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Abstract. In this paper, we consider an iteration process which converges strongly
to a common fixed point of a countable family of nonexpansive mappings, and it is
the unique solution of a variational inequality constrained by this set of common fixed
points. Note that our results generalize the corresponding results by Ceng et al. (Com-
put. Math. Appl. 61 (2011), 2447-2455).
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1. Introduction

Throughout this paper, let N be the set of positive integers and let R be the set
of real numbers.

Let C' be a nonempty closed convex subset of a real Hilbert space H. A
mapping T : C — H is nonexpansive if ||[Tx — Ty|| < ||z — y|| for all z,y € C.
Let Fix(T) := {z € C' : Tx = z} denote the fixed point set of T'. It is well-known
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that Fix(T) is a closed convex subset of C' if T' is a nonexpansive mapping with
Fix(T') # 0. An operator B C H x H is said to be accretive if (x1 —x2,y1—y2) > 0
for each (z1,y1) € B and (x2,y2) € B. A mapping A : H — H is a strongly
positive operator with coefficient 5 > 0 if (Az,z) > 7||z||? for all z € H. A
nonlinear mapping S whose domain D(S) C H and range R(S) C H is said to
be strongly monotone with coefficient n > 0 if (z —y, Sz — Sy) > ||z — y||? for
all z,y € D(S5).

Let f: C — C be a contraction mapping, and let T': C' — C be a nonexpan-
sive mapping, and let A : H — H be a strongly positive operator.

In 2004, Xu [13] proved that under certain appropriate conditions on {ay,},
the sequence {x,} generated by

Tnt1 = anf(xn)+ (1 —an)Tx,, neN,
converges strongly to the unique solution Z € Fix(T") of the variational inequality
(I - flz,x—z) >0 forall z e Fix(T).
In 2006, Marino and Xu [7] considered the following general iterative process:
Tpt1 = anyf(an) + (I — AT, neN (1)

They proved that if the sequence {a,,} of parameters satisfies appropriate con-
ditions, then the sequence {z,} generated by (1) converges strongly to a point
z € Fix(T'), and it is the unique solution of the following variational inequality

(vf—-A)z,2—7)<0 forallzeC.

In 2010, Tian [9] introduced the following general iterative process:
Tny1 = anyf(zn) + (I — pa, F)Tx,, neN. (2)

The author proved that if {«,} satisfies appropriate conditions, then the se-
quence {z,} generated by (2) converges strongly to a point T € Fix(T), and it
is the unique solution of the variational inequality

(vf—pF)Z,z—7) <0 forall x € Fix(T).
This scheme improves and extends the corresponding ones given by Marino and

Xu [7], and Yamada [14].

In 2011, Ceng et al. [5] consider the following general composite iterative
process:
x1 € C chosen arbitrary,

Yn = (I — anuF)Tx, + anyf(zn), (3)
Tnt1 = (I - BnA)Txn + 5nyna

where A is a strongly positive bounded linear operator on H with coefficient
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v € (1,2), and {a,,} C [0,1] and {8,} C (0,1] satisfy appropriate conditions.
They proved that the sequence {z,} generated by (3) converges strongly to a
point z € Fix(T'), and it is the unique solution of the variational inequality

(I—-A)z,z—z) <0 forall zeFix(T).

Recall that the metric projection from a real Hilbert space H onto a nonempty
closed convex subset C' of H is the mapping Po : H — C which assigns to each
point z € H the unique point Pox satisfying the property

— Pox| = inf ||z — yl.
lz = Poxl| = inf Jlo —y|

Motivated by the above works, we consider the following iterative process. Let
C be a nonempty closed convex subset of a real Hilbert space H. For each n € N,
let T,, : C — C be a nonexpansive mapping. Let f : H — H be a contraction
mapping with coefficient o € (0,1), F' : H — H be Lipschitz with coefficient
k > 0 and a strongly monotone mapping with coefficient n >0, A: H — H be a
strongly positive bounded linear operator with coefficient ¥ € (1,2). Let Pc be
the metric projection. Let {ay,} C [0,1] and {8,} C (0,1]. Let 0 < u < 2n/k?,

