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Abstract. De Rham currents are dual to differential forms with compact support. We con-
struct in this paper the dual to the entire cyclic cohomology of project limit of ideals with
ad-invariant trace and prove its homotopy invariance.

Introduction

Classical homology theory of de Rham currents is just dual to the cohomology of
differential forms with compact support. This means that from the well-known
Stokes theorem, one can consider cycles as functionals over differential forms on
manifolds. If we restrict ourselves to consider the differential forms with compact
support, then currents are the continuous functionals over projective limits of dif-
ferential forms by restrictions to supports. Besides the classical cycles there are
also other currents, which are, for example, in the form of dense flows. Never-
theless, the de Rham current homology was well developed and has many appli-
cations in many problems from geometry, physics, etc. Cohomology of differential
forms on manifolds was well quantized by Connes et al. as cyclic cohomology. In
[3, 4], Khalkhali realized the so-called entire cyclic cohomology HE* as infinite
cyclic cohomology. He proved two main properties of this theory: homotopy
invariance and Morita invariance. We use his results in such a way by restricting
to some non-commutative analogy of differential forms with compact support as
ideals with ad-invariant trace. We then use the inductive and projective topologies
to form non-commutative analogs of de Rham currents. Our main technical point
is to use the Cuntz—Quillen theory [1, 2] of non-commutative differential forms
over algebras. We pass this machinery to inductive limits. The main reason’ by
what we can construct this homology is the point that, with the trace we can define
a scalar product on each ideal.

Our main results are the construction of the cyclic homology of entire currents
and the proof of its homotopy invariance (Theorem 5.4).

1. Basic Operators

Let A be an involutive Banach algebra, {4,}, ., the family of ideals with trace,
i.e., with a map 7;: 4; — C, satisfying the following four conditions:
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(1) 1, 1s a continuous linear map, ||z;|| = 1,
(2) ta(a*a) = O (the map a +— a*, such that a** = q, for all A e I),
(3) 7i(a*a) = 0if and only if a = 0, for every A eI,
(4) 7, is ad 4-invariant, i.e., 7,(xa) = 7;(ax), Vx € 4 and Va € 4;.
For every 4, the map t; defines, therefore, a scalar product over 4, by the
formula

Tl(a*b) = <a7 b>r;_7

for all a,b € A4;. Next, we have a family {(A4;,7;)} with the natural ordering 1 < 4,
following inclusions 4; < 4. The inclusion map 4; — A4, of Hilbert ideals and
restrictions t; = 7,|,, define a morphism of pairs {(4,,7;)}, such that for every
triple 7,u,y € I, A < u < y, the diagram

(A3, 72) —— (Au,74)

(4y,7y) === (4,,7,)

is commutative,

We have an inverse system {(4;,7,)}, and then the projective limit lim4, = P.

Now, we consider the system {C"(4,,7;)} consisting of (n+ 1)-linear maps
¢: (4;)"' — C. By definition, 4, is the completion of 4; with respect to the
scalar product <a, b),,:= 13(a*b) and the definition of {C"(4,1;)} is automati-
cally extended to the same one for the completion 4 of 4. For A < u, there is a
well-defined morphism DY C"(,-g—,;,u) — C"( Ay, 74). Following the well-known
Riesz’ theorem for A; ® --- ® A4;, for every ¢ € C"(A;,;), there is an element
zje A;® --- @ A;, such that

p) = 5,2y, .

Because 7, = 17|, we have D{¢(x) = {x,z} =2 for all x e [[4,. By virtue of
uniqueness of the Riesz representative element, :g — z} belongs to the orthogonal
complement of 4; ® --- ® 4, in A, ® --- ® A, This means that :g must be
projected onto zj by D). )

We have therefore a direct system which is denoted by {C"(4;,1;), Di‘}lei'
and then the direct limit li_r)nC"(A_,l,r,l) = 0. Recall that Q < @ ;;C*(4,,1;)
consists of all sequences (47), . ; such that D}(¢4}) = Dio D} (¢3), forall A, u,y el
satisfying 2 < u < y.

Recall that the standard operators &', b were also considered in [3]. We have
extended them to the corresponding operators, denoted by the same letters

b’ab: Cn(librl) g Cn+1(A—l;Tl)7

following formulas

n

. a rp
b'¢j’(a2,...,a£‘+1) = E (—1)J¢,'{(ag,...,aiaj+ ,...a/'{“)
j=1
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and
n
i 1
bgi(ay,...,af™) = (-1Y4(a),.... a4}, .. afth)
=0
1
+(=1)"" ¢} (@i ay,...,a}).

