Two Species Competition in Almost Periodic Environment*

Trinh Tuan Anh and Tran Van Nhung
Faculty of Mathematics, Mechanics and Informatics
College of Natural Sciences, Hanoi National University
90 Nguyen Trai Str., Dong Da, Hanoi, Vietnam

Received February 2, 1996
Revised January 10, 1997

Abstract

This paper considers the non-autonomous competitive Lotka-Volterra system of two equations. Conditions for the existence and uniqueness of a globally attractive, almost periodic solution defined on $(-\infty,+\infty)$ whose components are bounded above and below by positive constants are given.

1. Introduction

Consider the non-autonomous system of differential equations

$$
\begin{align*}
& u_{1}^{\prime}=u_{1}\left(A_{1}(t)-a_{11}(t) u_{1}-a_{12}(t) u_{2}\right) \tag{1.1}\\
& u_{2}^{\prime}=u_{2}\left(A_{2}(t)-a_{21}(t) u_{1}-a_{22}(t) u_{2}\right)
\end{align*}
$$

where $A_{i}(t), a_{i j}(t)(i, j=1,2)$ are assumed to be continuous and bounded above and below by positive constants. Given a function $g(t)$ on $R:=(-\infty,+\infty)$, we let g_{L}, g_{M} denote $\inf _{t \in R} g(t)$ and $\sup _{t \in R} g(t)$, respectively.

In [1], it was shown that if the two inequalities

$$
\begin{align*}
& A_{1 L} a_{22 L}>a_{12 M} A_{2 M}, \tag{1.2}\\
& A_{2 L} a_{11 L}>a_{21 M} A_{1 M}
\end{align*}
$$

hold, and if $A_{i}(t), a_{i j}(t)(i, j=1,2)$ are almost periodic, then (1.1) has a unique almost periodic solution whose components are bounded below and above by positive constants, which is globally asymptotically stable in $\left\{u=\left(u_{1}, u_{2}\right): u_{i}>0\right.$; $i=1,2\}$. This is a generalization of a result by Gopalsamy [4] for the case of two dimensions.

[^0]For each $i=1,2$ let us denote by U_{i}^{0} the unique solution of the logistic equation

$$
\begin{equation*}
U_{i}^{\prime}=U_{i}\left[A_{i}(t)-a_{i i}(t) U_{i}\right] \tag{1.3}
\end{equation*}
$$

which is bounded above and below by positive constants. The existence and uniqueness of this solution were given by Ahmad [2]. Our main result is the following:

Suppose

$$
\begin{array}{ll}
A_{1}(t)-a_{12}(t) U_{2}^{0}(t) \geq \varepsilon_{1} ; & t \in R \\
A_{2}(t)-a_{21}(t) U_{1}^{0}(t) \geq \varepsilon_{1} ; & t \in R \tag{1.4}
\end{array}
$$

hold for some $\varepsilon_{1}>0$. If there are positive constants $\varepsilon_{2}, \alpha_{1}, \alpha_{2}$ such that

$$
\begin{equation*}
\alpha_{i} a_{i i}(t)-\alpha_{3-i} a_{3-i i}(t) \geq \varepsilon_{2} ; \quad t \in R ; \quad i=1,2 \tag{1.5}
\end{equation*}
$$

then the system (1.1) has a unique solution u^{0} defined on $(-\infty,+\infty)$ whose components are bounded above and below by positive constants, and $u(t)-u^{0}(t) \rightarrow 0$ as $t \rightarrow+\infty$ for any positive solution $u(t)$ of (1.1).

If, in addition, $A_{i}, a_{i j}(i, j=1,2)$ are almost periodic, then the solution u^{0} is also almost periodic.

It is not hard to see that $A_{i L} / a_{i i M} \leq U_{i}^{0}(t) \leq A_{i M} / a_{i L L}(i=1,2 ; t \in R)$. Therefore, (1.2) implies (1.4). Furthermore, from (1.2) it follows that $a_{22 L} a_{11 L}>$ $a_{21 M} a_{12 M}$. We can choose $\alpha_{1}, \alpha_{2}>0$ such that $a_{21 M} / a_{11 L}<\alpha_{1} / \alpha_{2}<a_{22 L} / a_{12 M}$, then (1.5) holds for some $\varepsilon_{2}>0$. With $A_{1}=1, a_{11}=1, a_{12}=\frac{1}{2}, A_{2}=a_{22}=$ $\frac{3}{2}+\frac{1}{2} \sin t$ and $a_{21}=\frac{1}{4} A_{2}$, we can check that the system (1.1) satisfies (1.4) and (1.5) (for $\alpha_{1}=\alpha_{2}=1$) but not (1.2).

Thus, our result is stronger than that in [1]. The ecological significance of such a system was discussed in [4].

2. Existence

In this section, we shall prove that the system (1.1) has at least one solution $u^{0}(t)$ on $(-\infty,+\infty)$ as mentioned above. To do this we need the following lemma.

Lemma 1. Let $u=\left(u_{1}, u_{2}\right)$ be a solution of (1.1) with $u_{i}>0 ; i=1,2$. For each $i=1$, 2, let U_{i} be a solution of (1.3) such that $U_{i}\left(t_{0}\right) \geq u_{i}\left(t_{0}\right)$ (or $U_{i}\left(t_{0}\right) \leq u_{i}\left(t_{0}\right)$) for some $t_{0} \in R$, then $U_{i}(t)>u_{i}(t)$ for $t>t_{0}\left(U_{i}(t)<u_{i}(t)\right.$ for $t<t_{0}$, respectively).
Proof. Let us fix $i=1,2$. If $U_{i}\left(t_{0}\right)=u_{i}\left(t_{0}\right)$, then $U_{i}^{\prime}\left(t_{0}\right)>u_{i}^{\prime}\left(t_{0}\right)$. Therefore, if $U_{i}\left(t_{0}\right) \geq u_{i}\left(t_{0}\right)$, then there exists $t_{1}>t_{0}$ such that $U_{i}>u_{i}$ on $\left(t_{0}, t_{1}\right)$. We claim that $\left\{t>t_{1}: U_{i}(t)=u_{i}(t)\right\}=\emptyset$ which will prove that $U_{i}(t)>u_{i}(t)$ for $t>t_{0}$. If it is false, then it is not hard to see that $U_{i}\left(t_{2}\right)=u_{i}\left(t_{2}\right)$, where $t_{2}=\inf \left\{t>t_{1}: U_{i}(t)=\right.$ $\left.u_{i}(t)\right\}$. Let $g(t)=U_{i}(t)-u_{i}(t)$, then $g^{\prime}\left(t_{2}\right)=U_{i}^{\prime}\left(t_{2}\right)-u_{i}^{\prime}\left(t_{2}\right)>0$. Consequently, $g^{\prime}(t)>0$ for $t \in\left[t_{2}-\eta, t_{2}+\eta\right]$ for some small $\eta>0$ such that $t_{2}-\eta>t_{0}$. By the
definition of t_{2}, we have $g\left(t_{2}-\eta\right)>0$. Consequently, $g\left(t_{2}\right)=U_{i}\left(t_{2}\right)-u_{i}\left(t_{2}\right)>0$, which is a contradiction. This proves the claim. By a similar argument we can prove that if $U_{i}\left(t_{0}\right) \leq u_{i}\left(t_{0}\right)$, then $U_{i}(t)<u_{i}(t)$ for $t<t_{0}$. The lemma is proved.