0<vy<puln-— “52 )/a=T1/a. Let {x,} be generated by

x1 € C chosen arbitrary,
yn = Pol(I — anpuF)Thx, + anyf(z,)], (4)
Tnt1 = Pol(I = BnA)Tnxn + Bniyn)-

We prove that if {a,,} and {f,} satisfy suitable conditions, then the sequence
{zn} generated by (4) converges strongly to a point z € N5, Fix(77,), and it is
the unique solution of the variational inequality

((A=Dz,z —xz) <0 forall z € N, Fix(Ty,).

Note that our results are different from the corresponding ones in [4, 5, 7, 9, 10,
14] since these iteration processes are different.

Finally, we consider the problem of finding a zero of an accretive operator. Let
C be a nonempty closed convex subset of a real Hilbert space H. Let f: H — H
be a contraction mapping with coefficient o € (0,1), F : H — H be a Lipschitz
mapping with coefficient £ > 0 and strongly monotone with coefficient > 0,
A : H — H be a strongly positive bounded linear self-adjoint operator with
coefficient 4 € (1,2). Let B be an accretive operator such that B~1(0) # 0.
Let {an} C [0,1], {6n} C (0,1], and let {\,} be a sequence in (0,00). Let
0<p<2n/k? 0<~y<u(n— ”—12“2)/04 = 7/a. Let {x,} be generated by

x1 € C chosen arbitrary,
Yn = Po((I — anpF)Jx, Tn 4 cny f(20)], (5)
Tp41 = PC[(I - BnA)J)\nxn + Bnyn]v
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where J) is the resolvent of B. (For details, see Section 4.) We prove that if {a, },
{Bn} and {\,} satisfy suitable conditions, then the sequence {z,,} generated by
(5) converges strongly to a point & € B~1(0), and it is the unique solution of
the variational inequality

(A-1)z,2—2) <0 forall z€ B~1(0).

Note that our result is different from Theorems 4.2 and 4.3 in [2] since these
iteration processes are different.

2. Preliminaries

Let H be a (real) Hilbert space with inner product (-,-) and norm || - |. We
denote the strongly convergence and the weak convergence of {x,} to x € H by
Tn — x and z, — x, respectively. It is easy to see that for each z,y € H and
A € [0, 1], we have

Az + (1= Nyl = Alz[* + @ = Mgl = 21 = Nz - y]*.
Furthermore, we have

20z —y,u—v) = |z — ol + lly —ul® — [lz —u]* — [ly — v]|*
Lemma 2.1. [11] Assume that {an}nen s a sequence of nonnegative real num-
bers such that an+1 < (1 —yp)an + 6p, n € N, where {y,} C (0,1) and {6,} is
a sequence in R such that (i) i Yn, = o0, (ii) limsup % <0 or i |0n] < o0.

n=1 n—oo n=1

Then lim a, = 0.
n—oo

Lemma 2.2. [3] Let C be a nonempty closed convez subset of a real Hilbert space
H. Let T be a nonexpansive mapping of C into itself, and let {x,} be a sequence
in C. If , = w and lim ||z, — Tz,| = 0, then Tw = w.

n— oo

Lemma 2.3. [8] Let C' be a nonempty closed convex subset of a Hilbert space
H. Let Po be the metric projection from H onto C. Then we have

(i) y = Pox if and only if (x —y,y — 2) >0 for all z € C;
(i) llz — PowlP + | Pow — 2| < [lz — 2| for all 2 € C;

(iii) |Pcx — Poy||* < (x — y, Pox — Poy) for all x,y € H. Consequently, Pc
1S a nonerpansive and monotone mapping.

In 2007, Aoyama, Kimura, Takahashi, and Toyoda [2] gave the following def-
inition and lemma.