Definition 1.1. Let A be an involutive algebra, Cf(4)= lim C"(A;,1;). Set
Ci(A4) =0 for n < 0; the above defined operators b, b’ acting on 7 this complex are
called the Hochchild boundary operators.

Proposition 1.1. The operators b’ b, defined on C"(A4;,1;) can be extended, and do,
to the operators, denoted by the same letters b', b on lim C*(4,,13), for all fixed n.

Proof. Let (¢7), ., be a cochain in llmC (4;,7;). For every ¢} € C*(4,,1;), i
view of Riesz’ theorem, there is an “element zg in (4 1,)"*! such that o (x ) =
x,24; )., Because of the assumptions 7; = 7./, , we have ¢(x) = <{x,z4>.,, fo

xin (A,l)"+1 and

¢Z|(A_A)n+l = ¢Z = ¢)"’|(/i.;_)"+l’

for A < u,y.
Now we have

n

(59" () (=1Y305) + (=)™ ¢} (xns1)

I
S
x
o

(_1)j<xj7 Z¢}'.'>'r;. + (_1)n+1<xn+laz¢i'>1p
=0

S

where by definition, x = (a),...,a*"), x;=(a),...,dal™", ... @), X =
(a%ad,...,a%) and
1 . j 1
(b¢):+ (x) = (_1)j<xj7z¢,'{>r,‘ + (_1)n+ <xn+laz¢i' >'n
=0
1 2 j 1
(bg); " (x) = : 0(—1)j<xj,z¢;>ry + (=" Xnr1, 241D,
=
satisfying

D}[(b#);*") = D}, Di[(b);*")-

Recall that in terms of “z;”-elements, D/ prcgects zy, onto the well-defined
component z; . We have therefore {bqﬁ))’fr l;e; as an element of the direct
limit. By analogy, we have b’ as a homomorphism between lim C"(A3,1;) and
llmC"“(A;, ;). i
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Proposition 1.2. The homomorphism A: C"(A;,7;) — C"*(Ad;,1;) can be extended to
the corresponding operators, denoted also by

% li_r)nC”(J,l,u) g li_r)nC"(fﬁ,u).

The proof is straightforward.
Recall that in [3], the operator 4 (do not confuse with index ) is by defini-
tion a homomorphism between C"(A4;,7,) and C"(4;,7;), which corresponds

2 (48);,
(A9)i(a], ..., a}) = (=1)"¢}(af, ;... a]™").

It is easy to check that A is a homomorphism between lim C"(4;,7;) and
11mC"(A,1,r,1)

By analogy, we have that N =1+ 4+ ---+ A" is a homomorphism between
11_’111 C"(A_;,, Tl) and 11_1'11 Cn(/h, Tg).

Proposition 1.3. The operator
S: C"+1 (/Il’ T}.) i Cn(A_l) Tl)
can be extended to the corresponding operator
1 n+1 T g n/ g,
S11_n>1C (AA,r,I)—>11_rpC (Ai,Ti),
where A; is the corresponding algebra with a formally joined unity element.

We recall the well-known operator S from [3], ¢] +— (S¢)] with
(SP)i(al,...,a5) = ¢7*'(1,a°,...,a}).

It is not hard to see that S'is a homomorphlsm between

limC"™'(4;,7:) and  lmC™(4,,1,).

Proposition 1.4. Q = lim C"(A4;,1,) is a closed vector subspace of the direct sum of
Hilbert spaces @ ;¢1C"(A),1,), which is therefore also a Hilbert space.

Proof. Tt is easy to see that Q is a vector subspace of @ ,151C (43,7;). Let

(@?)1e1 € O, limy,_,a = a;. There is an element Zgp in (A)" ! such that
aj(x) = <{x,ay>,,.