We now recall the topological principle of Wazewski (see, for example, [5]). Let $f(t, y)$ be a continuous function defined on an open (t, y)-set $\Omega \subset \mathbf{R} \times \mathbf{R}^{n}$. Let Ω^{0} be an open subset of $\Omega, \partial \Omega^{0}$ the boundary and $\bar{\Omega}^{0}$ the closure of Ω^{0}. Recall that a point $\left(t_{0}, y_{0}\right) \in \Omega \cap \partial \Omega^{0}$ is called an egress point of Ω^{0} with respect to the system

$$
\begin{equation*}
y^{\prime}=f(t, y) \tag{2.1}
\end{equation*}
$$

if for every solution $y=y(t)$ of (2.1) satisfying the initial condition

$$
\begin{equation*}
y\left(t_{0}\right)=y_{0} \tag{2.2}
\end{equation*}
$$

there is an $\varepsilon>0$ such that $(t, y(t)) \in \Omega^{0}$ for $t_{0}-\varepsilon \leq t<t_{0}$. An egress point $\left(t_{0}, y_{0}\right)$ of Ω^{0} is called a strict egress point if $(t, y(t)) \notin \bar{\Omega}^{0}$ for $t_{0}<t \leq t_{0}+\varepsilon$ for a small $\varepsilon>0$. The set of egress points of Ω^{0} will be denoted by Ω_{e}^{0} and the set of strict egress points by $\Omega_{s e}^{0}$.

If X is a topological space, V a subset of X, a continuous mapping $\pi: X \rightarrow V$ defined on all of X is called a retraction of X onto V if the restriction π / V of π to V is the identity. When there exists a retraction of X onto V, V is called a retract of X.

Remark 1. For $a_{i}<b_{i} \quad(i=1,2)$, let X be a 2-dimensional rectangle $\left\{\left(x_{1}, x_{2}\right): a_{i} \leq x_{i} \leq b_{i} ; i=1,2\right\}$ in the Euclidean space \mathbf{R}^{2}, and V its boundary. Then V is not a retract of X. For if there exists a retraction $\pi: X \rightarrow V$, then there exists a map of X into itself,

$$
\left(x_{1}, x_{2}\right) \mapsto\left(\frac{a_{1}+b_{1}}{2}, \frac{a_{2}+b_{2}}{2}\right)-\pi\left(x_{1}, x_{2}\right)
$$

without fixed points, which is impossible by the fixed point theorem of Schauder.
Theorem 1. (Topological Principle, see [5]) Let $f(t, y)$ be continuous on an open (t, y)-set Ω with the property that initial values determine unique solutions of (2.1). Let Ω^{0} be an open subset of Ω satisfying $\Omega_{e}^{0}=\Omega_{s e^{-}}^{0}$. Let S be a non-empty subset of $\Omega^{0} \cup \Omega_{e}^{0}$ such that $S \cap \Omega_{e}^{0}$ is not a retract of S but is a retract of Ω_{e}^{0}. Then there exists at least one point (t_{0}, y_{0}) in $S \cap \Omega^{0}$ such that the solution $(t, y(t))$ of (2.1), (2.2) is contained in Ω^{0} on its right maximal interval of existence.

Theorem 2. Suppose $A_{i}, a_{i j}(i, j=1,2)$ are continuous and bounded above and below by positive constants. If conditions (1.4) hold, then (1.1) has at least one solution $u^{0}(t)=\left(u_{1}^{0}(t), u_{2}^{0}(t)\right)$ defined on $(-\infty,+\infty)$ satisfying

$$
\eta_{i} \leq u_{i}^{0}(t) \leq U_{i}^{0}(t) ; \quad i=1,2
$$

where η_{i} is a positive number such that

$$
\eta_{i}<\min \left\{\varepsilon_{1} / a_{i i M}, \inf _{t \in R} U_{i}^{0}(t)\right\}
$$

Proof. First, it is easy to see that the Cauchy problem for (1.1) with the initial condition $u\left(t_{0}\right)=u_{0} \in\left\{\left(u_{1}, u_{2}\right) \in R^{2}: u_{1}>0, u_{2}>0\right\},\left(t_{0} \in R\right)$ has a unique solution defined on $(-\infty,+\infty)$ whose components are strictly positive for all $t \in$ $(-\infty,+\infty)$.

Consider the system

$$
\begin{align*}
& v_{1}^{\prime}=v_{1}\left(-A_{1}(-t)+a_{11}(-t) v_{1}+a_{12}(-t) v_{2}\right) \\
& v_{2}^{\prime}=v_{2}\left(-A_{2}(-t)+a_{21}(-t) v_{1}+a_{22}(-t) v_{2}\right) \tag{2.3}
\end{align*}
$$

Set $\Omega^{0}=\left\{\left(t, v_{1}, v_{2}\right):-\infty<t<+\infty ; \eta_{i}<v_{i}<U_{i}^{0}(-t) ; i=1,2\right\}$, and $\Omega=$ $\left\{\left(t, v_{1}, v_{2}\right) \in R^{3}\right\}$.