Definition 2.4. [2] Let C' be a nonempty subset of a real Hilbert space H. Let
{T,} be a countable family of mappings from C' into itself. We say that a family
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{T,} satisfies AKTT-condition if

oo
Z sup [|Th412 — Thzl| < 00
n:lmEB

for each nonempty bounded subset B of C.

Lemma 2.5. [2] Let C' be a nonempty closed subset of a real Hilbert space H,
and let {T,} be a sequence of mappings from C into itself. Suppose that {T,}
satisfies AKTT-condition. Then, for each x € C, {T,,x} converges strongly to a
point in C. Furthermore, let T : C — C' be defined by

Tx:= lim Tz, z € C.

n—oo

Then, for each bounded subset B of C,

lim sup{||Tz - Tyz|| : z € B} = 0.
n—oo

In the sequel, we say that {T),, T} satisfies AKTT-condition if T is defined as
above and {7} satisfies AKTT-condition.

3. Main results

Theorem 3.1. Let C' be a nonempty closed convex subset of a real Hilbert space
H. For each n € N, let T,, : C' — C be a nonexpansive mapping. Let f : H — H
be a contraction mapping with coefficient o € (0,1), F : H — H be a Lipschitz
mapping with coefficient k > 0 and strongly monotone with coefficient n > 0,
A : H — H be a strongly positive bounded linear self-adjoint operator with
coefficient ¥ € (1,2). Let {a,} C [0,1] and {Bn} C (0,1]. Let 0 < p < 2n/k?,
0 < v < puln-— "’2“2 )/a = 7/a. Suppose that NS Fix(T,) # 0. Let {z,} be
generated by

x1 € C chosen arbitrary,
Yn = PC[(I — i F) Ty, + an’Yf(xn)]v
Tn+1 = PC[(I - 6nA)Tnxn + 6nyn]

Assume that:

&)

() fira, an = 0; lim B =07 3 B = o0;

.. & X

(H) Z |O‘n+1 - an| < 005 Z |Bn+1 - 5n| < 005
n=1 n=1

(iii) {T%, T} satisfies AKTT-condition, and Fix(T) = NS, Fix(T5,).

n—oo

Then lim x, = Z, where T € NS Fix(T,) and (A—1)x,z—2) <0 for all z €
ﬁzoleiX(Tn), that is, Pf‘lfleFiX(Tn)(QI — A){f =1T.
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Proof. Since ||Al| > 4 > 1, without loss of generality, we may assume that
0 < B, < ||A||7! for all n € N. Since lim a, = 0, we may assume that 1 >

n—0o0

(T —7va) and 1 > 2q,7 for each n € N. For each 2,y € X and n € N, we have

(I = anpF)z — (I — anpF)yl
= (z —y) = (@pFz — cnuFy)|?
= |z — y|* = 2(x — y, anpFx — anpFy) + ||onpFr — o pFy|?
< lw =yl = 2anpmllz — y[|* + ap @ k2 ||z — y||®
= (1= 20npn + opp?k?)||lz — y|?
< (1= anp(2n — pk?)) ||z —y|I?
= (1= 2a,7)[|lz —y|?
< (1—ap7)||z -yl (6)

Take any w € N5 Fix(7T;,) and let w be fixed. Hence

[y — wl|
<N = anpF)Toen + anyf(z,) — w||
= llan(vf(zn) — pF(w)) + (I — anpF) Ty — (I — anpF)Thw||
<l f(an) — any f(w)|| + lony f(w) — anpF (w))]
+|(I = anpuF)Tnxn — (I — anpuB)Tw||
0 — w] + anlly f ) — pF@D] + (1 — anr)zn — w]
— (1= an(r = 70)lken — wll + anllrf(w) — uF(w))]
< Nen — wll + anllf () — F (@),

IN

and

[#n41 — ]|
< (I = BaA) oy + Buyn — w||
= (I = BnA)Thzn — (I — BrA)Thw + Br(yn — w) + Bn(I — Auw||
<N = BnA)Tzn — (I = BpA)Tawl| + Bullyn — wl| + BullT — Al - [|w]]
< (1= BN Tnan — Towl| + Bu [l — Al - [|w]]
+ Bulllzn — wll + anlyf(w) — pF(w))][]
< (1 =Bn(y = Dllzn —wl + Bullf = All - [Jwl|| + Bullvf(w) — pF(w))]
(1 8 el + s~ AL )=

