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Absfract. Within the scope of Gaussian equivalent linearization, a new mean square crite-
rion of error sample function for determining the coefficients of the linearized equivalent
equation is proposed to treat stationary response of nonlinear systems under zero mean
Gaussian random. Application to the Duffing oscillator subjected to white noise is pre-
sented which shows a significant improvement over the corresponding accuracy of the
classical Gaussian equivalent linearization for both weak and strong nonlinearity.

1. Introduction

There has been a large amount of extensive investigations into the response of
nonlinear stochastic systems due to the fact that many excitations of engineering
interest are basically random in nature. Since all real engineering systems are,
more or less, nonlinear and for those systems where the exact solutions are known
only for a number of special cases, it is necessary to develop approximate tech-
niques to determine the response statistics of nonlinear systems under random
excitation. One of the known approximate techniques is Gaussian equivalent lin-
earization which was first proposed by Caughey [3] and has been developed by
many authors (see, e.9., 12, 4, 6-9, 12]). It has been shown that the Gaussian
equivalent linearization is presently the simplest tool widely used for analyzing
nonlinear stochastic problems. However, the major limitation of this method is
seemingly that its accuracy decreases as the nonlinearity increases and it can lead
to unacceptable errors in the second moments [, 5]. Further, if one needs more
accurate approximate solutions, there is no way to obtain them using the conven-
tional version of Gaussian equivalent linearization.

To obtain a series of approximate solutions in this excellent technique, a mean
square criterion of error sample function is proposed for determining the co-
efficients of linearization. The criterion is based on the chosen sample functions of
equation error. The proposed technique is then applied to an oscillator with non-
linearity under a zero mean Gaussian white noise. It is obtained that the technique
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yields a significant improvement over corresponding accuracy of the classical
Gaussian equivalent linearizafion for both weak and strong nonlinearity.

2. Gaussian Equivalent Linearization (GEL)

First of all, we recall some basic ideas of the method of GEL. we consider the
nonlinear stochastic equation

Z + zhi -f cofrz + eg(2, i) : f (t), ( 1 )

where dots denote time differentiation, h, tos, e are positive constants, and g is a
nonlinear function which can be expanded into a polynomial series form. The
excitation "f(4 it a zero fnean Gaussian stationary process with the correlation
function and spectral density given, respectively, by

Ryft) : <f (t)f (t* 
")), 

S1(ar) : 
"-l [* ry1" )ei,,dr, (z)'  Z f rJ - -

where ( ) denotes the expectation. For the sake of simplicity, we restrict to the
case of stationary response of Eq. (1) if it exists.

Denote

e(z) : z +zhi * a2sz + eg(z,i) -f (t). (3)

Equation (1) yields

e(z) : g. (4)

Following the GEL methods, we introduce new linear terms in the expression
ofe

e(z):  z + (2h+ p)2+ @?o+ )")z* eg(z, i )  -  pi  -  ) .2 - f( t ) .  (5)

Let x(t) be a stationary solution of the linearized equation

i + (2h + p)i + (a2, + l\x - f(t) : o.

Using (6), one gets from (5)

e ( x ) - e g ( x , x ) - p x - I x .

It is seen from (5) that e(x) is an equation error which is different from zero. Thus,
the problem reduces to the linearized Eq. (6) where the coefficients of linearization
are to be found from an optimal criterion. There are some criteria for determining
the coefficients (see, e.g., [1]). The most extensively used criterion is the mean
square error criterion which requires that the mean square of equation error be
minimum

<& (r)> : ((eg(x, *) - W - ),*)'> --+ mi:r .

(6)

(7)

(8)
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Thus, from

0  . " . . .  ̂  a
fi<r'1r15 

: o, Lr1"21*15 : o,

it follows that

Qx) . (gr)
u : t 6 ,  1 : t < 6 .  ( 9 )

Since the process x(t) is a solution of the linearized Eq. (6) under Gaussian
process excitation, one obtains that x(t) and i(r) are Gaussian or normal pro-
cesses. Hence, all higher moments (Sx), (Sx) can be expressed in terms of second
moments <x2>, <i2>, and the relation (9) results in two algebraic equations for 4
unknowns p, 1, (xz), and (i2). To close the system (9), two other equations for
second moments (xz), (x2) can be derived from (6):

rt7

(10)
f- S1@)dat

\ *  / -  l - - P n + p ) z o f  + ( . 2 - . t - 1 ) ' '

So the classical version of GEL, as described above, supposes that the mini-
mization of the equation elror in mean square sense may give a minimization of
the solution error. It should be noted that up to now there is no theoretical proof
of GEL; its accuracy has been investigated only by the comparison of the solu-
tions obtained by GEL with their exact solutions if available or with simulation
solutions.

