an(tuy),

where 4;(t), a;(¢) (i,j =1, 2) are assumed to be continuous and bounded above
and below by positive constants. Given a function g(#) on R:= (—o0,+00), we let
gr, gm denote tin£ g(¢) and sup g(t), respectively.

S teR

(1.1)

In [1), it was shown that if the two inequalities

Ajraxnt > anm A, (12)
Asyranr > anmAim

hold, and if 4,(¢), a;(f) (i,j = 1,2) are almost periodic, then (1.1) has a unique
almost periodic solution whose components are bounded below and above by
positive constants, which is globally asymptotically stable in {u=(u, w): u; >0;
i =1, 2}. This is a generalization of a result by Gopalsamy [4] for the case of two
dimensions.

* This work is financially supported in part by the National Basic Research Program in
Natural Sciences KT04 1.3.5.
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For each i = 1, 2 let us denote by Uio the unique solution of the logistic equa-
tion

(],'l = U,'[Ai(t) - a,-,~(t)U,~], (13)

which is bounded above and below by positive constants. The existence and
uniqueness of this solution were given by Ahmad [2). Our main result is the
following:

Suppose

Ai(t) — anp()UY(t) = &1; teR,

(1.4)
Az(t) —a21(t)U?(t) =>¢é; teR

hold for some ¢; > 0. If there are positive constants &, aj, ay such that
ocia,-,-(t) - rx3_,-a3_,-,-(t) =>e&; teR, i=1, 2, (15)

then the system (1.1) has a unique solution #° defined on (—o0, +0) whose com-
ponents are bounded above and below by positive constants, and u(z) — u%(z) — 0
as t — +oo for any positive solution u(z) of (1.1).

If, in addition, 4;, a; (i, j = 1, 2) are almost periodic, then the solution %° is
also almost periodic.

It is not hard to see that A;z/auy < UX(f) < Aipr/air (i=1,2; teR). There-
fore, (1.2) implies (1.4). Furthermore, from (1.2) it follows that aszai; >
aznimazy. We can choose oy, ay > 0 such that aya/anr < a1/ap < anr/aiy,
then (15) holds for some & > 0. With A = 1, ay = 1, ais =%, Ay =ap =

—;—+ %sint and ay; = ‘1—‘A2, we can check that the system (1.1) satisfies (1.4) and

(1.5) (for &y = az = 1) but not (1.2).
Thus, our result is stronger than that in [1]. The ecological significance of such
a system was discussed in [4].

2. Existence

In this section, we shall prove that the system (1.1) has at least one solution u°(r)
on (—0,+00) as mentioned above. To do this we need the following lemma.

Lemma 1. Let u = (u1,u) be a solution of (1.1) with u; > 0; i =1, 2. For each
i=1, 2, let U; be a solution of (1.3) such that Ui(ty) > u;(t) (or Ui(to) < ui(to))
Jor some 1 € R, then U(t) > u;(t) for t > to (Ui(t) < ui(f) for t < to, respectively).

Proof. Let us fix i =1, 2. If Ui(to) = wi(tp), then U/(t) > u}(to). Therefore, if
Ui(to) = ui(to), then there exists #; > £, such that U; > u; on (1, t1). We claim that
{t>n: Ult) = u;()} = 0 which will prove that Ui(¢) > u,(¢) for ¢ > 1o. If it is
false, then it is not hard to see that Ui(f;) = u;(2;), where #, = inf {t>8:Ut) =
ui(1)}. Let g(t) = Ui(t) — ui(t), then g'(r2) = U/(t2) — u}(t2) > 0. Consequently,
g9'(t) > 0 for t € [ty — 1,5 + 7] for some small # > 0 such that #, — 5 > #,. By the
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definition of #,, we have g(t, — 1) > 0. Consequently, g(#;) = Ui(t2) — wi(2) > 0,
which is a contradiction. This proves the claim. By a similar argument we
can prove that if U;(t) < ui(t), then Ui(t) <u;(t) for t < tp. The lemma is
proved. |

We now recall the topological principle of Wazewski (see, for example, [5]).
Let f(¢,y) be a continuous function defined on an open (z,y)-set Q = R x R".
Let Q° be an open subset of Q, 9Q° the boundary and Q° the closure of Q°. Recall
that a point (fo, o) € @~ 8Q° is called an egress point of Q° with respect to the
system

y'=f(t) 2.1)

if for every solution y = y(f) of (2.1) satisfying the initial condition

y(to) = yo, (2.2)

there is an ¢ > 0 such that (z, y(2)) € Q° for to — & < t < #). An egress point (t9, yo)
of QY is called a strict egress point if (¢,y(¢)) ¢ Q° for t, < t <ty + ¢ for a small
¢ > 0. The set of egress points of Q° will be denoted by QS and the set of strict
egress points by Qge.