We have

”%E)rgo (x, Za;_")u s <xa Za4>11,

such that

lim z;’ = z,, .
m— o0
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By analogy,
lim <x,270:, = <X, 28, ),
lim <x, 270, = <%, 25,01,
a;(x) = <X, 24, 01,5
ay(x) = <x,2q,)s,,
ay(x) = <{xX,24, ), -
Because

a,,l(A- ml = A = a,,J )n+l,

we have (a;); . ; € Q = lim C"(4;, 72).
Next, we see that Q is a vector closed subspace in the direct sum of Hilbert
space @ ;7C"(A4;,7;), which is therefore also a Hilbert space. [ |

2. Entire Cyclic Current Homology

Definition 2.1. L et A be an involutive Banach algebra and A, an ideal with trace ;.
The space CY(A)=Hom (lim C(4;,C)) of continuous functionals is called the
space of cyclic currents ( with r respect to the direct limit topology).

Let f be an element in C2(4), i.e., a continuous functions (with respect to the
direct limit topology). This means that there exrsts a fixed 2 such that f is a con-
tinuous linear functional on the Hilbert space A, ® D) . Conversely, every func-
tional of this form can be trivially extended by zero to other orthogonal compo-
nent, to a continuous functional on the direct limit (with respect to the direct limit
topology). Following Riesz’ theorem, there exists an element z; in 11mC (Az,72),
such that f(x) = {x,z7),,, for all xe lim C"(A4;,7;). Now, we can define con-
tinuous homomorphisms »'*,b*, 4", S* and N*, which are just the adjoint ones of
b, b, A, S; and N with respect to thrs Hilbert structure Since b2 = b2 = 0, we have
b*2 bl* = 0.

By analogy, we have N*(1 - A") = (1—-A*)N*=0. It is easy to see that

= [NS(1 = A)]* = (1 — 4*)S*N*, acting from C(A) to C2(A), for all n.

Definition 2.2. (The cyclic bicomplex) Let A be an involutive Banach algebra.
Define C°(A) as the following chain bicomplex in the upper half-plane,
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where on the even columns the differentials are b* and on the odd columns the dif-
Serentials are —b'*.

Hence, we have the rotal complex
Tot(C%(4))*:= Tot(C*(4))*“ = @,>0C°(4),
of C%(A4), which is periodic of period two

8
@nZOCB(A) = (DnzoCB(A),
where 0 = d) + d, is the total differential.

Definition 2.3. The periodic cyclic current homology of involutive algebra A, denoted
by HPY(4), is defined to be the total homology of the cyclic total complex CO(A).

There are hence only two groups HP (4), HPOdd(A) To each algebra A we
associate an extension by adjoining the formal unity 4 = 4 @ C. If 4 4 18 an ideal
ind, A=A, ®Cis subalgebra with unity.

One can associate to 4 the double (b*, B*)-complex with

"‘I) il (Cg—m(“f)adl + d2) o (Cg—m(’i)’b* + B*)'

By the same arguments as in [3], the operators b and B map reduced cochains
to cochains of the same type. Hence, we also have the same property of b*, B*.
The corresponding reduced subcomplex of the (b*, B*)-bicomplex is denoted by
B (A)red =

Let f, € C}(4). There is an element z, € lim C"(d;, 7,), such that

Sa(x) = <X, 25>,

n,m(

and

72l = Hz5ll-

Definition 2.4. An even (or odd) chain ( f,),q in C°(A) is called entire if the radius
of convergence of the power series

;(n), I 5:l1z",

z € C is infinite.

It is easy to see that the total differential of the cyclic bicomplex sends entire
chains to chains of the same type. Hence, we have a periodic complex of entire
chains

]
Ay = o,
where ¢ = dy + d.
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Definition 2.5. The entire cyclic current homology HE.(A) of a Banach algebra A is
the homology of the above complex C(A) of entire current chains.

Definition 2.6. An even (resp., 0dd) chain ( fa),»o (resp., (fin+1)so) in BY( A),,, is

called entire if the radius of convergence of the power series y ., Z,Z' | fanll2® (resp.

> on=0 M | fans1ll2™) is infinite.

It is easy to check that the operators b*, B* sends an entire chain to a chain of
the same type.
Thus, we have a periodic complex of entire chains

Cg(j)red % Cg(“i')red’

where the total differential 6 = b* + B*. In [3], it was shown that the operator @ is
an isomorphism of cochain complexes.

It is easy to see that the operator ® can be extended to an operator, denoted
also by

Q: li_I}n Tot C(4;) — li_ﬂn Tot(A44),.4s

between direct limits. Now, we have the operator ®*, which is just the adjoint one
of ® and is also an isomorphism of chain complexes.