By induction, we get

|w1—mrmm+Mﬂm—wamq,neN

o = ) < max {1 ~ ) —
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This implies that {x,} is a bounded sequence. So, {Tnzn}, {f(zn)}, {FTnzn},
{AT,z,}, and {y,} are bounded sequences. Let

M:= sup {||zall, [|f (@n) | 17 @)l [ Taznll lynll, |[pE Ton ||, |ATnan | : n € N}
Besides, we also have

lim ”yn - Tnxn” lim ||an’7f(xn) - anMFTnxn” =0,

n—oo n—oo

and

lim ||xpe1 — Than| im ||BnAT %0 — Bryn
n—oo n— oo

|=o. (7)

By (7), 1i_>m [|Zn+1 — yn|| = 0. Furthermore, by (6), we have
n—oo

g — g
<N = anpF ) Thxn + any f(zn) — (I — an—1pF )11 — an_17 f(zn-1)|
< Nlany f(zn) — an'Yf(xn—l)H + lany f(@n_1) — an—l'Yf(xn—l)H
+ (I = anpF)Than — (I — anpF) T 121 ||
+ [|(I = anpuF)Th—12n—1 — (I — apn_1uEF)Th—12n-1]
< apyallzn, — znoa ||+ fon — anoa ] - [ (zn-1)|
+ (1 = an) | Tnzn — Tpo1Zn—1l| + |an — an—1| - pl| F T 1201
< apyalzn — a1l + lan — an—1| - [V f(@n-1)[l + (1 = anT) | Tazn — Tnan—1]|
1 Tnzn—1 — Tn—1Zn—1l| + |lan — an—1| - pl|FTp—12n—1]|.
< (1= an(t —ya)||zn — Tp-1ll + 2M |, — an—1| + | TnZn-1 — Tn—1Zn—1]

Next, we have

|Tny1 — 2n|
< = BnA)Twn + Bryn — (I — Brn-1A)Tr—17n-1 — Bo—1Yn—1|
<N = BrnA)Tnan — (I = BnA)Tp—1Zn—a| + [|[({ = BnA)Tp—120—1
— (I = Ba—1A) 121l + Bullyn — Yn—-1ll + [Br — Bu—1| - [yn—1l
< (1 =B Thwn — Thoamn-all + |Bn — Ba—1l| - |AT 1201
+ Ballyn — yn-1ll + [Bn = Ba—1l - [|[yn—1l
< (1 - 5n'_7)||xn - fﬂn71|| + ||Tnxn,1 - Tn,lxn,1|| + 2M|5n - 5n71|
+Bn (1= an(T=vo) |20 — 2p—1 [+ 2M o — a1 |+ | Tn®n—1—Tn-12n-1]]]
< =By = Dllzn — zn-all + [[Thzn—1 — Tn1@n—1| + 2M B — Bn-1|
+2M Bp|an — an—1| + Bul Tntn—1 — Tn—1Zn—1]|
< (A =By = Dllzn — n-all + 2[[Than—1 — Tno1@n—|
+2M Brlay — 1| +2M|Bn — Bn-1]
< (1 =Bn(¥ = Dllwn — znall + 2sup{||Tpz — T y2]| : @ € {zn}}
+ 2M|an — an—1| + 2M|Bn — Br-1]. (8)
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By (i), (ii), (iii), (8), and Lemma 2.1, we know that lim ||zp4+1 — 2, || = 0. This
n—0o0
implies that
ILm | Thzn — x| = 0. 9)

Furthermore,

||xn - Txn” S ||xn - Tnxn” + ||Tn$n - Txn”
< N|zn — Tnxn|| + sup{||Thz — Tz|| : z € {zn}}