If X is a topological space, V' a subset of X, a continuous mapping n: X — V
defined on all of X is called a retraction of X onto V if the restriction z/V of = to
V is the identity. When there exists a retraction of X onto ¥V, V is called a retract
of X.

Remark 1. For a;<b; (i=1,2), let X be a 2-dimensional rectangle
{(x1,x2): a; < x; < b;;i =1, 2} in the Euclidean space R?, and V its boundary.
Then V is not a retract of X. For if there exists a retraction n: X’ — ¥V, then there
exists a map of X into itself,

ar+by ax+b
(xl,xz)'—’( 12 1,—22—2)—ﬂ(x1,x2),

without fixed points, which is impossible by the fixed point theorem of Schauder.

Theorem 1. (Topological Principle, see [S]) Let f(t,y) be continuous on an open
(t,y)-set Q with the property that initial values determine unique solutions of (2.1).
Let Q° be an open subset of Q satisfying Q2 = Q1. Let S be a non-empty subset of
Q° U QP such that S n QY is not a retract of S but is a retract of Q. Then there
exists at least one point (to, yo) in S " Q° such that the solution (t,y(?)) of (2.1),
(2.2) is contained in Q° on its right maximal interval of existence.

Theorem 2. Suppose A;, ay (i,j =1, 2) are continuous and bounded above and
below by positive constants. If conditions (1.4) hold, then (1.1) has at least
one solution u°(f) = (u3(2),u3(?)) defined on (— o0, +o0) satisfying

A < uio(t) < Uio(t); = 1727
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where 1; is a positive number such that
1 < min{el /a,-,-M, tlgf}; Uio(t)}.

Proof. First, it is easy to see that the Cauchy problem for (1.1) with the initial
condition u(ty) = uo € {(u1,u2) € R*: u; > 0, u; > 0}, (1 € R) has a unique solu-
tion defined on (—co,+00) whose components are strictly positive for all ¢ e
(—00,+00).

Consider the system

vy = v1(—A41(—1) + ay (=)o + app(—1)vy),

(2.3)
Ué = Uz(—Az(—t) +ax (=t + azz(—t)vz).

Set QO—{(t v1,02): =00 <1< +00; g, <v; <UX(—t); i=1,2}, and Q=
{(z, v, 07) € R3}

Since (2.3) is the inverse time system of (1.1), Lemma 1 implies that any point
(t vy, Uz) n

A={(t,01,12) € Q% v; = UYN(—1); 1€ R}
v {(t,v1,02) eQ: vy = Up(~t);te R}
is a strict egress point of Q°. It is not hard to see from the definition of m(i=1,2)
that any point (¢,v1,v;) in
B = {(t,m,02) € @} U {(t,01,m) € O}
is a strict egress point of Q°.
Therefore, Q0 = Q% = 4 U B. Let us take

S§={(0,v1,0): 1, <v; < UL0); i=1,2}.

Then S is a rectangle. By Remark 1, S n Q0 is not a retract of S. Define

n:QS—»SmQS,

(o) (0 + g (U0 = 1) 4 T (U30) ) ).

Clearly the map m is continuous relative to subtopologies on QO and S N QY of
Euclidean space R?, and its restriction to S N QO is the identity. Therefore Sn QO
is a retract of Q. By Theorem 1, (2.3) has at least a solution v°(¢) satlsfymg
n; < vd(f) < UX(—t) for t > 0. In fact u}(t) = v°(—1) is a solution of (1.1) for
t<0. By Lemma 1 and the definition of #; (i = 1, 2), it follows that the solution
a(f) of (2.1) with #(0) = v°(0) satisfies

n <#(f) <Ut); fort>0,i=1,2.
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Let

then 4%(¢) is a solution of (1.1) satisfying
n,<ul(t)y <UYy); teR; i=1,2.
The theorem is proved. |

3. Uniqueness and Asymptoticity

In this section we show that the solution #° in Theorem 2 is unique and asymp-
totically stable if Conditions (1.4) and (1.5) hold. The following lemma is sharper
than Lemmas 3.2, 3.2/, 3.3 and 3.3 in [6].