Clearly, the map ©®* sends entire chains to chains of the same type. Hence, we
have the entire cyclic current homology of BO(A),ed of an involutive Banach alge-
bra A.

3. Normalized Current Cycles

In this section, we define the notion of a normalized cycle in the cyclic double
complex and in the double (b*, B*)-complex. We can also prove ‘“‘the normalized
lemma”. This lemma plays an important role in our proof of homotopy invariance
of entire cyclic current homology.

Definition 3.1. Let A be an involutive Banach algebra. A chain f in C%(A) is called
eyclicif (1= A%)(f)=0.

Definition 3.2. Let A be an involutive Banach algebra. An even (resp., odd) cycle
(fu)nso in the cyclic bicomplex is defined to be normalized if fon (resp., fani1) is a
cyclic chain, for all n.

Proposition 3.1. (Normalization lemma) Let A be an involutive Banach algebra.
For every entire cycle in the cyclic bicomplex C°(A) of A, there is a normalized
entire cycle, homologous with it.
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Proof. Let ( f),-, be an even entire cycle in C°(4). Pose

Oim = fim — = N*(fom),

2m+1
we have N*6,, = 0. Recall from [3] the operator N’, which is defined as follows:
1
e sl 2 X n
= n+1(1+2,1+3/1 +-- 4+ (n+1)2"),

satisfying the well-known relation

1
! = =
(L= N+ —N=1.

These operators and relations are well extended to the corresponding completions
and we also have the the relations for adjoint operators. Using the formula

1
* 1%
(1= A)N" 4 ——

N =1,

we have
(1- A*)N’*(Bz,,,) = O,,.

Hence, 0y, = N'*(63,) and therefore, (1 — A*)8y = Oy, Now, we can define
(fn)mso in C°(4) by formulas

Fimet =Fom—1 = b"*Oom; foy = fom — Opm.
We show that it is a normalized cycle. Really,
(=2 (f"2m) = (1 = 2)(fom) = (1 = A") 02,
= (=24 (fom) = (1 = 2)(fom —
= (1= 2)(fam) = (1 = 2)(fom)
5ot (L= ZIN(fon)
=0.

1
2m+1

N*(fom)

+

Let us show that f’ is homologous to f. To see this, we define the chain
V= Ymmzor 3 Yam1 =0, Yoy =02m. We have (3y),, = O, (OW)omy =
—b"*\,,, such that ' = f + dy, i.e., f’ is homologous to f.

It is easy to check that f/ and y are entire chains. Indeed, we can use the same
formula as (2.3) in [4]. Since

éZm = Nl*azmv
we have
182l < 2(m + 1)]| fomll-

It follows that 0,,, and hence, ¥ and f” are entire chains. ]
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Definition 3.3. Let A be an involutive Banach algebra. An even (resp., odd) current

(fan)nso (resp. (fon)uso) in B°(A),,, is defined to be normalized if By( fan) (resp.,
B{( fant1)) is a cyclic chain, for all n.

It is easy to see that the map ®" sends normalized cycles to cycles of the same
type. Thus, for every entire cycle in B%(A4),,,, there is a normalized entire homo-
logous cycle.

4. Infinite-Dimensional Differential Forms

Let 4 be an involutive Banach algebra, we have CS(A) = li_lp Q,(4;). Thus, to
each (f),o in C°(4) corresponds an element (z7,), » o in lim ©,(4;), denoted by
zf, = a‘}da,{ ...da’ (see in [2] for the case without projective limits), and then for
the operators b*, b'*, A*, S* corresponding to the operators b,5’, 4, S, one also has
the same relations as in [2]

n
] i _j+1
b*@,...,al)y =Y (-1)(a},..., a4}, atth)
j=0

+ (=) (ar1al, ... a}).
Let us recall the definition of differential forms.
Definition 4.1. A non-commutative, n-dimensional differential form over A is an
element, formally written as w, = ajda; ...da}} in 1im Q,(4;), which satisfies the

two conditions that follow: ~
For every n-dimensional cycle [ in Hom(Q,(4;),C)

de=0 and J[a)l,wz]:O,
¢ ¢

for every w, wy,w; in lim Q, (A;), where d denotes the differential operator as usual
(see, for example, [4]).

Proposition 4.1. There is a one-to-one correspondence between n-dimensional differ-
ential forms and n-cyclic cycles f, in C2(A).

