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Abstract. Let M be a Riemannian manifold. The tangent bundle TM has naturally an
induced metric. This paper is devoted to properties of the horizontal lifts of calibrations and
w-manifolds on TM. We then describe some minimal surfaces on it.

1. Introduction

The method of calibrations is one of the effective methods to show some surface to
be homologically minimal in a Riemannian manifold. This method based on the
principle of calibrations which has been presented by Dao Trong Thi [1] and later
by Harvey and Lawson [7]. By using the method of calibrations, several authors
obtained interesting results on minimal surfaces in Grassman manifolds, complex
manifolds (see for example, [4, 7, 9]) and in homogenous spaces, Lie groups (see
(1, 8]).

For a Riemannian manifold M, we denote by TM the tangent bundle of M. It
is well known that TM can also be considered as a Riemannian manifold. A
problem in which several authors are interested is stated as follows (see [4]). Given
M, find the unit vector field on M having least volume, that is, find a section ¥ on
M such that V has least volume. In particular, the problem of determination of
optimal vector fields on spheres is of interest and has attracted much attention in
recent years. The answer in the case of S° is given by Gluck, Ziller [5]. In the
general case, the problem is still open.

In this paper, by using the method of calibrations and horizontal lift, we dis-
cover minimal surfaces in the tangent bundle 7M. The main results are Theorems
2,3 and 4.

We need the following theorem which is called the principle of calibrations
(see [1, 7)).

Theorem 1. Let V be an oriented compact connected k-surface in the Riemannian
manifold M. Let o be a closed k-form on M such that

() <1 (1)
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Jfor every unit simple k-vector &, and
(V) =1 2)

for almost every x € M, where V, is the oriented tangent space of V at x. Then V is
homologically minimal (i.e., V has least volume in its class of homology).

The form w satisfying conditions (1) and (2) is called a calibration and V is
called an w-manifold.

One can show that a calibration is a form of comass one and an w-manifold is
a submanifold whose tangent directions are maximal directions of .

2. Vertical and Horizontal Spaces on TM

Let M be a differential manifold of dimension #, V a linear connection, and K the
map of connection. Let IT: TM — M be the natural projection. For each u € TM,
the tangent space T, TM is the direct sum of H, and V,, where H,, is the horizontal
subspace defined by

H,={aeT,TM; K(a) = 0},
and ¥, is the vertical subspace defined by
V, = {ae T,TM; T,(a) = 0}.

For a Riemannian manifold M, one can construct different metrics on 7M.
However, we are interested only in the following metric (see, for example, [3]).
Denote by ce(TM) the set of differentiable vector fields on TM, and by #(TM)
the set of differentiable functions. Let g be a Riemannian metric of M.

Consider the map

g: &(TM) x e(TM) > F(TM)
given by

where K is the map of Levi-Civita connection.

It is easy to check that § is a metric on TM and TM becomes a Reimannian
manifold.

Let us consider TM with the above indicated metric. For each u e TM, H, is
perpendicular to V. Actually, for a € H,, b € V,, we have

g(a, b) = g(Ilxa, Ixb) + g(Ka, Kb). (4)
Since IT,b = 0, Ka = 0,
g(H*a, H*b) = g(Ka, Kb) =0.

Thus, a is perpendicular to b.
From now, assume TM is equipped with the metric as indicated above.
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Definition 1. Let a € T M. A vector a € T,TM is said to be the horizontal lift of a if
(u) = x, K(a) = 0, and I, (a) = a. Denote @ = a™. A vector a’ € T,TM is said to
be the vertical lift of a if TI(u) = x, y,(a@’) =0, and K(a') = a. Denote a’ = a".

Proposition 1. Let II(u) = x. The map H: T.M — T,TM defined by H(a) = a¥ is
a linear isomorphism.

Proof. Let ¢ =2a+ ub, where a,be .M, i, ucR. Assume a = H(a) and
b= H(b). Then Ad + pb is horizontal and

(1 + pb) = Aa + pb.

Thus, Ad+ ub is the horizontal lift of ia+ ub. Hence, H(la+ ub) = AH(a)+
uH(b) and H is linear.

Now assume a e T,M and H(a) =0. Then I1,(0) =a=0. So H is mono-
morphic. It is easy to check that H is epimorphic.

Thus, H is linearly isomorphic and the proof is complete.

Definition 2. Let H, be the horizontal subspace at ue M. A subspace V of H, is
called the horizontal lift of subspace V < T,M if H(V) = V.

3. Lifts of K-form and Their Properties

Let II: TM — M be the natural projection. Then IT induces the map II,:
TTM — TM. Denote by E*M the space of differential k-forms on M. The map
also induces the map IT*: E¥M — E¥TM defined by the formula

Mo(Xi,. .., X;) = o([(Xi), ..., (X)) (5)

for w € EXM, where X1, ..., X; € =(TM).
Because the operator IT* commutes with the operator d, IT*w is closed (resp.,
exact) if w is closed (resp., exact).