Lemma 2. Suppose u', u? are two different solutions of (1.1) defined on (—o0,+c0)
and such that u(t) > 0 for any t € (—oo,+); i,j=1,2. Then only one of the
followmg alternatives is met:
ul(t) # u2(¢) for any te (—o0,+0), i=1, 2. ; .
(11) There exist ty € R and i, je{1,2} such that u(t)) = w7 (1), ul (1) > w2 (1)
Sort < ty, -()<u ()fort>to,andu3 l()>ug ,(t)forteR

Proof. Suppose () does not happen Then there are i, j € {1, 2} and #, € R such
that u/(t) = (to) ul_,(to) > u3 (ty). Without loss of generality, we can
assume j = 1, z =1, ie., we have ul(t0) = u2(t0), ui(t) > uz(to) Therefore, we
have to prove that ull(t) <ud(t) for t>1ty, ul(t)>ui(r) for 1<t and
ul(t) > ud(t) for te R.
Let v1 = i} (j=1,2). Then
u

1,

Ui’ = —Al(t)v{ + a11(t) + alz(t)u{v{,

1 ; ' (3.1)
u2 =uj| 42(t) - a21(t)ﬁ —an(uy }; j=1,2.

1

Since v!'(fy) > v?'(to), there exists #; > to such that v} (¢) > v} () and u} () > u3(?)
for t € (#y, #1). Define

tz—lnf({t>t1 vl (t) N}vu {+oo})

and

i =inf({t>n:5() =)} o { + o}).
We claim that t, = 3 = +o0. If it is false, without loss of generality, we can
assume 1, < t;. Therefore, #, < + co. It is not hard to see that v} (£;) = v?(z;). By
the uniqueness, it follows that ul(ty) > u2(t2). Therefore, v)'(2,) > v} (12). By the
same argument as in the proof of Lemma 1, we get vl(f;) > v?(z,), a contra-
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diction. This proves the claim. Therefore, u](¢) < ulz(t) and ul(f) > u3(¢) for
t > ty. We now consider the case of ¢ < 1. Let v/(£) = u/(—1);4,j =1, 2. We get

v! (8) = () (= A(=0) + au(—00] () + an_i(—0)w)_,(1)); i,j=1,2. (3.2)
By the similar argument and using (3.2), we get
vl(8) > v3(t), vi(t)>v3(t) fort> — 1.

This implies u] (¢) > u?(£), ul(z) > ud(¢) for ¢ < t.
The lemma is proved. ]

Theorem 3. Suppose A;, a; (i, j = 1, 2) are as in Theorem 2. If, in addition, (1.5)
holds, then the system (1.1) has a unique solution u® defined on (—, +o0), whose
components are bounded above and below by positive constants.

Proof. The existence follows from Theorem 2. We now prove the uniqueness.
Suppose by contradiction that u!, u? are two different solutions of (1.1) defined on
(—00,+00), whose components are bounded above and below by positive con-
stants. By Lemma 2, only one of the following alternatives is met:

(i) There exists j e {1, 2} such that u/(f) > u,.s_’(t) (i=1,2; teR).

(ii) There exist i, j € {1, 2}, such that

wl(t) > w70, ul_(t)<u)?(t), forteR.

(iii) There exist o € R, i, j € {1, 2} such that u/(t) = u3 (1), u /(1) < u (1) for
t> to, ul(£) > u} (1) for t < 8y, and uj_ ,(z)>u§ i(1) for t e R,

Suppose (i) happens, without loss of generality, we can assume j =1, i.e

ul () > u?(t) (i=1, 2; teR). It is not hard to get from (1.1) that
G — —any(0(0) — () — aa() 6300 ~ (),
|
(3.3)
W2(1
e ) =~ (0 (0 ~ () ~ () 6(0) - 1)

Since /() is bounded above and below by positive constants for Lhj=1,2 it

T 2
follows that there exists a positive number M such that J (iln u11 (1) )dt <M,
_r \dt u(r)

for any T > 0. Therefore, from (3.3), it follows that

Jw an (1) (u] (1) — ui (1)) + aa () (uy(2) — u2(9))dt < M.