Proof. Let w, be an n-dimensional differential form. Using the previous isomor-
phism, we can define the corresponding chain f, in Cp(4).

It is easy to see that f, is a cyclic cycle. For every n-dimensional cycle f¢, we
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have

J(l — 1)) =J (1 - 2*)(a%da) ... da?)
¢ ¢

J#(aﬁl)dajL ...da} — (-1)"a}da)...da?™")

J (~1)"(day...da} " a} + (~1)""'alda} .. .da”
¢

+ajdal...da"" — dd§.. .da'al)

= J¢(—1)"-1d(agda; ...da’al)

+J (=1)""(al, dal... da"]
¢
141

so that (1 — A*)(f») = 0. We have to calculate the boundary b* of f,. For every n-
dimensional cycle [ and the corresponding cocycle &5, we have

Jb*(a),,) = b¢,{(a2,...,ag+1)

= J > (~1Yalda}...d(da}™) ... dal*!

Jj=

+ J (-1)"'a"*1a%a} .. . da?
= (—1)"J alda; ...dala"t! + (—1)"+1J ai'alda) ... da’

= (—1)"J (a%al ... da7, "]
=7

Conversely, given an n-dimensional cyclic cycle £, in CY(A), we can construct an
n-dimensional differential form @, in ].EJ Q, (A, 1), which satisfies the indicated two
conditions [dw = 0 and [ [w1, 1] = 0 for every n-dimensional cycle.

In this way, we have a canonical one-to-one correspondence between cyclic n-

cycle in C))(A4) and n-dimensional differential forms in lim Q,(4;). L

Definition 4.2. A non-commutative even (resp., odd) infinite-dimensional differential
form over an 1 involutive Banach algebra A is by definition an element o in
Oz Hm (Qudz),eg, such that [, [wr,an) = (—1)%0 Jydwrde,, for all infinite
dimensional cycle | 4 on A, see also [4] for the case without projective limits.
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Proposition 4.2. Let A be an involutive Banach algebra and fo, in an(z‘i)red (resp.,
font1 in €3, 1(A),eq) be such that, for every n,

(1) b*(fon) = BE( fon-2),

(2) B§( fan) is cyclic. G,

Then, there is a differential form (W), it @nzolim (QonA}),oq5 SUch that

jCOZn == '/’Jn(a(})u T ’aﬁn)’

Jda; ...da¥ = Bon//Jn(aj, ca?),

for_every infinite-dimensional cycle | and the corresponding normalized cocycle

(Y3p)nz0 in @nxolim CZ"(/i,l,n). The differential form @ = (24), 5 is an infinite-
dimensional differential form in @0 lim (QR20A42) 04

Proof. 1t is easy to check that @ = (w2r),5¢ is an infinite-dimensional differential
form in @,,Zoli_!*n (anAl)red'

Conversely, given an even (resp., odd) infinite-dimensional differential form
® = (®m),y>0> Such that

me = l//r‘£(a())n cee 7a;_n)a

Ja’a}L ...da) = Bot,b,{,(ai, canm),

one can define chains f,,. Proposition 4.1 shows that f = ( fom),,»¢ satisfies con-
ditions (1) and (2) of Proposition 4.2.

In the even case, given a normalized even cycle f = ( fan),» in the (b*, B*)-
bicomplex, define ¢ = (¢,,),>¢ by the formula

Yon = AZn_on,
where A, = (—1)"(2n)!.

It is easy to see that ¢ = (9,,),»o satisfies (1) and (2) in (4.2) if and only
if £ = (fan)yso is @ normalized cycle in the (b*, B*)-bicomplex. We can then
define a bijective correspondence between normalized cycles in B%(4),,; and
infinite-dimensional differential forms in lim (Q4;),,,, where lim (QA4;),,q =
(‘Bmzo l}r_n (QmA).)red-

5. Homotopy Invariance

In this section, we prove that any continuous derivation of an involutive Banach
algebra induces the zero homomorphism on entire cyclic current homology
groups. We generalize the notion of Lie derivative and then we prove the homo-
topy invariance of entire cyclic current homology.
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Definition 5.1. Let A be an involutive Banach algebra. For every ideal A, in algebra
A, the continuous linear map 6,: A; — A, is called a derivation of a subalgebra A, if

51([111)1) = a,;&i(bl) +6,1(a,1)b,1,\7’a,1,b,1 € A;.