3. Mean Square Criterion of Enor Sample Function

It is expected that the accuracy of GEL may be improved by an adequate exten-
sion of the classical mean square error criterion (8). An alternative approach to the
problem is the following. Let a(e,a2,(/.3,...t 47.) be an arbitrary function of the
equation error e and parameters a, (n : 2, 3,. . . , k). The function a is called the
error sample function. Now, the mean square error criterion (8) can be extended to
a mean square criterion of eiror sample function which requires that

. .1. I az sy(a)da
\ ^  / -  I  P n + p ) z r z + ( r 2 - r t - D ' '

(a2(e, u2, &3,. . . ,  o(r)) * 
rr,r#,to,r,^.

* , ror" ,  
i lz ,  i l i , ' . . ,  o( r ) )  :0 ,

*<o ' ( " ,  
&2 ,  &3 , . . . ,  a r ) ) : 0 ,  s :  t t ,  I '

Thus, one gets

( l  l )

(r2)
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It is supposed that the error sample function a is such that the system of k + I
equation (12) allows us to define k 1l parameters p, )", d.2, d4,...,txk as functions
of response mean squares (x2), (i2). Further, the latter can be definitely deter-
mined from (10). It seems that the extended version of the classical mean square
error criterion may contain many useful advantages. First of all, one can get a
series of approximate response mean squares by choosing different error sample
funct ions a(e,a2,o.3,. . . ,ap).Thispropertyof theextendedcri ter ionisveryim-
portant from the point of view of creating an approximate technique to solve
nonlinear stochastic problems. Furthermore, some interesting related questions
may occur, namely,
o Is there an error sample function a(e, a2, a,3, . . . , a7.) for which the criterion (11)

gives exact response mean squares (x2) and. (*2)?
. Are there error sample functions ap(e, a2, o,3,. . .t a1r), k :2, 3,... , such that

the corresponding approximate response mean squares (xz)u (i2)e approach
the exact ones?

So the problem of choosing optimal error sample functions is open and waiting
for a solution. In the following section, a polynomial form of error sample func-
tions will be proposed and investigated in detail.

4. Polynomial Error Sample Functions

Consider the case where error sample functions are polynomials of equation error
K

a t : e ,  a k : e - D o , " ' ' - ' ,  k : 2 , 3 , . . . .
t:2

Substituting (13) into (12) yields

k
\ - / t t + r t - t \ , r ; .
\ ( e " ' - " t - " )a ;  

:  ( e ' t ) ,  j  :  2 ,  3 , . . .
; -1

and

( 1 5 )

Since the mean square (a2) is definitely positive, the system of linear equations
(14) gives a unique solution for unknown parameters a; of the form

o i : 4 / L , (  l6 )
where A;,A are known determinants obtained from the linear system (14) and
depend on error even moments (ez), (ea), (eak-2). Using (16), one can rewrite
(15) as follows

; k ^ k k

*.<r'> - 2r+<"") * t Lo,o, qszi+zi-zs : s.
d . r .  a d s '

! <,,>- 2 i ! ! <,,,>. i f ^'} lpzi+zi-zs : s,d.i '' ' ' L,_, L ds t" ' ' 
ti 

Li:2 L2 ds'

(13 )

(14)

s : l t ,  l ' (17)
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On the other hand, one gets from (7) the relation

( " , " )  :  (G,g@,i )  -  p i  -  1*)^) ,  n :2,3, .  .  . ( 1 8 )

which shows that error even moments (e2") can be expressed in terms of response
second moments (x2) and (i2). So there are 4 algebtaic equations (10), (17) for 4
unknowns p, 1, (x2), (i2). Denote by (*2)r, (x2)othe corresponding solutions
obtained from the conditions (a2u) -- min. It might be expected that the approx-
imate solutions (x2)p, (i2)p would approach the exact ones, respectively, as one
has clearly the following series of inequalities:

mip (e2 ) = tri,1,@7) > mi,n e?) (1e)

5. Three First Approximate Solutions

The approximate solution (rz)n, (i2)k is called kth approximate one. In this
section, the equations used to determine the coefficients of linearization p and ).
corresponding to three first approximate solutions are derived in explicit form.
Obviously, the first approximate solution (rz)t, (i2)l is identical to the one
obtained from the classical mean square error criterion since at : e. The second
response mean squares (x2)2, (i2)2 are found from the condition:

((e - qze3)2) --+ min .
P'f,'az

Setting in (14) and (15), k:2Yields

or.  - ( "o)  ,

*r"', - r8 ft<,'> . f* fr <"u> : o,

l l 9

and

(20)

(2r)

s: p,  1.  (22)

The third response mean squares (x2):, (*2)3 are found from the condition:

((e - u2e3 - os"t)') - 
,T;lo,. Q3)

Putting in (1a) and (15), ft: 3 gives

a2 : ((ea)(elo) - p6Sqe8S1 1 t,

a3: ((e6)2 -  1e4S1e8S)1t,

L: (e6)(ero) -  (" t) t

(24)
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(2s)

(26)

(27)

So the equi-

(2e)

(30)

(31 )

(x2) can be

and

Hence, the second and third approximate coefficients of linearizati on p, ) are
found from Eqs. (22) and (25), respectively. To close the system of equations, one
can use two additional equations (10).