—a0
Since ay; (1) (] (1) — ui (1)) > 0 and a12(¢) (4} (1) — u3(2)) > 0 for any ¢ € R, it fol-
lows that u{(f) —uf(t) — 0 and uj(¢) —ui(r) = 0 as t — +co. Consequently,
u; (1)
uf (1)

0= J ( Eg)dt J:o an (1) () (1) — ui (1)) + ana(2) (ul (1) — 12(1))dt

— 1 (i=1,2),as t — +o0, since 0 < u}; <u};, < + 0. Hence,
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Consequently, ay(2) (1} () — u} (1)) + a2 (2) (w3 (¢) — u3(2)) = 0. It follows that
u'(f) = u?(¢) for any ¢ € R, a contradiction. Hence, (i) does not happen.

Suppose (ii) happens. Without loss of generality, we can assume that i =1,
j=1,ie., we have ul(t) > u}(f), ui(¢f) < u3(¢), for t e R. From (3.3), we get

(l) d B0y _
+ (—aan() + oan (1)) (45 (1) — wy (1))

Since 0 < u), <uly, < +oo (i,j=1,2), it follows that there exists a positive
number M such that

T df u® d (w1
J_T{al 7 (lnull(t)). —n_ <lnm) }dt <M, forany T >0.

By (1.5), it follows that

(3.4)

J+w e (uf (t) — ut(t)) +£2(u2(t) —uy(f))dt < M.

t) -0, as t —» +oo0. Since 0 <
@ | 80
0 7 ul)

Consequently, ul(t) —u}(f) — 0 and u3(r) —u

3
2
11 — 1 as t — $o0.
U

wl <uly < +oo (i,j=1,2), it follows that

Therefore, from (3.4), we get

OZJf:{dl%(lnzggg) e dt( é_(;;)}

> rw & [(ull(t) — () + (3(0) - u;(t))]dr > 0.

—o0

Consequently, #! = u?. This is also a contradiction. Therefore, (ii) does not
happen.

Suppose (iii) happens. We can, without loss of generality, assume that i = 1,
j=1, ie., we have ul(to) = ul(to), uj(t) <ui(t) and uj(r) > u3(r) for t> 1.

From (3.3) we get
d (. ui) d (. ul?)
ala(ln il( )) +a E(ln E(ﬂ)
(s (
)

= (onan (2) — %m0 (7)) (5 (1) — i (2
+ (= oan (t) + wan(t )(u (1) — u%(t))
> e[ () - ul () + () - B()],

for ¢ > 1. By the same argument given before, we get u’(¢) = u%(¢) for 1 > 1. It
follows that u!(¢) = u?(¢) for any 7 € R, a contradiction. Therefore, (iii) does not
happen. Since the possibilities (i), (ii) and (iii) are exhaustive, the theorem is
proved. [ ]
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Theorem 4. Suppose the system (1.1) satisfies all the conditions in Theorem 3. Then
the solution u® in Theorem 3 satisfies

() —u(t) - 0, ast—+oo; i=1,?2,
JSor any positive solution u(t) of (1.1).

Proof. Let x = (x1,x2), x; > 0; i = 1, 2. Let us denote by u(t, x) the solution of the
system (1.1) defined by the initial condition u(0, x) = x, Uj(¢,x), the solution of
(1.3) given by U;(0, x) = x;.

It is enough to show that w;(f,x) —u?(f) - 0, as t » +o0 (i =1, 2). From
(1.4), it follows that there exists y; > 0 (i = 1, 2) such that

Ai(t) = yiai(t) — ap- () (U3(1) +7,) > 0; i=1,2. (3:5)

Let us fix i=1,2. It is not hard to prove that Ui(t,x) — UX(t) — 0, as
t — +o0. Therefore, there exists #, > 0 such that

Ui(t,x) < UXNt) +y;, for t > 1. (3.6)

We claim that

ui(t,x) > y; = min{u;(t,x),y;}, fort> 1.
If it is false, let us define g;(¢) = y; — u;(¢,x). Then there exists #; > #) such that
gi(t1) > 0. Since g;(t) < 0, there exists #; > 7 such that g;(t;) > 0, g;(£2) > 0. It
implies

0 < — 4i(22) + au(t2)ui(t2, x) + an_i(t2)uz_i(12, x)
< — Ain) + as(2)y; + an-i(t2)uz—i(t2, x).