It should think of derivations as infinitesimal homomorphisms, which act on
chains and this action commutes with many of the operators of the theory. More
precisely, given a derivation d,, we define a continuous homomorphism L;,, just as
the adjoint of Ls,, from [3].

The map L; is called the Lie derivative associated to derivation 6;.

Theorem 5.1. Let f be a reduced and normalized entire cycle in B*(A),,,, then there

is a canonically defined reduced and entire chain \y in B° (/f)red, such that Lj (f) =
0(), where 8 is the total boundary operator.

Proof: Let us prove the even case. Suppose f = ( Jan)p»o to be a normalized entire

cycle and @ = (w2,),.( the corresponding form. We can define an even form w),
in l}r_n (Qz,,fi 1) . . .

w}, = ajda} ...0,akdal .. da¥"t).
For every even infinite-dimensional cycle [, also confer [4], we define a cochain in
lim C™'(4,, ;) by formula

07,1 J 2+l _ 1 0 2n+1
Jaldal...é,lal...dal = Yo (ag,...,a™).

Hence, we have a cochain by

2n+1

i = _
onr (@ a2y = 3 (-1 J alda} ... 5a) ... da2+!
j=1
2n+1 g )
= (-1y Jwén

=

Following the well-known Riesz’ theorem for lgn Q;,414;, there is an element
241 IN lg_n an+1A_ 1, such that

Yani1(X) = <X, D2ns P

and

T 0 241 -
Yoni1(az, .- ,a,zn+ )= J W2n+1-

We want to show that (@2,+1), is reduced and estimate the norm of its compo-
nents. It is easy to see that

jda}...daﬁkzo,
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if ai =1 for some i and for every even infinite-dimensional cycle J. Hence, we
have J‘(Dldlwz =4 lewzdl + fdcoldldcoz = 0, whe;'e w1, W7 in ®@n>o0 l}l_n anA-;_,
for every even infinite-dimensional cycle, such that w}, is reduced. We have

V(@) ... ,at) = j adal ...0;a) ... da¥!,
using formula d(ab) = adb + dab,
V(@ a2 = J %da} ...d(@"6,a)) ... da2
- j aSda} ...d(@%al"y . da?t — ..

- J (ada})da?...ds,d’, ... da3"*!

b=,

= Az,,¢zfn(a2, coaiak, . .ath
—12n¢2f,l(ag,...,aj"zaﬁ—l,élai,...,aﬁ"*’l)...
—lz,,q}zfn(agai,...,6la£,...,aﬁ"+1).

We conclude that
1. < sl gLl

Because ||@ans1|| = |[[W2n41ll, We have

Bamarl] < lznl(n+ )20+ D6 11520,

where ¢2fn is the corresponding cochain of infinite-dimensional cycle | which is a
recuded entire cochain. We see that @, is a reduced entire cocycle.

We will next calculate B}(®2.+1) and show that it is cyclic using the formula
1da$ = da$ — d1a$. For every even infinite-dimensional cycle [, we have

J 1dd}...60a5 " .. .da¥" = Jdaf{ G da? -
= J daj .. .Jla{l'l ...da?".
Using (3.1) in [4], it is easy to see that

jdla‘; L6 da? =0
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For every even infinite-dimensional cycle [, we have

| B3 @) = Boonr a2,

¥
AR

(=1 B, (@3, ..., ad")

[N
o5 =

1

(-1y! j dal...5a0" . da?.

~.
I
-

Because

BoViyni = NBoy2t!,

(see [4]), we have

[ 3501 = 1) @aue1) = (1~ DBoFnss = (1 - B o0

Thus, Bj(@2n+1) is cyclic.
Let us calculate the Hochschild boundary of @,,.1. We see that

J b*(@ans1) = by (@), ..., a*"2),

for every even infinite-dimensional cycle [. It is easy to see that

2n+1
7 0 2n+2y _ J 0 j 2n+2
Blsir(@ly a2 = 3 (1) Jda,l...é,la{{...dal"
=1
2n+1 .
- J ajda; ...do,a). .. da2"+?,
j=1