Since (2.3) is the inverse time system of (1.1), Lemma 1 implies that any point $\left(t, v_{1}, v_{2}\right)$ in

$$
\begin{aligned}
& A=\left\{\left(t, v_{1}, v_{2}\right) \in \overline{\mathbf{\Omega}^{0}}: v_{1}=U_{1}^{0}(-t) ; t \in R\right\} \\
& \cup\left\{\left(t, v_{1}, v_{2}\right) \in \overline{\mathbf{\Omega}^{0}}: v_{2}=U_{2}^{0}(-t) ; t \in R\right\}
\end{aligned}
$$

is a strict egress point of Ω^{0}. It is not hard to see from the definition of $\eta_{i}(i=1,2)$ that any point $\left(t, v_{1}, v_{2}\right)$ in

$$
B=\left\{\left(t, \eta_{1}, v_{2}\right) \in \overline{\Omega^{0}}\right\} \cup\left\{\left(t, v_{1}, \eta_{2}\right) \in \overline{\Omega^{0}}\right\}
$$

is a strict egress point of Ω^{0}.
Therefore, $\Omega_{e}^{0}=\Omega_{s e}^{0}=A \cup B$. Let us take

$$
S=\left\{\left(0, v_{1}, v_{2}\right): \eta_{i} \leq v_{i} \leq U_{i}^{0}(0) ; \quad i=1,2\right\}
$$

Then S is a rectangle. By Remark $1, S \cap \Omega_{e}^{0}$ is not a retract of S. Define

$$
\begin{aligned}
& \pi: \Omega_{e}^{0} \rightarrow S \cap \Omega_{e}^{0} \\
& \left(t, v_{1}, v_{2}\right) \mapsto\left(0, \eta_{1}+\frac{v_{1}-\eta_{1}}{U_{1}^{0}(t)-\eta_{1}}\left(U_{1}^{0}(0)-\eta_{1}\right), \eta_{2}+\frac{v_{2}-\eta_{2}}{U_{2}^{0}(t)-\eta_{2}}\left(U_{2}^{0}(0)-\eta_{2}\right)\right)
\end{aligned}
$$

Clearly the map π is continuous relative to subtopologies on Ω_{e}^{0} and $S \cap \Omega_{e}^{0}$ of Euclidean space \mathbf{R}^{3}, and its restriction to $S \cap \Omega_{e}^{0}$ is the identity. Therefore, $S \cap \Omega_{e}^{0}$ is a retract of Ω_{e}^{0}. By Theorem $1,(2.3)$ has at least a solution $v^{0}(t)$ satisfying $\eta_{i}<v_{i}^{0}(t)<U_{i}^{0}(-t)$ for $t \geq 0$. In fact $u_{i}^{*}(t)=v^{0}(-t)$ is a solution of (1.1) for $t \leq 0$. By Lemma 1 and the definition of $\eta_{i}(i=1,2)$, it follows that the solution $\bar{u}(t)$ of (2.1) with $\bar{u}(0)=v^{0}(0)$ satisfies

$$
\eta_{i} \leq \bar{u}_{i}(t) \leq U_{i}^{0}(t) ; \quad \text { for } t \geq 0, i=1,2
$$

Let

$$
u^{0}(t)= \begin{cases}u^{*}(t), & t \leq 0 \\ \bar{u}(t), & t \geq 0\end{cases}
$$

then $u^{0}(t)$ is a solution of (1.1) satisfying

$$
\eta_{i} \leq u_{i}^{0}(t) \leq U_{i}^{0}(t) ; \quad t \in \mathbf{R} ; \quad i=1,2
$$

The theorem is proved.

3. Uniqueness and Asymptoticity

In this section we show that the solution u^{0} in Theorem 2 is unique and asymptotically stable if Conditions (1.4) and (1.5) hold. The following lemma is sharper than Lemmas 3.2, 3.2', 3.3 and 3.3^{\prime} in [6].

Lemma 2. Suppose u^{1}, u^{2} are two different solutions of (1.1) defined on $(-\infty,+\infty)$ and such that $u_{i}^{j}(t)>0$ for any $t \in(-\infty,+\infty) ; i, j=1,2$. Then only one of the following alternatives is met:
(i) $u_{i}^{1}(t) \neq u_{i}^{2}(t)$ for any $t \in(-\infty,+\infty)$; $i=1,2$.
(ii) There exist $t_{0} \in \mathbf{R}$ and $i, j \in\{1,2\}$ such that $u_{i}^{j}\left(t_{0}\right)=u_{i}^{3-j}\left(t_{0}\right), u_{i}^{j}(t)>u_{i}^{3-j}(t)$ for $t<t_{0}, u_{i}^{j}(t)<u_{i}^{3-j}(t)$ for $t>t_{0}$, and $u_{3-i}^{j}(t)>u_{3-i}^{3-j}(t)$ for $t \in \mathbf{R}$.
Proof. Suppose (i) does not happen. Then there are $i, j \in\{1,2\}$ and $t_{0} \in \mathbf{R}$ such that $u_{i}^{j}\left(t_{0}\right)=u_{i}^{3-j}\left(t_{0}\right), u_{3-i}^{j}\left(t_{0}\right)>u_{3-i}^{3-j}\left(t_{0}\right)$. Without loss of generality, we can assume $j=1, i=1$, i.e., we have $u_{1}^{1}\left(t_{0}\right)=u_{1}^{2}\left(t_{0}\right), u_{2}^{1}\left(t_{0}\right)>u_{2}^{2}\left(t_{0}\right)$. Therefore, we have to prove that $u_{1}^{1}(t)<u_{1}^{2}(t)$ for $t>t_{0}, u_{1}^{1}(t)>u_{1}^{2}(t)$ for $t<t_{0}$ and $u_{2}^{1}(t)>u_{2}^{2}(t)$ for $t \in R$.

Let $v_{1}^{j}=\frac{1}{u_{1}^{j}}(j=1,2)$. Then

$$
\begin{align*}
& v_{1}^{j^{\prime}}=-A_{1}(t) v_{1}^{j}+a_{11}(t)+a_{12}(t) u_{2}^{j} v_{1}^{j}, \\
& u_{2}^{j^{\prime}}=u_{2}^{j}\left(A_{2}(t)-a_{21}(t) \frac{1}{v_{1}^{j}}-a_{22}(t) u_{2}^{j}\right) ; \quad j=1,2 . \tag{3.1}
\end{align*}
$$

Since $v_{1}^{1^{\prime}}\left(t_{0}\right)>v_{1}^{2^{\prime}}\left(t_{0}\right)$, there exists $t_{1}>t_{0}$ such that $v_{1}^{1}(t)>v_{1}^{2}(t)$ and $u_{2}^{1}(t)>u_{2}^{2}(t)$ for $t \in\left(t_{0}, t_{1}\right)$. Define

$$
t_{2}=\inf \left(\left\{t>t_{1}: v_{1}^{1}(t)=v_{1}^{2}(t)\right\} \cup\{+\infty\}\right)
$$

and

$$
t_{3}=\inf \left(\left\{t>t_{1}: u_{2}^{1}(t)=u_{2}^{2}(t)\right\} \cup\{+\infty\}\right)
$$