By Lemma 1, it follows that u;(z, x) < Ui(¢,x) for ¢ > 0. From (3.6) and (3.7), we
have

(3.7)

0 < — Ai(t2) + au(ta)y; + an—i(2) (U3_i(22) + ;)

which contradicts (3.5). Hence, the claim is proved.
. A;
It is not hard to see that (2, x) < max{x,-,a—mi} :=I'; for ¢ > 0. Therefore, by
iL
the claim, we have 0 < y} < u;(t,x) <T; < 400 for t > 1.
Using the similar argument as in proving Theorem 3, we get

ui(t,x) —ul(t) >0, ast— +oo; i=1,2.

The theorem is proved. o
4. Almost Periodicity
In this section we assume in addition that 4;(z), a;(¢) (i,j =1, 2) are almost

periodic. Suppose f = (f!,...,f"): R = R% n> 1, is continuous. Let us recall
that /' is almost periodic if for each & > 0, there exists a positive number £ = £(¢)
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such that each interval (a,« + £), o € R, contains at least a number 7 = z(¢) satis-
fying sup |£(t+ 1) — f(D]| < &, where [|(2)]] = max {|f(1)]}. We recall Boch-
teR <i<n

ner’s criterion for almost periodicity: f(¢) is almost periodic if and only if for every
sequence of numbers {rm};o, there exists a subsequence {ka};O:l such that the
sequence of translates {g(7+ rmk)}zozl converges uniformly on (—o0,+) (see,
for example, [3]).

Lemma 3. For i = 1, 2, the solution UP(¢) of (1.3) is almost periodic.

Proof. Let us fix i =1, 2. Take ¢ > 0. By Bochner’s criterion, it follows that
(A;(f), az(t)) is almost periodic. Therefore, there exists a positive number £ such
that each interval («, « + £), o € R, contains at least a number 7 = 7(¢’) such that

sup |4;(t+ 1) — 4;()| < &, sup|ay(t+1) —as(t)] <& (4.1)
teR teR

. 1 g
Take an arbitrary 7 as above. Define W;(f) = m From (1.3), it follows that

% [Wi(t) = Wit + 7)) = au(t) — aa(t + ) — 4i(0) [Wi(t) — Wit + 7)) 42)
+ [Ai(t+1) — 4] Wit + 7).
Consider the following equation

Z' = ay(t) — aa(t + 1) + (4i(t +7) — () Wit + 1) — A(1)Z. (4.3)

Since A4y > 0, it is not hard to see that if Z(¢) is a bounded solution of (4.3)
defined on (—o0,+00), then

ing {a,-,-(t) —ai(t+1) + (A/;EE ; T) — Ai(1)) Wit + r)} <20
a,-,-(t) - a,-,-(t + ‘C) + (Ai(t + T) = Ai(t)) VVz(t + T) )
<2l e Jirem

Therefore, from (4.1), it follows that

1
14+ —
s(+U,-°L)

|Z(5)} < , foranyteR.
Air
Since ; == is a bounded solution of (4.3), we have
Ul Ut+7)
G
1 1 7

UL (1) N U (t+7) =¥ Air
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Consequently,

1 2
(1+3) (0

1U2() ~ UPa+ )| < ~—

1
(1+ ) (w80”
A

Therefore if ¢ = &' , then |UP(r) — U°(t+1)] < ¢ and we can

iM
take £(¢) = £(¢'). This proves that U(z) is almost periodic. The theorem is proved.
In proving the following theorem, we use the idea from [1]. ]

Theorem 5. Suppose Ai(t), a;(t) (i,j = 1, 2) are as in Theorem 4 and, in addition,
they are almost periodic. Then the solution u®(t) in Theorem 4 is almost Dperiodic.

Proof. Let {1,,},_, be an arbitrary sequence of numbers. Since 4;(z), a; (1), U(z)
(i,/ =1, 2) are almost periodic, there exists a subsequence {1, b of {in
such that 4;(t + tm,), ay(t+ tm,), UP(t +1,,) converge uniformly to functions
A" (1), aj(t), U (1) respectively on (—o0,+00). It is not hard to see that A}, =
A, Ajpy = Aim, @y = ajr, al;'M = dijM, UPI: 3 UPL and U.-'[J}:{ == UPM (i,j=1,2).
Furthermore, it is also not hard to prove that for each i = 1, 2, U (1) is a solution
of

U = Ui(4; (1) — a() Uy), (4.4)

defined on (—co,+00). Since 0 < 47 < 4}, < +o0 and 0 <a}; < Ay < +oo
for i=1,2, it follows that U™ is the unique solution of (4.4) such that
0< Uy < U% < +o. Since A;(t+ Ty ) — @i3—i(t + T, ) Ua—i(t + 1) converges
uniformly to 47 (f) — afy_,(1)U3* (1), as k — +o0 (i = 1, 2), on (—c0, +c0), it fol-
lows from (1.4) that

