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Abstract. In this paper, we study a general boundary value problem for Fredholm-Volterra
integro—differential equations of high order by spline collocation methods. In this general
case, it is not appropriate to use diagonally dominant matrix to solve problems of existence
and uniqueness of approximate solutions as in [3]. Projection methods are used instead. In
many cases, a theorem on the convergence rate of high order of approximants to exact
solution is established and shown to be much better than the result in [3].

1. Consider the equation

m—1
Lx(t) = x"(0) + Y~ am1x (1)
j=0

b t
AJ Ky (t,8)x(s)ds + J Ky (t,8)x(s)ds = f(2), (1)
with m independent boundary conditions
m—1
OCkX( +Zﬂkx(k) _yi?izla"')m, (2)
k=0

where a(t) € Cla, b], i, B, v AER, k=0,... . m—1,i=1,... . ma<t s<b,
K;(t,5) € C(Q), Q = [a,b] x [a,b], j=1,2. Without loss of generality, we can
assume y;, =0, i = 1,...,m. Indeed, if g(t) € C™[a, b], satisfying conditions (2),
and u(t) is a solution of the equation

Lu(t) = f(2) — L{4(1)), (3)
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varifying the independent conditions
]

m—1 m—1
Z azu® (a) + Z By (b) =0, i=1,...,m, 4)
k=0 k=0

then it is easy to see that x(¢) = u(f) + g(¢) is the solution of Eq. (1) satisfying
conditions (2). Consequently, from now on we shall consider only Eq. (1) with
conditions (4).

2. Let
Mpid=lh<h<--<t,=b

be a partition of [a, b].
Set

hi=ti—t, i=0,...,n-1, h, = max h;.
l1<i<n-1

We always suppose that f € Cla,b] with || f|| = gliiéb| f(?)], and the sequence
a=<
{m,} has the property lim A, = 0. We shall use the set
h—00

Sp = {Cth € [avb]7i= 1,"',Nn;Nn GN}

for a collocation set in [a, b], where N, is a constant dependent on 7.
Denote

Sp(Tcn,p, q) = {U(t) € Cq[ai b] : U(t)|[t,-,t,-+1] € QP’i = Oa s — l}a

Sp (7ns2,4) = {0(1) € Sp(ma,p, ) - 0() satisfying (4)},

where p, g are integers satisfying 0 < g <p—1,p > 1, and @, is the set of poly-
nomials of order <p.
Assume that the problem

x (1) = 0,
m—1 y m—1 ® . (5)
Zaikx( )(a)+2ﬁikx (b):01 l=11--'am7
k=0 k=0

has only trivial solution and let G(z, s) be its Green function. Then it is well known
that the problem

X (1) = o(s),
m—1 m—1
Zaikx(k)(a)-l-Zﬁikx(k)(b) :O’ i= 1a"'7m7
k=0 k=0
has a unique solution defined by

b
(1) :J G(1, 5)o(s) ds, (6)

a
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(see [1], p. 132). Consider the operator U : ¢ [a,b] — Cla, b], defined by

b
Uv = J G(t, s)v(s) ds.

By (6) we get

b Ak
xwuyi[ag$”u®dg k=1,....m-1.

Hence, Eq. (1) becomes

J mzl 01G(t s )ds+AJ “:Kl(t,C)G(C,s)u(s) ds|dl

=0

+[[[ [ st o0t 6 a e =100,

By the continuity of K;(¢,s),i = 1,2 and G(s, {), we have

bl m-! Gz, s)

b
> o) 50+ 4| K069t

=0

v(z) +J

a

+j Ka(6,0)G(L,9) dc] o(s) ds = £ (1), )

If we denote by T the operator T : Cla, b] — Cla, b] with

Tu_JblMIaj aGts) J K(4,0)G(L,5)de

j=0

t
+ [ 50,069 dt] o) as
then Eq. (7) can be written in the form

(I+T)v=f, (®)
where 7 is the identity operator in Cla, b].

Therefore, if a;(f) € Cla,b], j=0,...,m—1, Ki(t,s)e C(Q), i=1,2 and
Eq. (5) has only trivial solution, then the problem (1), (4) is equivalent to (8).

If we approximate the solution of (8) by an element v, € Sp(m,, p, g) such that

I+ T)on(ls) =f(8), i € Sy

then the element

Xa(t) = .[b G(t, 5)vu(s) ds, xu(1) € Sop (0, p +m,q + m)

a
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satisfies the equation
Lx(&:) = f(L), {ieSn.

Consequently, x,(z) is the desired collocation solution. To find the above-
mentioned element we take a continuous linear projection P, ,

P, : Cla,b] — Sp(mn,p,q) < Cla, b},

having the property P,f({;) = f({;),Y(; € Sy Then, from (8), we obtain

P+ P,To = P,f. (9)
It is obvious that if v, € Sp(n,, p, q) satisfies (9), then we get

vy + PyTv, = Pyf, (10)
which means that the desired element v, is found.