We claim that $t_{2}=t_{3}=+\infty$. If it is false, without loss of generality, we can assume $t_{2} \leq t_{3}$. Therefore, $t_{2}<+\infty$. It is not hard to see that $v_{1}^{1}\left(t_{2}\right)=v_{1}^{2}\left(t_{2}\right)$. By the uniqueness, it follows that $u_{2}^{1}\left(t_{2}\right)>u_{2}^{2}\left(t_{2}\right)$. Therefore, $v_{1}^{1}\left(t_{2}\right)>v_{1}^{2}\left(t_{2}\right)$. By the same argument as in the proof of Lemma 1 , we get $v_{1}^{1}\left(t_{2}\right)>v_{1}^{2}\left(t_{2}\right)$, a contra-
diction. This proves the claim. Therefore, $u_{1}^{1}(t)<u_{1}^{2}(t)$ and $u_{2}^{1}(t)>u_{2}^{2}(t)$ for $t>t_{0}$. We now consider the case of $t<t_{0}$. Let $v_{i}^{j}(t)=u_{i}^{j}(-t) ; i, j=1,2$. We get

$$
\begin{equation*}
v_{i}^{j^{\prime}}(t)=v_{i}^{j}(t)\left(-A_{i}(-t)+a_{i i}(-t) v_{i}^{j}(t)+a_{i 3-i}(-t) v_{3-i}^{j}(t)\right) ; \quad i, j=1,2 \tag{3.2}
\end{equation*}
$$

By the similar argument and using (3.2), we get

$$
v_{1}^{1}(t)>v_{1}^{2}(t), \quad v_{2}^{1}(t)>v_{2}^{2}(t) \quad \text { for } t>-t_{0}
$$

This implies $u_{1}^{1}(t)>u_{1}^{2}(t), u_{2}^{1}(t)>u_{2}^{2}(t)$ for $t<t_{0}$.
The lemma is proved.
Theorem 3. Suppose $A_{i}, a_{i j}(i, j=1,2)$ are as in Theorem 2. If, in addition, (1.5) holds, then the system (1.1) has a unique solution u^{0} defined on $(-\infty,+\infty)$, whose components are bounded above and below by positive constants.
Proof. The existence follows from Theorem 2. We now prove the uniqueness. Suppose by contradiction that u^{1}, u^{2} are two different solutions of (1.1) defined on $(-\infty,+\infty)$, whose components are bounded above and below by positive constants. By Lemma 2, only one of the following alternatives is met:
(i) There exists $j \in\{1,2\}$ such that $u_{i}^{j}(t)>u_{i}^{3-j}(t)(i=1,2 ; t \in \mathbf{R})$.
(ii) There exist $i, j \in\{1,2\}$, such that

$$
u_{i}^{j}(t)>u_{i}^{3-j}(t), \quad u_{3-i}^{j}(t)<u_{3-i}^{3-j}(t), \quad \text { for } t \in \mathbf{R}
$$

(iii) There exist $t_{0} \in \mathbf{R}, i, j \in\{1,2\}$ such that $u_{i}^{j}\left(t_{0}\right)=u_{i}^{3-j}\left(t_{0}\right), u_{i}^{j}(t)<u_{i}^{3-j}(t)$ for $t>t_{0}, u_{i}^{j}(t)>u_{i}^{3-j}(t)$ for $t<t_{0}$, and $u_{3-i}^{j}(t)>u_{3-i}^{3-j}(t)$ for $t \in \mathbf{R}$.
Suppose (i) happens, without loss of generality, we can assume $j=1$, i.e., $u_{i}^{1}(t)>u_{i}^{2}(t)(i=1,2 ; t \in \mathbf{R})$. It is not hard to get from (1.1) that

$$
\begin{align*}
& \frac{d}{d t} \ln \frac{u_{1}^{2}(t)}{u_{1}^{1}(t)}=-a_{11}(t)\left(u_{1}^{2}(t)-u_{1}^{1}(t)\right)-a_{12}(t)\left(u_{2}^{2}(t)-u_{2}^{1}(t)\right) \\
& \frac{d}{d t} \ln \frac{u_{2}^{2}(t)}{u_{2}^{1}(t)}=-a_{21}(t)\left(u_{1}^{2}(t)-u_{1}^{1}(t)\right)-a_{22}(t)\left(u_{2}^{2}(t)-u_{2}^{1}(t)\right) \tag{3.3}
\end{align*}
$$

Since $u_{i}^{j}(t)$ is bounded above and below by positive constants for $i, j=1,2$, it follows that there exists a positive number M such that $\int_{-T}^{T}\left(\frac{d}{d t} \ln \frac{u_{1}^{2}(t)}{u_{1}^{1}(t)}\right) d t \leq M$, for any $T>0$. Therefore, from (3.3), it follows that

$$
\int_{-\infty}^{\infty} a_{11}(t)\left(u_{1}^{1}(t)-u_{1}^{2}(t)\right)+a_{12}(t)\left(u_{2}^{1}(t)-u_{2}^{2}(t)\right) d t \leq M
$$

Since $a_{11}(t)\left(u_{1}^{1}(t)-u_{1}^{2}(t)\right)>0$ and $a_{12}(t)\left(u_{2}^{1}(t)-u_{2}^{2}(t)\right)>0$ for any $t \in \mathbf{R}$, it follows that $u_{1}^{1}(t)-u_{1}^{2}(t) \rightarrow 0$ and $u_{2}^{1}(t)-u_{2}^{2}(t) \rightarrow 0$ as $t \rightarrow \pm \infty$. Consequently, $\frac{u_{i}^{1}(t)}{u_{i}^{2}(t)} \rightarrow 1(i=1,2)$, as $t \rightarrow \pm \infty$, since $0<u_{i L}^{j} \leq u_{i M}^{j}<+\infty$. Hence,

$$
0=\int_{-\infty}^{\infty}\left(\frac{d}{d t} \ln \frac{u_{1}^{2}(t)}{u_{1}^{1}(t)}\right) d t=\int_{-\infty}^{\infty} a_{11}(t)\left(u_{1}^{1}(t)-u_{1}^{2}(t)\right)+a_{12}(t)\left(u_{2}^{1}(t)-u_{2}^{2}(t)\right) d t
$$

Consequently, $a_{11}(t)\left(u_{1}^{1}(t)-u_{1}^{2}(t)\right)+a_{12}(t)\left(u_{2}^{1}(t)-u_{2}^{2}(t)\right) \equiv 0$. It follows that $u^{1}(t)=u^{2}(t)$ for any $t \in \mathbf{R}$, a contradiction. Hence, (i) does not happen.