We have
f 0 2n+2
Jj-2n+2L§*/1 (w2n+2) ~ 12n+2L5,1¢2n+2(a1a ceeyay A )
2n+2 J‘
" 0 i 242
—/12,,_*_2Z¢2n+2(al,...,51“'2,...,(11" )
=0
2n+2 .
=Jomi2 3 J ajda; ...dod’,. . .da¥?,
j=0

for every even infinite-dimensional cycle [, the corresponding cycle ¢2In. We define
a cochain in lim C****(4;, ;) by the formula

Xongz = J d(alda; ...da>"15,a2+2).
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“/_C deduce that (30!/72n+3 n j'2”+2L¢5/1 ¢Jn+2 — X2n+2)(aga a§n+2)
bYy,1(ad, ..., a3"?) for every even infinite-dimensional cycle . Hence we have

J b*(@2ms1) = (Bo¥znys — /12n+2L61¢£,,+2 = Xons2) (@3, ... ag"2).

We define a differential form in lgn Qz,,A: 1, following
Bonpr = d(dal ... da%"s;a3H).

For every even infinite-dimensional cycle [, we have
| daat..daroia ) = v 0(a, . a2

where y3,,, in im crtl (A 1,74)- Using Riesz’ theorem, there is an odd differential
form w3, in hm Q,,.14,, such that 3, 41(x) = <x, @3, >, . It is easy to see that

* — 0 2n+1 __
JwZHI_Jaldal .dai"m =0,

if @) = 1 for some index i > 1. This means that w3, , is reduced. For every even
infinite-dimensional cycle [, it is easy to check that [ Bj(wj,. ;) = 0. Because
301l = 1030 ll, W have [lwgll < Maniill@2ni2ll 3], s0 that w3, is an
entire current cycle.

We also have to calculate the Hochschild boundary of wj,_; from the relation

J b*(w;n—l) = blrb;n-—l(a27 e ',aﬁn) = (XZn - bl/l%:%)(ag, . ain)

for every even infinite-dimensional cycle [. Let

~ J— * 2n+1
@Dp1 = Ont1 + Wy + W0,

2n+1

P in 11‘_111 Qz,,.HA_;” such that

n+1 ont+1
lp2:+1(") =<x, w2nil>n'

For every even infinite-dimensional cycle [, it is easy to see that

where o

J b* (@ons1) = b(Wops1 + Vipyy + l/’%:ﬂ)

= BO‘/72n+3 = )“2"+2L51¢Jn+2

and

J b* (@2n43) = B$2n+3 = (2n+ 4)BoYz,, 3,

so that

1
Jb (602n+3) T 4B'//2n+3 j-2n+2Lé;1‘/5£n+2'
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Finally, if we define a chain ¥ = (¥3,41),50) I @n20CY,,{(4),.4> such that

l»02n+1 (x) = /12_n1+2 <x7 W2n43 >t,1a l/’2n+3 (x) = <x, éT)Zn+l >a

we thus have

Aani2b* (Wany3) — 55 An4aB* (Yoni1) = —A2n12L5, ( fone2),

1
2n+4
or

b*(Yons3) + B (Yani1) = =L, (fans2),

which is the required equation. It is easy to check that y = (i,, +1)n>0 1S an entire
chain. The theorem is proved. |

Theorem 5.2. Let L; be the Lie derivative associated to derivation &, then
L;: HE?(4) — HEO(A) is the zero homomorphism.

Proof. Let f be an entire cycle, then f is homologous to a normalized one. Now
recall the isomorphism @*: Tot B°(4),,, — Tot C°(4) which is compatible with
Lie derivatives and sends the normalized cycles to normalized cycles. By the pre-
vious Theorem 5.1, there is a reduced entire chain y, such that

L; 0" (f) = oy,
L; (f)= 00"
and

@y < lIe||llyl.

This means that ®*y is an entire chain. [ ]

Definition 5.2. (General Lie derivatives) Let A and B be involutive Banach algebras
and ¢: A — B a homomorphism. There are the natural extensions ¢: A; — B; for
all A. A continuous linear map 6,: A — B, such that 6,: A, — B, is called a con-
tinuous derivation, associated to ¢ if 6,(a;b;) = ¢(a;)d,(b,) + d,(as)e(b,), for all
a;,byin A

Given a_continuous_derivative J,, the operator Lj : C%(4) — C%(B), or
L;,: hm 0,4, > 11m Q,B;, defined by formula

n

Lgl(ag, ceay) = Z(q)(ag), . ,5,1a£, —,0(al))

7=0

is called a Lie derivative along &;. It is easy to check that the Lie derivative L;,
commutes with the differentials; thus, L; is a morphism of bicomplex.