We shall make use of the following.
Lemma. Let a;(t) € Cla,b], j=0,...,m -1, Ki(t,5) e C(Q), i = 1,2,
[Ka(t1,s) — Ka(t2, )] < L|ty — 1o}, V1, € [a,b],
(L is a positive constant), P, are continuous linear projections,
Py : Cla,b] — Sp(mn,p, ),
satisfying
|1Puf = fll < Mo(f,hn), VS eClabl

P,f (L) =f(L;), V¢ € Sy, Vf € Cla, b, where M is a constant independent of n, and
w( f,hy) is the modulus of continuity of function f with respect to h,. Then

(i) The sequence P, converges pointwise to the identity operator I in Cla, b].

(i) The sequence P,T converges to T in the space £(Cla,b|, Cla,b]) (the space of
continuous linear operators in Cla, b]).

Proof. The proof of statement (i) is easy and hence it is omitted. Since
a;i(t) € Cla, b], Ki(t,s), G(t,5) € C(Q) and K;(t,s) satisfy the Lipschitz condition
with repect to ¢z, the operator T is completely continuous in Cla, b]. Let S(0, p) =
{x(2) € Cla,b] : ||x]| < p, p > 0}. By the complete continuity of 7, it follows that
for arbitrary positive ¢ there exists a finite set Z = {y1,...,»,} such that for every
x; € S(0, p) there is y; € # such that

| Tx1 — yi|| <e,
and we get
7% — PaTxa|| = {[(1 — Pn) Txa |
< |IT = Pu)(Tx1 — yi)ll + [|( — Pa)yill
< = Pa)lle+ (T = Pu)yil-

Since {P,} is a sequence of continuous linear projections pointwise converging to
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I, and Cla, b| is a Banach space, it follows from the Banach Steinhauss theorem
that the sequence {P,} is bounded: there exists a positive number M; such that
||Pnl| < M||,Vn. Taking n sufficiently large we have

|Tx1 — PpTxq|| < (14 M1)e+e < (2+ Mi)e, Vx; € S0, p),

hence ||P,T — T|| — 0 as n — oo, and the lemma is proved.

Theorem 1. Let a;, f € Cla,b], j=0,...,m—1, K;(t,s) € C(Q), i = 1,2,
|K2(t1,5) — Ka(t2,8)| < L|t; — 12), Vi, ty € [a, b],

(L is a positive constant). Assume that P, are the projections mentioned in the
above lemma and there exists an inverse operator (I + T )™ of Eq. (8) and Eq. (5)
has only trivial solution. Then

() For sufficiently large n(n > Ny), there exists a unique collocation solution x, of

0
the problem (1), (4) such that x, € Sp (nn,m+ p,q +m) on S,.
(i) The convergence rate of the approximate solution x, to the exact solution x is
estimated by
1% = xall < Beo(x™, ha),

where § = My||U||.

Proof. ()Set A=I1+T,B=P,T—T.

It is clear that 4 and B are bounded linear operators in Cla, b]. On the other
hand, by the above lemma, ||P,T — T'|| — 0 as n — oo. Thus, there exists a natu-
ral number Ny such that for all n > Ny we have

|P.T - T|| <o, O<a=const, af(I+T)'|<1.
By using Lemma 15.2 from [2], we can assert that there exists an inverse operator
(A4+B)' = +P,T)", and
Iz +1)7"

(I +P,T)™"|| < =
it L—al(T+T)7"

V-

So Eq. (10) has a unique solution v,,v, = (I + P,T)"'P,f.
Since (5) has only trivial solution, there exists a unique collocation solution

b 0
xn(t) = J G(ta S)Un(S) ds, xn(t) € Sp (nnap + m,q + m)a nz NOa

a

that proves the statement (i).
(i) By (9) we have

v+ P,Tv=P,f +v— Py,
v—v,+ P, T(v—1v,) =v— Py,
v—v,=I+P,T) " (v- Py).
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It follows that
X—Xn=U(v—1y)
= U(I + P,T) ' (x™ — P,x™), (11)
I = xall < 7V M(x™, hy)
< Box(x"™, hy),

where f = y||U|| M. This completes the proof of the theorem.
3. Below, we shall consider some concrete projections which can be used to solve
~pproximately the problem (1), (4). Note that, with respect to each projection, we

obtain a spline collocation method to solve Eq. (1) with conditions (4).
(a) We take d + 1 points from the segment [0, 1] as follows:

O=m<m<--<ng=1
Taking into account the partition
Tp:a=th<fhi<---<t,=b,
we get
Sw={Cj=ti+hm,i=0,...,n—1,j=0,...,d}.
Define the mapping P, : C[a, b] — Sp(mn,d,0) by setting

(Pn)f(Cij) = f({i)s V{ij € Sp. (12)
It is obvious that P, is a linear projection from Cla, b] into Sp(m»,d, 0). On each
segment [t;,%;41],i = 0,...,n— 1, P,f is a polynomial of order <d interpolating

the function f at {;;. If we denote by {/;(t )}d_o the basic system of polynomials of
order <d on [t,,t,+1] satisfying [;({x) = ]k,k 0,...,d (where 6y is the delta
Kronecker), then for every f € Cla, b] we get

d

1Pfll < | max_ 1,3}1",+1|Z FEpEQ),

d
<171, max >l

L <t< i 7=0

where
d

t_ g
b0 = H $y —ggk-

k=0 #J

As in [6, p. 5] we have

o= [ = =),

r=0,r #j i —tr
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and
=t,<n;gxt+12|l )| = max le ()l