Definition 3. Let N be a connected submanifold of M. A connected submanifold
N < TM is called a horizontal lift of N if TI(N) = N and N, is the horizontal lift of
N TI(u)-

Proposition 2. Let N be a horizontal lift of a connected oriented k-surface N. Then
N is an oriented k-surface.

Proof. Because N is oriented, there exists a k-form w on N such that oy # 0
everywhere. Note that (I'I*w)| 5 1s a k-form on N. Actually, by definition,

(H*w)u(Xl, LX) = wn(,,)(H*Xl, coo, T X))

for X1,...,X; e T,TM.

On the other hand, IT, is lsomorphlc from H, to TH(,,)M Therefore, (IT*w I,
is a k-form on N. Denote (IT*w)|; = @. It is easy to see @, # 0 everywhere. Thus,
N is oriented and the proof is complete. |
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For a k-form w on M, IT*w is called the horizontal lift of . Denote by ||w||*
the comass of w (see [2]). We have the following.

Theorem 2. For an arbitrary k-form w on M, the following formulas hold:
) || G)H ||w||

(b) G((IT = {&%; ¢ e Glonw)},

where G(cun ) is the set of maximal directions of w at I1(u).
Proof. By definition, we have
[(IT*w),||* = sup{(IT*0),(&); & € AkT,TM, is simple, || <1}. (5
Express £ = o1 A -+ A ¥ such that ; € T,TM, |5;] < 1. Then
[(IT*w),||* = sup{(T*w), (&1 A -+ A B); B € T,TM, |5; < 1}
= sup{wmu(Mady, - . ., adi); B € TLTM,[5:] < 1}. (6)

Put v; = I1,3;. Let Xie ®@(TM) such that Xi =79, Then |5, = §(X'|,, Xi) =
9T X}, T Xh) + g(K Xy, KX)) > g, M) = g(vs, v3).
It follows that [3;* > |v;|>. The equality holds if and only if #; is horizontal.
Put £ =0v; A -+ A vg. If the system {v),...,vz} is linearly dependent, then
¢ =0, and it follows that

(IT*w),(§) = onw(&) =0 < logwl*.
Assume the system {vi, ..., v} is linearly independent. From (6), we have
(¥ @), |I* = sup{wmw)(v1, - - -, ve); v = Myudi}
< sup{ o) (n); 7 is simple, |7| < 1}

= Jlong|*.
Thus,

[(IT*w), |I* < |longll™. (7)

On the other hand, because of the compactness of the set {& € Ax(TyyM); £ is
51mp1e |€] < 1}, there exists a simple k-vector &y € Ax Ty M, |&o| < 1 such that

(fo ||60r1(u “
By the previous remark, &, can be expressed in the form & =% A -+ A ),
where 1{ € TwM, [v?] <1 and {9, .. vk} is hnearly independent.
Denote by v?, ..., 0% the hotizontal. lifts. of )i ug Then the system
{#,..., 88} is hnearly mdependent andafifli= [v}) {lsd = s s

Put Eo =10 A --- A D). We can see |&| < 1. Therefore

[(IT* ), |* = (IT*w),(&) = onw(é) = llomw ™.
Thus,

lonwl™ < (MT*w),|I*. (8)
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From (7) and (8), it follows that

o™ = I ), ||, ©)

Hence, the first conclusion of the theorem is proved.

To obtain the conclusion (b) we first show that, for every ¢ € G(wry)), the
horizontal lift & of ¢ belongs to G(IT*w),. The simple k-vector ¢ can be expressed
by £ =v1 A -+ A g, where {vy,..., v} is linearly independent and v; is perpen-
dicular to vj, |v;| = 1.

Denote by 7; the horizontal lift of v;. Then the system {#;} is linearly indepen-
dent and %; is perpendicular to ;. Moreover, |3;] = 1. -

Let E=9; A --- A . It is easy to see that & = £ and |€] = 1. Hence,

(IT* @), (€) = wne) (&) = llonw ™

Thus, Ee G((IT*w),). B B

Conversely, for each £ e G(IM*w),), we shall show that ¢ is the horizontal lift
of some k-vector £ € G(wpyy)). Actually, & = w1 A --- A Wy, where {Wy,..., W} is
an orthonormal system. Let w; = Il4,(w;). Then |w;| < |W;| = 1. Moreover, if
{W1, ..., W} is linearly dependent, then & = wy A --- A w, = 0. It implies

(I*w),(€) = wney(€) =0,

a contradiction. Thus, {w;} must be linearly independent. From |w;| < 1, we have
|€] < 1. From (a) of the theorem, it follows that

loom|* = [(IT*w),[|* = AT*w),(€) = wmw/(é).