A1) —as (UL () =e; i=1,2; teR. (4.5)
Similarly, from (1.5), it follows that
way(t) —o3ay_y(f) > e; i=1,2; teR. (4.6)
By Theorems 2 and 3, it follows that
u = uwi[A} (1) — af(yw — afy_(Hus—); i=1,2 (4.7)
has a unique solution 4% defined on (—o00, +0) such that
n; <uM(f) <A,

where #;, A; are positive numbers satisfying
. * . 0 . . *
n; < nnn{z—:l/aﬁM,tlgfI; Ui*(t)} = rmn{sl/a,-,-M,tlrelt;Q U; (t)},

A= USI;: Usz'
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Let us denote S = [i7,, A1] X [, Az]. We claim that u°(z + 7,,,,) converges to
u%(t), uniformly as ¢ — oo, which will show that u°(¢) is almost periodic. Suppose
the claim is false. Then there exist a subsequence {ka[} of {z, }, a sequence of
numbers {S,;}, and a fixed number a > 0 such that

|u® (S, + Tmy,) — u™(S)|| =, foralls.

Since 4;, ay, UjO (i, j = 1, 2) are almost periodic, we may assume, without loss
of generality, that 4;(f + Tm,, + St), ay(¢ + i, + Se), U2t + Tmy, + S) converge
uniformly to A;(1), a;(1), Uio(t) respectively as £ — o on (—o0,+00). Hence,
AF(t+80) = Ait), aj(t+Se) — a1+ Se), UM (14 Se) - U(1), uniformly
with respect to ¢ in (—o0,+00) as £ — +o0 and Aip = Air, Ain = Aim, i = ay,
djy = agur, U = UY and Upy, = U, (5,7 =1, 2).

Since u%(¢) e S for all ¢ in (—o0, +00), we can assume without loss of generality
that u%(S; + tm,,) — (%0,70) as £ — oo, where (£o,7o) € S. Similarly, we may

assume that u®(S,) — (&5,#3) as £ — oo. Clearly ||(&,79) — (&5, 78) || = o
Foreach £ (£ =1, 2,...), u%(t + tmy, + S¢) is a solution of the system

ul{ =y [A,-(t + T, +Sp) —au(t + Ty, + So)u; — ap_;(t + Ty, + Se)ug,_i]; i=1,2
(4.8)

Consider the solution #° of
u,f = u; [AA,(I) - d,-,-(t)u,- = d,-3_,-(t)u3_,-]; = 1, 2, (49)

having the initial value #°(0) = (&, 7o)

We have two systems (4.8) and (4.9) where the right side of (4.8) converges
uniformly to the right side of (4.9) on any compact subset of R3, as £ — +co.
Also, the initial values satisfy the property uo(rm,q + S¢) — (&o, 1), as £ — +oo0.
Hence, it follows that u(t+ T, + S¢) — @°(¢) uniformly on compact sub-
intervals of the domain of #°(¢). This implies that 2°(¢) € S for all ¢ € R.

Now recall that % (¢) is the unique solution of (4.7) with u®(¢) € S for all ¢.
For each integer £, u” (¢ + S) is a solution of

uj = ui(A; (t+ Sp) — az(t+ So)w; — aj_,(t+ Sus_); i=1,2, (4.10)

with 4% (S;) — (&5,73), as £ — 0.

Since 4/ (t 4 S¢) — Ai(2), aj(t + Se) — d(1) (i, j =1, 2) as £ — co uniformly
with respect to ¢ in (—o0, +0), it follows that if 2%*(¢) is the solution of (4.9) with
2%*(0) = (&5,13), then u®(z + S;) — 4™ () as £ — oo uniformly on any compact
subintervals of the domain of #%*. By the same argument given before, we have
4% () € S for any t € R. We also have #°(f) € S for any f € R. Using the same
argument in proving that (4.7) has the unique solution ¥%(¢) in S for e R, we
may see that (4.9) has a unique solution defined on (—o0, +00) which is in S for
any te(—c0,+0). Therefore, we must have #°=a%. But @°(0) = (&,7,),
2% (0) = (&5, 1) and [|(&o,mo) — (&5,73)]l = @, a contradiction. This proves the
theorem. |
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