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Recently, Izumiya and Marar [2] proved the following.

Theorem 1. Let N be a closed 2-manifold, P a 3-manifold, and f : N — P a smooth
stable mapping, then we have the following formula

KV = V) + () +5.€(),

where T(f) is the number of triple points of f and C(f') the number of cross-caps.

This result is interesting because it relates the topology of the image to that of
the source space, while most results in topology concern only one space. This
result was later reformulated in terms of a generic wavefront in a 3-manifold [3].
But it is readily seen that the theorem given above implies that in [3] because a
generic wavefront in a 3-manifold is nothing else but the image of a stable map-
ping on a closed surface. The authors of [2, 3] used a method introduced in [4] to
prove their results. This paper gives an elementary and intuitive proof of the above
theorem.

Proof. The image of a stable mapping from a closed surface to a 3-manifold has
only three types of singularities: cross-caps (Fig. 1), normal crossing (Fig. 2), and
triple points (Fig. 3) (see [1]). Their preimages consist of one, two, and three
points, respectively. Let 4 = f(N) be the set of all singular points, then A4 is closed
and f: N — f1(4) — f(N) — A is a diffeomorphism. Now, let X = 4 be the set
of cross-caps and Y the set of triple points. Then 4 — (X U Y) decomposes into
connected components with or without boundaries, i.e., the normal crossing seg-
ments and the normal crossing circles. Denote the set of normal crossing segments
by Z and the set of normal crossing circles by W. Because N is compact, X, Y,
Z, and W are finite. Denote a= #X =C(f), b= #Y =T(f), c= #Z, and
d=#W.
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Fig. 1

Fig. 3

Now we construct a triangulation on f(N). If W is not empty, we take two
points from each normal crossing circle, thus getting a set S. Note that #.S = 2d
and W — S consists of 2d normal crossing segments. Now, we take X U Y U S to
be the vertices and Z U (W — S) to be 1-simplexes. If f(N) — 4 decomposes into
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2-simplexes, we are finished. If this is not the case, we may add as many points and
segments in f(N) — A as necessary to get a triangulation on f(N). Suppose the
number of points added is r, the number of segments added is s, and the number of
2-simplexes in the resulting triangulation is 7. Then we have

xX(f(N)=(a+b+2d+r) —(c+2d+s) +t

=(a+b-c)+(r—s+1).

Now, it is obvious that f induces a triangulation on N by pull-pack of the
triangulation on f(N). In this induced triangulation, there are a+ 3b+4d +r
vertices, 2¢ + 4d + s 1-simplexes, and ¢ 2-simplexes. Hence, we have

((N)y=(a+3b+4d+r)— Q2c+4d+5)+1¢
=(a+3b—-2c)+(r—s+1)

= (f(N))+2b—c. (1)

Each normal crossing segment in Z has two end points. The two points are

different because of stability. They are either cross-caps or triple points. Note that

a cross-cap belongs to only one segment, while a triple point belongs to six seg-
ments. Therefore, the following relation holds:

2¢ =a+ 6b. (2)
From (1) and (2), the formula is proved. [ ]

Remark. Using the same idea, one can easily prove another result in [2].

Theorem 2. Let N be a closed n-manifold, P a (2n — 1)-manifold, n > 3. If
f+ N — P is a smooth stable mapping, then we have

L) = KN) +5.C),

where C(f) is the number of cross-caps of [.
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