M, is the Lebesgue constant independent of i and n. Consequently, || 2, < M, so
P, is continuous. Let p* be the best approximation of f by a polynomial of order
d in [t;, t;11] (see [4], p.43). Then

d

% (1) = Paf (O] = 1D_ (" (i) = fC)h(9)]

=0

d
<llp*~fIl max > |
=0

L <1<ty

< M| f - p7|l.

By Jackson’s Theorem (see [4], p. 43) we obtain

max |p*(r) — Puf ()] < Mage(f,d), f € C¥a,b)],

SIS b
where
6w ( f,2), when k = 0,
ae( f,d) = 2150 when k = 1,
Mrkh,,nj ®), whenk>1,d>k—1>1.
So

If = Puf @l < 2" = Pufl + | f = p°|
< (My+ Vg (f,4d). (13)
For k = 0, we have

If = Pufll < 6(M + l)w(f,;’—:i), Vf e Cla,b).

The projections P, have thus the properties mentioned in the above lemma.
Therefore, we get the following.

Theorem 2. Let a;(t), f € Cla, b, j=0,...,m—1, Ki(t,s) e C(Q), i = 1,2,
Kz(tl,s) — Kz(tz,s)l < thl = t2|, Vi, th e [a, b],

(L is a positive constant). P, in the projections defined by (12). Assume that there
exists an inverse operator (I + T)™" and Eq. (5) has only trivial solution. Then
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(1) For sufficiently large n, there exists a unique collocation solution x, of the prob-

lem (1), (4) such that x, € Sp (rtn,m+d,m) on S,
(ii) The convergence rate of the approximants X, to the exact solution x is given as
follows:

| ' O(w(x™, hy)), ifxe C™a,b],
X — Xy =
O(hF), ifxe C™*a,b],1 <k <d+1.

Proof. By using Theorem 1, we immediately get (i). For the proof of (ii) from
(11), (13) we see that

llx = xall < pUT[1x — Pux™|

< 7| Ul(My + 1)g(x™, d).

Hence,
| | O(w(x™, hy,)), if x e C™[a,b],
X —Xxq|| =
O(hy), if xeC™*[a,b],1 <k<d+1.
This completes the proof of Theorem 2. |

Now let =, be a uniform partition of [a, b],

Mpia=t<h < - <tyb=b h=

Let k > 1 be a natural number and n > 2k — 1, and S, = {#,..., t:}.
Consider now the mapping
P, : Cla,b] — Sp(ms,2k — 1,2k — 2)
such that
( )(t) f(tl) i:()a-"ana
DI(P.f)(a) = D(La-10f)@), j=1,...,k—1, (14)
( n )(b)sz(LZk—l,lf)(b)1 j:17"'ak_1a
where Lyk_10f, (Lak-1,1 f) are Lagrange interpolation polynomials of function f
at points 2o, 1, ..., f2k—1, (En_2k+1, In—2ks - - - + In), TESPECtively.

It is obvious that P, are continuous linear projections from Cla,b] to
Sp(mn, 2k — 1,2k — 2) and

If = Prufll < 6x(f ),

where 6 is a constant independent of » (see [7], p. 347).
Clearly, P, also satisfies all properties of the projections mentioned in the
above lemma.
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Theorem 3. Let a;(t), f € Cla, b],Ki(t,s) € C(Q),i=1,2
[Kz(tl,s) — Kz(lz,S)] < L|t1 = t2|, Vi1, € [a, b],

(L is a positive constant), and P, be the projections defined by (14). Assume that
there exists an inverse operator (I +T)™" and Egq. (5) has only trivial solution.
Then

(i) For sufficiently large n, tézere exists a unique collocation solution x, of the prob-

lem (1), (4) such that x, € Sp (Tu,m+ 2k —1,m+ 2k — 2).
(ii) The convergence rate of the approximants x,, is given by

Ix = xall = O(R &@(x"*), ),
where 0 <r <2k —1,xe C"*™[a,b],r e N.
Proof. The statement (i) is obvious. It remains to prove (ii). From (11) we get
lIx = xall < [Ullyllx™ —Pux™|
< [|UI)x" = v — (Pax™ — P,
Yv e Sp(n,, 2k — 1,2k — 2)
< [T - P () —v)]|
< [|Uly(1 + [Ball) [} — o],
Vv € Sp(my, 2k — 1,2k — 2)

<NV + IR, inf e o,

By using Theorem 1 from [7] we obtain

: ™) _ p)| = O ()
R RO b)),

where x € C"*"{a, b],0 <r <2k —1.

So,
IX = xall = O(H @ (x™*, k).
The proof of Theorem 3 is complete. |
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