Suppose (ii) happens. Without loss of generality, we can assume that $i=1$, $j=1$, i.e., we have $u_{1}^{1}(t)>u_{1}^{2}(t), u_{2}^{1}(t)<u_{2}^{2}(t)$, for $t \in \mathbf{R}$. From (3.3), we get

$$
\begin{align*}
\alpha_{1} \frac{d}{d t}\left(\ln \frac{u_{1}^{2}(t)}{u_{1}^{1}(t)}\right) & -\alpha_{2} \frac{d}{d t}\left(\ln \frac{u_{2}^{2}(t)}{u_{2}^{1}(t)}\right)=\left(\alpha_{1} a_{11}(t)-\alpha_{2} a_{21}(t)\right)\left(u_{1}^{1}(t)-u_{1}^{2}(t)\right) \tag{3.4}\\
& +\left(-\alpha_{1} a_{12}(t)+\alpha_{2} a_{22}(t)\right)\left(u_{2}^{2}(t)-u_{2}^{1}(t)\right)
\end{align*}
$$

Since $0<u_{i L}^{j} \leq u_{i M}^{j}<+\infty(i, j=1,2)$, it follows that there exists a positive number M such that

$$
\int_{-T}^{T}\left\{\alpha_{1} \frac{d}{d t}\left(\ln \frac{u_{1}^{2}(t)}{u_{1}^{1}(t)}\right)-\alpha_{2} \frac{d}{d t}\left(\ln \frac{u_{2}^{2}(t)}{u_{2}^{1}(t)}\right)\right\} d t \leq M, \quad \text { for any } T>0
$$

By (1.5), it follows that

$$
\int_{-\infty}^{+\infty} \varepsilon_{2}\left(u_{1}^{1}(t)-u_{1}^{2}(t)\right)+\varepsilon_{2}\left(u_{2}^{2}(t)-u_{2}^{1}(t)\right) d t \leq M
$$

Consequently, $u_{1}^{1}(t)-u_{1}^{2}(t) \rightarrow 0$ and $u_{2}^{2}(t)-u_{2}^{1}(t) \rightarrow 0$, as $t \rightarrow \pm \infty$. Since $0<$ $u_{i L}^{j} \leq u_{i M}^{j}<+\infty(i, j=1,2)$, it follows that $\frac{u_{1}^{2}(t)}{u_{1}^{1}(t)} \rightarrow 1, \frac{u_{2}^{2}(t)}{u_{2}^{1}(t)} \rightarrow 1$ as $t \rightarrow \pm \infty$. Therefore, from (3.4), we get

$$
\begin{aligned}
0= & \int_{-\infty}^{+\infty}\left\{\alpha_{1} \frac{d}{d t}\left(\ln \frac{u_{1}^{2}(t)}{u_{1}^{1}(t)}\right)-\alpha_{2} \frac{d}{d t}\left(\ln \frac{u_{2}^{2}(t)}{u_{2}^{1}(t)}\right)\right\} d t \\
& \geq \int_{-\infty}^{+\infty} \varepsilon_{2}\left[\left(u_{1}^{1}(t)-u_{1}^{2}(t)\right)+\left(u_{2}^{2}(t)-u_{2}^{1}(t)\right)\right] d t \geq 0
\end{aligned}
$$

Consequently, $u^{1} \equiv u^{2}$. This is also a contradiction. Therefore, (ii) does not happen.

Suppose (iii) happens. We can, without loss of generality, assume that $i=1$, $j=1$, i.e., we have $u_{1}^{1}\left(t_{0}\right)=u_{1}^{2}\left(t_{0}\right), u_{1}^{1}(t)<u_{1}^{2}(t)$ and $u_{2}^{1}(t)>u_{2}^{2}(t)$ for $t>t_{0}$. From (3.3) we get

$$
\begin{aligned}
& -\alpha_{1} \frac{d}{d t}\left(\ln \frac{u_{1}^{2}(t)}{u_{1}^{1}(t)}\right)+\alpha_{2} \frac{d}{d t}\left(\ln \frac{u_{2}^{2}(t)}{u_{2}^{1}(t)}\right) \\
& =\left(\alpha_{1} a_{11}(t)-\alpha_{2} a_{21}(t)\right)\left(u_{1}^{2}(t)-u_{1}^{1}(t)\right) \\
& +\left(-\alpha_{1} a_{21}(t)+\alpha_{2} a_{22}(t)\right)\left(u_{2}^{1}(t)-u_{2}^{2}(t)\right) \\
& \geq \varepsilon_{2}\left[\left(u_{1}^{2}(t)-u_{1}^{1}(t)\right)+\left(u_{2}^{1}(t)-u_{2}^{2}(t)\right)\right],
\end{aligned}
$$

for $t \geq t_{0}$. By the same argument given before, we get $u^{1}(t)=u^{2}(t)$ for $t \geq t_{0}$. It follows that $u^{1}(t)=u^{2}(t)$ for any $t \in \mathbf{R}$, a contradiction. Therefore, (iii) does not happen. Since the possibilities (i), (ii) and (iii) are exhaustive, the theorem is proved.

Theorem 4. Suppose the system (1.1) satisfies all the conditions in Theorem 3. Then the solution u^{0} in Theorem 3 satisfies

$$
u_{i}^{0}(t)-u_{i}(t) \rightarrow 0, \quad \text { as } t \rightarrow+\infty ; \quad i=1,2
$$

for any positive solution $u(t)$ of (1.1).
Proof. Let $x=\left(x_{1}, x_{2}\right), x_{i}>0 ; i=1,2$. Let us denote by $u(t, x)$ the solution of the system (1.1) defined by the initial condition $u(0, x)=x, U_{i}(t, x)$, the solution of (1.3) given by $U_{i}(0, x)=x_{i}$.

It is enough to show that $u_{i}(t, x)-u_{i}^{0}(t) \rightarrow 0$, as $t \rightarrow+\infty(i=1,2)$. From (1.4), it follows that there exists $\gamma_{i}>0(i=1,2)$ such that

$$
\begin{equation*}
A_{i}(t)-\gamma_{i} a_{i i}(t)-a_{i 3-i}(t)\left(U_{3-i}^{0}(t)+\gamma_{i}\right)>0 ; \quad i=1,2 \tag{3.5}
\end{equation*}
$$

Let us fix $i=1,2$. It is not hard to prove that $U_{i}(t, x)-U_{i}^{0}(t) \rightarrow 0$, as $t \rightarrow+\infty$. Therefore, there exists $t_{0}>0$ such that

$$
\begin{equation*}
U_{i}(t, x)<U_{i}^{0}(t)+\gamma_{i}, \quad \text { for } t \geq t_{0} \tag{3.6}
\end{equation*}
$$

We claim that

$$
u_{i}(t, x) \geq \gamma_{i}^{*}=\min \left\{u_{i}\left(t_{0}, x\right), \gamma_{i}\right\}, \quad \text { for } t \geq t_{0}
$$