6. Duffing Oscillator

In order to elucidate the extended version of GEL, consider the Duffing oscillator
which is a single degree of freedom system with linear damping and cubic non-
linear spring, and has been applied to model many mechanical systems. The
equation of motion of such a system is given by

* + zhi + olox I eyx3 : f (t).

Here, f (t) is a Gaussian white noise excitation for which

(f (t)f (t* z)) : id1r1, sr(r) : 
*

It is easy to show that Eqs. (22) and, (25) arc satisfied for p : g.
valent linearized equation is to be

i + 2hi -f af;x + eyl(x2)x : f (t), (28)

where / is an introduced nondimensional stiffness coefficient of linearization which
is to be found as a positive root of the following algebraic equation:
. for second approximate solution (see Appendix)

*r"', 
- 2*, *k\ + @| - 2a3) *.u,

12a2a3fr<A> * $*("to) :0, s: p, ).

L2e(t), ,) = #b - r2#1, *'fiff,,: o,
. for third approximate solution (see Appendix)

L3(r(t), O = #h 
- 2a2ra + (ol - zd *n

* 2a2a3#^ * olfit,o : o,
where

o' : f f i '  d3 H+
Using the linearized equation (28) the displacement mean square
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Table 1. Approximate mean squares of displacement, Duffing equation (26).

e (x2)" (*2)t Error (*\z
%

Error (*\t
%

Error
%

I
I
J

4

0.1
1 .0

10.0
100.0

0.8176 0.8054
0.4679 0.4343
0.1889 0.1667
0.0650 0.0561

-1.49
-7 . t 9
- 1 1 . 8
-13.6

0.8149
0.21458
0.1723
0.0581

-0.33 0.8264 1.08
-4.72 0.4607 -154
-8.79 0.1798 -4.82

-10.59 0.0608 -6.47

determined from the relation

( r ' ) :
ah@20 + eyl(xzS1'

(32)

The results obtained by the procedure proposed (Eqs. (29) and (30), and (32))
(r')r, (x2)3 are compared in Table I with the values oro : l, T : l, o2 :4h, and
for different values of e. In addition, the results obtained by the classical GEL
technique (xz), are also shown. The numerical calculation shows that the mean
squares of error sample functions (20) and (23) have a local minimum at the values
,1 obtained from Eqs. (29) and (30). It is seen from Table 1 that the solutions
(*2)2, (xz)3 are much closer to the exact solutions (x2), than the solutions
(*z)r

7. Conclusions

The main question inherent in Gaussian equivalent linearization is how the co-
efficients of the linearized equation are found. Instead of the well-known mean
square error criterion, a mean square criterion of error sample function has been
proposed to determine these coefficients. An important property of this extended
criterion is that it gives a possibility to obtain a series of approximate response
mean squares, including the conventional one, as the first approximate solution.
Further, a polynomial form of error sample functions is investigated in detail and
three first corresponding approximate solutions are given. It is obtained that the
technique proposed is as general and simple as within the scope of GEL. Appli-
cation to Duffing oscillatqr shows a significant improvement over the corre-
sponding accuracy of the classical GEL.

Aclcnowledgement. Support from the fundamental research project in natural science is
acknowledged.

Appendix

For Duffing equation (26), the equation error rs

d

e:  E(x3 -  l (xz)x) . ( 1 )
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Since x is a Gaussian process, one gets

( " " ) :

where it is denoted

Nguyen Dong Anh and W. Schiehlen

(2)

([r("'- tqx2Sxl]z"5

/ 2 t t \

( t" D c'r,(x3)h-iti <*,>, r, )
\ E o  /

2n

t'" D ci,gn - 2i - t)lt <x2 >3"-i <x2>i f
t:0

e2" 1x253" I2n(l),

2n

12,,( l )  : \C;,1A" -  2i  -  l ) l l l i ,
i:0

7:i - Qn)lC i , : i  ,  ( 2 n - 1 ) ! !  : 1 . 3 . 5 . . . ( Z n - l ) .

(3)

Substituting (2) with n:1,2,3 into (22) gives Eq. (29). Analogously, sub-
st i tu t ing (2)  wi th n:1,2,3,4,  5 in to (25) ,  (24)  g ives Eqs.  (30)  and (31) .
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