< | — Tnxnl| + Z sup{||Tnz — Thy12|| : 2 € {zn}}. (10)
k=n
By (iii), (9), and (10), we get lim ||z, — Tx,|| = 0.
n—oo

Clearly, T is a nonexpansive mapping. For this nonexpansive mapping 7', by
Theorem 3.1 in [5], there exists Z € Fix(T") such that Z is the unique solution of
the problem:

o € Fix(T) : (A — Da*,2* — 2) < 0 Vz € Fix(T). (11)

Since {x,,} is a bounded sequence, there exists a subsequence {x, } of {z,} such
that
limsup({z, — z,(I — A)z) = lim (z,, —z,(I — A)Z). (12)

n—oo k—o00
Without loss of generality, we may assume that x,, — z. By Lemma 2.2, z €
Fix(T). Hence, by (11) and (12), we get

limsup(z, —z,(I — A)Z) = (z —Z,(I — A)z) <0. (13)

n—00

Let uy, := (I — appuF)Thx, + apyf(x,). By Lemma 2.3,

lyn —
= [|Po(un) — ||

= <PC(un)_unvyn_j>+<un_fayn_x>

< un — Z,Yn — T)

<A(I = anptF) T + anyf(T0) — T,y — T)

= (I — anpuF)Than + anyf(zn) — T, yn — T)

= (I = anpF)Than — (I — anpl)ToZ + o (vf (2n) — pFT), yn — T)

< (I = anpE)Than — (I — anuB)ToZ|| - [y — Z|| + an(vf(2n) — pF'Z, yn — )
< (= anT)llzn = 2| - lyn — Zl| + w7 f (2n) — pFZ]| - |[yn — Z]

< Hlan = Z[ - lyn — 2| + anllvf(@n) — pFZ]| - [lyn — |-

Without loss of generality, we may assume that ||y, — Z|| # 0 for each n € N. So,

g — 2l < 20 — ] + aull7f(@n) — uFa. (14)
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Let wy, := (I — 8, A)Tn2pn + Buyn. By (14) and Lemma 2.3 again,

[Znt1 — jH2
< (wp — T, Tpt+1 — )
= (I = BrA)Thzn + BnYn — T, Tnt1 — T)
= (I = BpA)Thzy — (I — BrA)TnZ, Tpy1 — T) + Pn(Yn — T, Tpy1 — T)
+ Bn{(I — A)Z, 211 — T)
<N = BnA)(Tnzn — To2)|| - |zns1 — Z| + Balyn — Z,Znt1 — )
+ Bn{I — A)Z, Tny1 — T)
< (A =BuV)lzn = 2l - 2ntr — 2| + Bullyn — Z|| - [|n41 — 2
+ Bn{(I = A)Z, Tpp1 — T)
< (L= Balen = 2| - 2ns1 — 2l + Ballzn — 2| - [|[2ns1 — Z||
+anBullvf(zn) = pFz| - |2ns1 — 2| + BulI — A)ZT,2p41 — T)
(1= Bn(¥ = D)llzn — Z|| - (|41 — 2| + cnBnllvf(zn) — pFZ| - ||[2n41 — Z|]
+ B — A)Z, 211 — T)
1-B.(7-1)
2
+ anﬁn”'}/f(xn) - MF@“H : ||xn+1 - j” + ﬁn«l - A)j?, Tn4+1 — §3>

IN

IN

[lzn = ZII* + |znsr — 2)7]

Therefore,

|Zns1 — 2]
1-6.(y-1) 2 Pn . .
< m”xn 77+ 14 6.(7 1) [anlvf (@n) = pFZ| - |2ns — 7

+{(I = A)Z, xpg1 — )]

_ _ 2671('7_1) T _jQ
- (=) e

28,(7 — 1) 1 ) )
T A1) o ) el @) = FE -l — 2]

+2((I — A)Z,zn41 — T)].