Therefore, ¢ € Glwyy,) and || = 1. Then |w;| = 1 = |W;|. This shows that w; is
horizontal and #; = w/’. Thus, the conclusion (b) of the theorem is proved. M

Definition 4. Let TM be the tangent bundle, V, the vertical space at u € TM, and K
the map of connection. A covector ¢ in T,TM is called the vertical lift of a covector
g in T,M if 3(v) = p(K(v)) for every v € V,. A differential 1-form & on TM is called
the vertical lift of a 1-form & on M if &, is the vertical lift of i)

Lemma 1. On a parallelizable Riemannian manifold M of dimension n, there exist
differential 1-forms &',...,&" such that {611,,...,51','} is linearly independent for
every pe M. '

Proof. Let {Xi, ..., X,} be a parallelization of M. For each i =1,...,n, define a
1-form ¢’ as follows

é;((X])p) = 5ij: j= st 7 (10)

We shall show that the functions &, i=1,...,n, are differentiable. For
X e ®(M), X is expressed by

X=ZﬁX},ﬁ697(M). (11)
j=1
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Then . . ;
(E(X), = E(X,) = & £0)X)),) = filp)- (12)
It follows that £'(X) = f; is differentiable. _
It remains to prove that, for p € M, the system {£,} is linearly independent

Indeed, if Zlé’_O for 1; € R, then, for every ve T, M, Eif’ =0.
Therefore, =!

P ACEI (13)

In (13), if v = X, then 4; = 0. This holds for every j = 1, ..., n. Thus, the proof is

complete. u

Lemma 2. Let é},, L3 f; be linearly independent on TM. Then vertical lifts of them
are linearly independent.

Proof. Denote by El, 2.1 & the vertical lifts of covectors 611,, 40, 3 f;. Assume

i L& =o.
i=1

% n ;
It follows that > A;&'(K9) = 0 for € TTM. Since K is epimorphic, > 1;& =

0. The 1ndependence of {¢'} implies A; =0 for i =1,...,n. Thus, the system
{f "} is linearly independent. The proof of the lemma is complete. |

Now, let us construct some calibrations on 7M. This is based on the following
theorem and some properties in [6].

Theorem 3. Let M be a parallelizable Riemannian manifold and w a k-form on M.
Then there exists an (n + k)-form Q on TM such that

Q, = e?}u A (IT*w)y, ue TM. (14)
Moreover,
Il = llol*, (15)
where ey, is the unit simple n-covector associated with V,

Proof. By Lemma 1, there is a system of linearly 1ndependent 1-forms { Zi )
Denote by é the vertlcal lift of & for each i = 1,...,n. Then

QI=E /\.../\En

is an n-form on TM. We can identify 1Q; with e"V;, where 1 is some real value.
Consider an (n + k)-form Q defined by

Q= (1)) A (IT*w). (16)
For

ue TM, Q, = ey, A (IT*w),, (17)
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we shall prove that

(" = T ), |1 *. (18)
Since (17), by [2], we have
[QuN)* = llef; A [T o), 1™ < ek ]|*. || w), || *. (19)

The comass of ey, is equal to 1 because ey, is a unit simple n-covector. It
follows that

121 < I o), 1 *. (20)

Let 11 =V A A Up be a unit simple p-vector on 7,TM such that

(IT*w),(n) = ||(IT*w) || where vy, ..., v, are linearly independent in 7,7M. We
can choose v1,...,0p I0 the horizontal space H,. Then ey, A 7 is simple. Hence,

19ull* = Qulex, A n) = (ef; A (IT*),)(ex A 1)
= (" w),(n) = ([T w),|*.
Thus,
12u]1* 2 [I(IT*e), |1*. (21)
From (20) and (21), we have
1Qull* = 1T ), [|*.
This shows that [|Q,|* = ||[I*®||* and the proof of the theorem is complete. B

A direct corollary of this theorem can be stated as follows. If @ is of comass
one, then Q is of comass one. This helps us to find some (# + k)-surfaces which are
Q submanifolds in TM and therefore, will be homologically minimal.

Theorem 4. Let w be a calibration of an oriented connected compact k-surface N
of the Riemannian manifold M. If the horizontal lift N is compact, then IT*w is a
calibration of N and N is homologically minimal.

Proof. By Proposition 2, N is onented Because w is a calibration, w is closed and
of comass one. By Theorem 2, IT*w is also closed and its comass is equal to one.
For ue N, II(u) = p € N, N, is the horizontal lift of N,.

Let {ey, ..., ex} be an orthonormal basis of N,. Then the set of horizontal lifts
é1,...,8 forms an orthonormal basis of N, Hence N, is the horizontal lift of Np.
We have wp(Np) =1 for every p € N. It follows that N, € G(wp). According to
Theorem 2, we obtain N, € G((IM*w),). Thus, IT*w is a calibration of N and
therefore, N is homologically minimal. This completes the proof. [ ]
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