If it is false, let us define $g_{i}(t)=\gamma_{i}^{*}-u_{i}(t, x)$. Then there exists $t_{1}>t_{0}$ such that $g_{i}\left(t_{1}\right)>0$. Since $g_{i}\left(t_{0}\right) \leq 0$, there exists $t_{2}>t_{0}$ such that $g_{i}\left(t_{2}\right)>0, g_{i}^{\prime}\left(t_{2}\right)>0$. It implies

$$
\begin{align*}
0 & <-A_{i}\left(t_{2}\right)+a_{i i}\left(t_{2}\right) u_{i}\left(t_{2}, x\right)+a_{i 3-i}\left(t_{2}\right) u_{3-i}\left(t_{2}, x\right) \\
& \leq-A_{i}\left(t_{2}\right)+a_{i i}\left(t_{2}\right) \gamma_{i}+a_{i 3-i}\left(t_{2}\right) u_{3-i}\left(t_{2}, x\right) \tag{3.7}
\end{align*}
$$

By Lemma 1, it follows that $u_{i}(t, x)<U_{i}(t, x)$ for $t>0$. From (3.6) and (3.7), we have

$$
0<-A_{i}\left(t_{2}\right)+a_{i i}\left(t_{2}\right) \gamma_{i}+a_{i 3-i}\left(t_{2}\right)\left(U_{3-i}^{0}\left(t_{2}\right)+\gamma_{i}\right)
$$

which contradicts (3.5). Hence, the claim is proved.
It is not hard to see that $u_{i}(t, x) \leq \max \left\{x_{i}, \frac{A_{i M}}{a_{i L L}}\right\}:=\Gamma_{i}$ for $t \geq 0$. Therefore, by the claim, we have $0<\gamma_{i}^{*} \leq u_{i}(t, x) \leq \Gamma_{i}<+\infty$ for $t \geq t_{0}$.

Using the similar argument as in proving Theorem 3, we get

$$
u_{i}(t, x)-u_{i}^{0}(t) \rightarrow 0, \quad \text { as } t \rightarrow+\infty ; \quad i=1,2
$$

The theorem is proved.

4. Almost Periodicity

In this section we assume in addition that $A_{i}(t), a_{i j}(t)(i, j=1,2)$ are almost periodic. Suppose $f=\left(f^{1}, \ldots, f^{n}\right): \mathbf{R} \rightarrow \mathbf{R}^{n} ; n \geq 1$, is continuous. Let us recall that f is almost periodic if for each $\varepsilon>0$, there exists a positive number $\ell=\ell(\varepsilon)$
such that each interval $(\alpha, \alpha+\ell), \alpha \in R$, contains at least a number $\tau=\tau(\varepsilon)$ satisfying $\sup _{t \in \mathbf{R}}\|f(t+\tau)-f(t)\| \leq \varepsilon$, where $\|f(t)\|=\max _{1 \leq i \leq n}\left\{\left|f^{i}(t)\right|\right\}$. We recall Bochner's criterion for almost periodicity: $f(t)$ is almost periodic if and only if for every sequence of numbers $\left\{\tau_{m}\right\}_{1}^{\infty}$, there exists a subsequence $\left\{\tau_{m_{k}}\right\}_{k=1}^{\infty}$ such that the sequence of translates $\left\{g\left(t+\tau_{m_{k}}\right)\right\}_{k=1}^{\infty}$ converges uniformly on $(-\infty,+\infty)$ (see, for example, [3]).

Lemma 3. For $i=1,2$, the solution $U_{i}^{0}(t)$ of (1.3) is almost periodic.
Proof. Let us fix $i=1,2$. Take $\varepsilon^{\prime}>0$. By Bochner's criterion, it follows that $\left(A_{i}(t), a_{i i}(t)\right)$ is almost periodic. Therefore, there exists a positive number ℓ such that each interval $(\alpha, \alpha+\ell), \alpha \in R$, contains at least a number $\tau=\tau\left(\varepsilon^{\prime}\right)$ such that

$$
\begin{equation*}
\sup _{t \in \mathbf{R}}\left|A_{i}(t+\tau)-A_{i}(t)\right| \leq \varepsilon^{\prime}, \quad \sup _{t \in \mathbf{R}}\left|a_{i i}(t+\tau)-a_{i i}(t)\right|<\varepsilon^{\prime} \tag{4.1}
\end{equation*}
$$

Take an arbitrary τ as above. Define $W_{i}(t)=\frac{1}{U_{i}^{0}(t)}$. From (1.3), it follows that

$$
\begin{align*}
\frac{d}{d t}\left[W_{i}(t)-W_{i}(t+\tau)\right]= & a_{i i}(t)-a_{i i}(t+\tau)-A_{i}(t)\left[W_{i}(t)-W_{i}(t+\tau)\right] \tag{4.2}\\
& +\left[A_{i}(t+\tau)-A_{i}(t)\right] W_{i}(t+\tau)
\end{align*}
$$

Consider the following equation

$$
\begin{equation*}
Z^{\prime}=a_{i i}(t)-a_{i i}(t+\tau)+\left(A_{i}(t+\tau)-A_{i}(t)\right) W_{i}(t+\tau)-A_{i}(t) Z \tag{4.3}
\end{equation*}
$$

Since $A_{i L}>0$, it is not hard to see that if $Z(t)$ is a bounded solution of (4.3) defined on $(-\infty,+\infty)$, then

$$
\begin{aligned}
& \inf _{t \in \mathbf{R}}\left\{\frac{a_{i i}(t)-a_{i i}(t+\tau)+\left(A_{i}(t+\tau)-A_{i}(t)\right) W_{i}(t+\tau)}{A_{i}(t)}\right\} \leq Z(t) \\
& \leq \sup _{t \in \mathbf{R}}\left\{\frac{a_{i i}(t)-a_{i i}(t+\tau)+\left(A_{i}(t+\tau)-A_{i}(t)\right) W_{i}(t+\tau)}{A_{i}(t)}\right\} ; \quad t \in \mathbf{R} .
\end{aligned}
$$

Therefore, from (4.1), it follows that

$$
|Z(t)| \leq \frac{\varepsilon^{\prime}\left(1+\frac{1}{U_{i L}^{0}}\right)}{A_{i L}}, \quad \text { for any } t \in \mathbf{R}
$$

Since $\frac{1}{U_{i}^{0}(t)}-\frac{1}{U_{i}^{0}(t+\tau)}$ is a bounded solution of (4.3), we have

$$
\left|\frac{1}{U_{i}^{0}(t)}-\frac{1}{U_{i}^{0}(t+\tau)}\right| \leq \varepsilon^{\prime}\left(\frac{1+\frac{1}{U_{i L}^{0}}}{A_{i L}}\right)
$$

Consequently,

$$
\left|U_{i}^{0}(t)-U_{i}^{0}(t+\tau)\right| \leq \varepsilon^{\prime} \frac{\left(1+\frac{1}{U_{i L}^{0}}\right)\left(U_{i M}^{0}\right)^{2}}{A_{i L}}
$$

$$
\frac{\left(1+\frac{1}{U_{i L}^{0}}\right)\left(U_{i M}^{0}\right)^{2}}{A_{i M}}
$$

then $\left|U_{i}^{0}(t)-U_{i}^{0}(t+\tau)\right| \leq \varepsilon$ and we can take $\ell(\varepsilon)=\ell\left(\varepsilon^{\prime}\right)$. This proves that $U_{i}^{0}(t)$ is almost periodic. The theorem is proved.