By the integral test for series, we know that

- 2571(’7_1) _
nzz:l 1+6n(:7_ 1) B

Hence, by (i), (13), and Lemma 2.1, we know that lim x, = Z. Therefore, the
n—oo

proof is complete. [ |

The following result is a special case of Theorem 3.1. Note that our results are
different from the corresponding ones given by Marino and Xu [7], Yamada [14]
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and Tian [9] since these iteration processes are different and A is not an identity
mapping.

Corollary 3.2. [5] Let C be a nonempty closed convex subset of a real Hilbert
space H. LetT : C — C be a nonexpansive mapping, f : H — H be a contraction
mapping with coefficient o € (0,1), F : H — H be a Lipschitz mapping with
coefficient k > 0 and strongly monotone with coefficient n > 0, A: H - H
be a strongly positive bounded linear operator with coefficient ¥ € (1,2). Let
{a,} € 10,1] and {B,} C (0,1]. Let 0 < pu < 2n/k?, 0 < v < u(n—%)/a =7/a.
Suppose that Fix(T) # 0. Let {z,,} be generated by

x1 € C chosen arbitrary,
Yn = Pol(I — anptF)Txy + anyf(z,)],
Tn+1 = PC[(I - ﬁnA)Txn + 6nyn]

Assume that:

o0
(i) lim an =0; lim 8, =0; n; B = 00;

.. oo o0
(i) D fantr — an| <o00; X |Bry1 — Bu] < .

n=1 n=1
Then li_>m xn =T, where T € Fix(T') and ((A—1)Z,z—z) <0 for all z € Fix(T),
that is, PFix(T)(2I — A):f =ZI.

4. Applications

Let H be a real Hilbert space, and let C be a nonempty closed convex subset of
H. An accretive operator B is said to satisfy the range condition if cl(D(B)) C
R(I + AB) for all A\ > 0, where D(B) is the domain of B, I is the identity
mapping on H, R(I + AB) is the range of I + AB, and cl(D(B)) is the closure
of D(B).

If B is an accretive operator which satisfies the range condition, then we can
define, for each A > 0, a mapping Jy : R(I + AB) — D(B) by Jy := (I +AB)7!,
which is called the resolvent of B. We know that Fix(.Jy) = B~1(0) for all A > 0,
and

1 = Tagll? < llz = gll? — (T — Jn)a — (1 — Tyl

for all z,y € R(I + AB). Hence, J) is a nonexpansive mapping. Furthermore, we
know that [6]: for each A1, A2 > 0 and « € R(I + A1 B) N R(I 4+ A2 B), we have

P =2y,
A1

||J)\1{E—J)\2£E|| < J>\1x”'

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let f : H — H be a contraction mapping with coefficient « € (0,1), F :
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H — H be a Lipschitz mapping with coefficient k > 0 and strongly monotone
with coefficient n > 0, A : H — H be a strongly positive bounded linear self-
adjoint operator with coefficient ¥ € (1,2). Let B be an accretive operator such
that B=1(0) # 0 and cl(D(B)) € C C NxsoR(I + AB). Let {a,} C [0,1],
{Bn} C (0,1], and let {\,} be a sequence in (0,00). Let 0 < pu < 2n/k?, 0 <~ <
w(n — ”Tlﬁ)/a =17/a. Let {x,} be generated by

x1 € C chosen arbitrary,
Yn = PC[(I - anMF)J)\nxn + an’}/f(xn)]v
Tn+1 = PC[(I - BnA)J)\nxn + 5nyn]

Assume that:

&)
(i) lim «, =0; lim B, =0; > B, =o0;
n—00 n—=1

n—oo

.. o0 o0

(i) D |antr — an| <o00; X |Buy1 — Bu] < .
n=1 n=1

Then lim x, = Z, where T € B~1(0) and (A — 1)z,2 —z) < 0 forall z €

n—0o0

B’l(()), that ’iS, PB—l(O)if =1x.

Proof. For each n € N, let T, : C' — C be defined by T),x := Jy,_ x for each x € C.
By following the same argument in the proof of Theorem 4.3 [2], we know that
the condition (iii) of Theorem 3.1 holds. By Theorem 3.1, we get the conclusion
of Theorem 4.1. [ |
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