Definition 5.3. Let A and B be involutive Banach algebras and 9, A — B,0 <t < 1
a one-parameter family of homomorphism between them, which are extended to
¢,: A; — By, for all A € I. Such a family will be called smooth, if
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(a) each ¢,,t € [0,1] is a continuous homomorphism with uniformly bounded norms
ol < M,

(b) for all a; € A;, the map tv g¢,(a;) from [0,1] to B, is of class C' for every
Ael

Moreover, we have the corresponding family of derivatives §,: 4; — Bj, for all
A € I, by formula

6[((1]‘) — lim¢t+s(al) B ¢t(al) '
s—0 s

It is easy to check the relations

di(aiby) = d:(a2)p(ba) + ¢(ai)6:(b;)-

This shows that §, is a derivation with respect to ¢.

Theorem 5.3. Let A and B be involutive Banach algebras, ¢: A — B a continuous
algebra homomorphism with a family of continuous derivation 6,: A, — B, with
respect to ¢, extendable to p: A, — By and 5;: A; — B). Let f be a normalized,
reduced, entire cycle in C°(A),,,, then there exists a canonical reduced and entire
chain Y in C°(B),,4, such that L} (f) = .

Proof. Using Theorem 5.1, it is easy to see that y is a reduced entire chain, such
that Lj (f) = dy. It is easy to check that the Lie derivation Lj , associated to d;,
induces the zero homomorphism between the entire cyclic current homology
groups HE(4) and HE?(B). |

Theorem 5.4. (Homotopy invariance) Let A and B be involutive Banach algebras,
9,: A— B, te[0,1], a smooth family of homomorphisms, 6;: A; — B, the con-
tinuous derivation with respect to 9, Then @, and ¢, induce the same map between
entire cyclic current homology groups.

Proof. By our assumptions, there are constants M and N such that ||¢|| < M and
6:)] < N. Let f = ( fa),»( be an entire cycle, we can assume f to be normalized.
Hence, we have the corresponding infinite-dimensional differential forms w =
(®n) >0, Such that

d d
=0 (@n) =20, (a%da} ...da?})

=> (9@}, -,0:ds ... 0(a])
j=0

=Lj ().
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For every even infinite-dimensional cycle |, we have

[ &0 =58 @ad-.. otap)
=S o). .. 6.0 a})
7=0

= L,;lgb,{(ag, s, ay).
By Theorem 5.3, for each ¢ € [0, 1], there is a canonical entire chain y* = (y}),,5 o
such that L} (f) = dy'. We have

SN
()=o) = [ Gou (D

1
= L, (f)ar

ol 1
= | oyldr= aJ v'ds.
JO

0

It is easy to see that the integral exists and defines an entire chain. Indeed, because
y' is an entire chain and w' = (a;’)n20 is the corresponding smooth family of dif-
ferential forms, for the fixed af,...,a% € B), 6,(a) is a contmuous functions of ¢,
and the integral fo w' dt exists and hence the integral fo y' dt defines the required
chain.

It is easy to see that

191l < (2 + 2) (1 fanll + I fansa Dl 165
< (n+2)(1f2all + | fonia )M+,

and there is also the similar formula for ||/3,||. We conclude finally that (f; Yrdt), 50
is an entire chain. The theorem is proved. ]

References

1. J. Cuntz and D. Quillen, Operators on noncommutative differential forms and cyclic
homology, Mathematische Institut Universitat Heidelberg, 1992, p. 36, preprint.

2. J. Cuntz and D. Quillen, Algebra extensions and nonsingularity, Mathematische Institut
Universitat Heidelberg, 1992, p. 43, preprint.

3. M. Khalkhali, On the entire cyclic cohomology of Banach algebras I: Morita invariance,
Mathematische Institut Universitat Heidelberg, Forsclunggruppe “Topologie und nicht-
kommutative Geometrie”, Heft 54, 1992, p. 24.

4. M. Khalkhali, On the entire cyclic cohomology of Banach algebras II: Homotopy
invariance, Mathematische Institut Universitat Heidelberg, Forschunggruppe “Topologie
und nichtkommutative Geometrie””, Heft 55, 1992, p. 18.