In proving the following theorem, we use the idea from [1].
Theorem 5. Suppose $A_{i}(t), a_{i j}(t)(i, j=1,2)$ are as in Theorem 4 and, in addition, they are almost periodic. Then the solution $u^{0}(t)$ in Theorem 4 is almost periodic.
Proof. Let $\left\{\tau_{m}\right\}_{m=1}^{\infty}$ be an arbitrary sequence of numbers. Since $A_{i}(t), a_{i j}(t), U_{i}^{0}(t)$ $(i, j=1,2)$ are almost periodic, there exists a subsequence $\left\{\tau_{m_{k}}\right\}_{k=1}^{\infty}$ of $\left\{\tau_{m}\right\}_{m=1}^{\infty}$ such that $A_{i}\left(t+\tau_{m_{k}}\right), a_{i j}\left(t+\tau_{m_{k}}\right), U_{i}^{0}\left(t+\tau_{m_{k}}\right)$ converge uniformly to functions $A_{i}{ }^{*}(t), a_{i j}^{*}(t), U_{i}^{0 *}(t)$ respectively on $(-\infty,+\infty)$. It is not hard to see that $A_{i L}^{*}=$ $A_{i L}, A_{i M}^{*}=A_{i M}, a_{i j L}^{*}=a_{i j L}, a_{i j M}^{*}=a_{i j M}, U_{i L}^{0 *}=U_{i L}^{0}$ and $U_{i M}^{0 *}=U_{i M}^{0}(i, j=1,2)$. Furthermore, it is also not hard to prove that for each $i=1,2, U_{i}^{0 *}(t)$ is a solution of

$$
\begin{equation*}
U_{i}^{\prime}=U_{i}\left(A_{i}^{*}(t)-a_{i i}^{*}(t) U_{i}\right) \tag{4.4}
\end{equation*}
$$

defined on $(-\infty,+\infty)$. Since $0<A_{i L}^{*} \leq A_{i M}^{*}<+\infty$ and $0<a_{i i L}^{*} \leq a_{i i M}^{*}<+\infty$ for $i=1,2$, it follows that $U_{i}^{0 *}$ is the unique solution of (4.4) such that $0<U_{i L}^{0 *}<U_{i M}^{0 *}<+\infty$. Since $A_{i}\left(t+\tau_{m_{k}}\right)-a_{i 3-i}\left(t+\tau_{m_{k}}\right) U_{3-i}\left(t+\tau_{m_{k}}\right)$ converges uniformly to $A_{i}^{*}(t)-a_{i 3-i}^{*}(t) U_{3-i}^{0 *}(t)$, as $k \rightarrow+\infty(i=1,2)$, on $(-\infty,+\infty)$, it follows from (1.4) that

$$
\begin{equation*}
A_{i}^{*}(t)-a_{i 3-i}^{*}(t) U_{3-i}^{0 *}(t) \geq \varepsilon_{1} ; \quad i=1,2 ; \quad t \in \mathbf{R} . \tag{4.5}
\end{equation*}
$$

Similarly, from (1.5), it follows that

$$
\begin{equation*}
\alpha_{i} a_{i i}^{*}(t)-\alpha_{3-i} a_{3-i i}^{*}(t) \geq \varepsilon_{2} ; \quad i=1,2 ; \quad t \in \mathbf{R} \tag{4.6}
\end{equation*}
$$

By Theorems 2 and 3, it follows that

$$
\begin{equation*}
u_{i}^{\prime}=u_{i}\left[A_{i}^{*}(t)-a_{i i}^{*}(t) u_{i}-a_{i 3-i}^{*}(t) u_{3-i}\right] ; \quad i=1,2 \tag{4.7}
\end{equation*}
$$

has a unique solution $u^{0 *}$ defined on $(-\infty,+\infty)$ such that

$$
\eta_{i} \leq u_{i}^{0 *}(t) \leq \Delta_{i}
$$

where η_{i}, Δ_{i} are positive numbers satisfying

$$
\begin{aligned}
& \eta_{i} \leq \min \left\{\varepsilon_{1} / a_{i i M}^{*}, \inf _{t \in R} U_{i}^{0 *}(t)\right\}=\min \left\{\varepsilon_{1} / a_{i i M}, \inf _{t \in R} U_{i}^{*}(t)\right\} \\
& \Delta_{i}=U_{i M}^{0 *}=U_{i M}^{0}
\end{aligned}
$$

Let us denote $S=\left[\eta_{1}, \Delta_{1}\right] \times\left[\eta_{2}, \Delta_{2}\right]$. We claim that $u^{0}\left(t+\tau_{m_{k}}\right)$ converges to $u^{0 *}(t)$, uniformly as $t \rightarrow \infty$, which will show that $u^{0}(t)$ is almost periodic. Suppose the claim is false. Then there exist a subsequence $\left\{\tau_{m_{k_{\ell}}}\right\}$ of $\left\{\tau_{m_{k}}\right\}$, a sequence of numbers $\left\{S_{\ell}\right\}$, and a fixed number $\alpha>0$ such that

$$
\left\|u^{0}\left(S_{\ell}+\tau_{m_{k_{\ell}}}\right)-u^{0 *}\left(S_{\ell}\right)\right\| \geq \alpha, \quad \text { for all } \ell
$$

Since $A_{i}, a_{i j}, U_{j}^{0}(i, j=1,2)$ are almost periodic, we may assume, without loss of generality, that $A_{i}\left(t+\tau_{m_{k_{\ell}}}+S_{\ell}\right), a_{i j}\left(t+\tau m_{k_{\ell}}+S_{\ell}\right), U_{i}^{0}\left(t+\tau_{m_{k_{\ell}}}+S_{\ell}\right)$ converge uniformly to $\hat{A}_{i}(t), \hat{a}_{i j}(t), \hat{U}_{i}^{0}(t)$ respectively as $\ell \rightarrow \infty$ on $(-\infty,+\infty)$. Hence, $A_{i}^{*}\left(t+S_{\ell}\right) \rightarrow \hat{A}_{i}(t), \quad a_{i j}^{*}\left(t+S_{\ell}\right) \rightarrow \hat{a}_{i j}\left(t+S_{\ell}\right), \quad U_{i}^{0 *}\left(t+S_{\ell}\right) \rightarrow \hat{U}_{i}^{0}(t), \quad$ uniformly with respect to t in $(-\infty,+\infty)$ as $\ell \rightarrow+\infty$ and $\hat{A}_{i L}=A_{i L}, \hat{A_{i M}}=A_{i M}, \hat{a}_{i j L}=a_{i j L}$, $\hat{a}_{i j M}=a_{i j M}, \hat{U}_{i L}^{0}=U_{i L}^{0}$ and $\hat{U}_{i M}^{0}=U_{i M}^{0}(i, j=1,2)$.

Since $u^{0}(t) \in S$ for all t in $(-\infty,+\infty)$, we can assume without loss of generality that $u^{0}\left(S_{\ell}+\tau_{m_{k_{\ell}}}\right) \rightarrow\left(\xi_{0}, \eta_{0}\right)$ as $\ell \rightarrow \infty$, where $\left(\xi_{0}, \eta_{0}\right) \in S$. Similarly, we may assume that $u^{0 *}\left(S_{\ell}\right) \rightarrow\left(\xi_{0}^{*}, \eta_{0}^{*}\right)$ as $\ell \rightarrow \infty$. Clearly $\left\|\left(\xi_{0}, \eta_{0}\right)-\left(\xi_{0}^{*}, \eta_{0}^{*}\right)\right\| \geq \alpha$.

For each $\ell(\ell=1,2, \ldots), u^{0}\left(t+\tau m_{k_{\ell}}+S_{\ell}\right)$ is a solution of the system
$u_{i}^{\prime}=u_{i}\left[A_{i}\left(t+\tau_{m_{k_{\ell}}}+S_{\ell}\right)-a_{i i}\left(t+\tau_{m_{k_{\ell}}}+S_{\ell}\right) u_{i}-a_{i 3-i}\left(t+\tau_{m_{k_{\ell}}}+S_{\ell}\right) u_{3-i}\right] ; i=1,2$.

Consider the solution \hat{u}^{0} of

$$
\begin{equation*}
u_{i}^{\prime}=u_{i}\left[\hat{A}_{i}(t)-\hat{a}_{i i}(t) u_{i}-\hat{a}_{i 3-i}(t) u_{3-i}\right] ; \quad i=1,2 \tag{4.9}
\end{equation*}
$$

having the initial value $\hat{u}^{0}(0)=\left(\xi_{0}, \eta_{0}\right)$.
We have two systems (4.8) and (4.9) where the right side of (4.8) converges uniformly to the right side of (4.9) on any compact subset of \mathbf{R}^{3}, as $\ell \rightarrow+\infty$. Also, the initial values satisfy the property $u^{0}\left(\tau_{m_{k_{\ell}}}+S_{\ell}\right) \rightarrow\left(\xi_{0}, \eta_{0}\right)$, as $\ell \rightarrow+\infty$. Hence, it follows that $u^{0}\left(t+\tau_{m_{k_{\ell}}}+S_{\ell}\right) \rightarrow \hat{u}^{0}(t)$ uniformly on compact subintervals of the domain of $\hat{u}^{0}(t)$. This implies that $\hat{u}^{0}(t) \in S$ for all $t \in \mathbf{R}$.

Now recall that $u^{0 *}(t)$ is the unique solution of (4.7) with $u^{0 *}(t) \in S$ for all t. For each integer $\ell, u^{0 *}\left(t+S_{\ell}\right)$ is a solution of

$$
\begin{equation*}
u_{i}^{\prime}=u_{i}\left(A_{i}^{*}\left(t+S_{\ell}\right)-a_{i i}^{*}\left(t+S_{\ell}\right) u_{i}-a_{i 3-i}^{*}\left(t+S_{\ell}\right) u_{3-i}\right) ; \quad i=1,2, \tag{4.10}
\end{equation*}
$$

with $u^{0 *}\left(S_{\ell}\right) \rightarrow\left(\xi_{0}^{*}, \eta_{0}^{*}\right)$, as $\ell \rightarrow \infty$.
Since $A_{i}^{*}\left(t+S_{\ell}\right) \rightarrow \hat{A}_{i}(t), a_{i j}^{*}\left(t+S_{\ell}\right) \rightarrow \hat{a}_{i j}(t)(i, j=1,2)$ as $\ell \rightarrow \infty$ uniformly with respect to t in $(-\infty,+\infty)$, it follows that if $\hat{u}^{0 *}(t)$ is the solution of (4.9) with $\hat{u}^{0 *}(0)=\left(\xi_{0}^{*}, \eta_{0}^{*}\right)$, then $u^{0 *}\left(t+S_{\ell}\right) \rightarrow \hat{u}^{0 *}(t)$ as $\ell \rightarrow \infty$ uniformly on any compact subintervals of the domain of $\hat{u}^{0 *}$. By the same argument given before, we have $\hat{u}^{0 *}(t) \in S$ for any $t \in \mathbf{R}$. We also have $\hat{u}^{0}(t) \in S$ for any $t \in R$. Using the same argument in proving that (4.7) has the unique solution $u^{0 *}(t)$ in S for $t \in \mathbf{R}$, we may see that (4.9) has a unique solution defined on ($-\infty,+\infty$) which is in S for any $t \in(-\infty,+\infty)$. Therefore, we must have $\hat{u}^{0} \equiv \hat{u}^{0 *}$. But $\hat{u}^{0}(0)=\left(\xi_{0}, \eta_{0}\right)$, $\hat{u}^{0 *}(0)=\left(\xi_{0}^{*}, \eta_{0}^{*}\right)$ and $\left\|\left(\xi_{0}, \eta_{0}\right)-\left(\xi_{0}^{*}, \eta_{0}^{*}\right)\right\| \geq \alpha$, a contradiction. This proves the theorem.

References

1. S. Ahmad, On almost periodic solutions of the competing species problems, Proc. Amer. Math. Soc. 102 (1988) 855-861.
2. S. Ahmad, On the nonautonomous Volterra-Lotka competition equations, Proc. Amer. Math. Soc. 117 (1993) 199-204.
3. A. S. Besicovitch, Almost Periodic Functions, Cambridge University Press, 1932.
4. K. Gopalsamy, Global asymptotic stability in an almost periodic Lotka-Volterra system, J. Austral. Math. Soc. B27 (1986) 346-360.
5. P. Hartman, Ordinary Differential Equations, Birkhauser, Boston-Basel-Stuttgart, 1982.
6. P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach, J. Math. Biol. 11 (1981) 319-335.

[^0]: * This work is financially supported in part by the National Basic Research Program in Natural Sciences KT04 1.3.5.

