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Abstract. We study the first initial boundary value problem for the two-dimensional

non-autonomous g-Navier-Stokes equations containing infinite delay terms in an ar-

bitrary (bounded or unbounded) domain satisfying the Poincaré inequality. The exis-

tence and uniqueness of a weak solution to the problem is proved by using the Galerkin

method. Moreover, we also analyze the stationary problem and, under suitable addi-

tional conditions, we obtain global exponential decay of the solution of the evolutionary

problem to the stationary solution.
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1. Introduction

Let Ω be a (bounded or unbounded) domain in R
2 with boundary Γ . In this

paper we study the existence and long-time behavior of solutions to the following
two-dimensional non-autonomous g-Navier-Stokes equations with infinite delays:
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∂u

∂t
− ν∆u + (u · ∇)u +∇p = f(t) + F (t, ut) in (τ, T )×Ω,

∇ · (gu) = 0 in (τ, T )×Ω,

u = 0 on (τ, T )× Γ,

u(τ + s, x) = φ(s, x), s ∈ (−∞, 0], x ∈ Ω,

(1)

where u = u(x, t) = (u1, u2) is the unknown velocity vector, p = p(x, t) is the
unknown pressure, ν > 0 is the kinematic viscosity coefficient.

The g-Navier-Stokes equations is a variation of the standard Navier-Stokes
equations. More precisely, when g ≡ const we get the usual Navier-Stokes equa-
tions. The 2D g-Navier-Stokes equations arise in a natural way when we study
the standard 3D problem in thin domains. We refer the reader to [14] for a deriva-
tion of the 2D g-Navier-Stokes equations from the 3D Navier-Stokes equations
and a relationship between them. As mentioned in [10], good properties of the 2D
g-Navier-Stokes equations can initiate the study of the Navier-Stokes equations
on the thin three-dimensional domain Ωg = Ω × (0, g). Therefore, in the last
few years, the existence and asymptotic behavior of solutions to g-Navier-Stokes
equations have been studied extensively (see e.g. [1, 2, 8, 9, 10, 14]).

However, there are situations in which the model is better described if some
terms containing delays appear in the equations. These delays may appear, for
instance, when one wants to control the system (in a certain sense) by applying
a force which takes into account not only the present state, but the complete
history of the solutions. Therefore, in this paper we are interested in the case
in which terms containing infinite delays appear. It is noticed that equations of
Navier-Stokes type with delays in bounded domains has been studied in [3, 4, 5, 6]
for the case of finite delays and very recently in [11, 12] for the case of infinite
delays. One new feature in this paper is that we are able to prove the existence
and global stability of solutions of 2D g-Navier-Stokes equations in an infinite
delay case and domains that are not necessarily bounded but satisfy the Poincaré
inequality. The obtained results, in particular, extend and improve some recent
ones for Navier-Stokes equations with infinite delays in bounded domains [11]
and for g-Navier-Stokes equations without delays [1].

It is known that there are numerous technical difficulties in dealing with par-
tial differential equations with infinite delays in unbounded domains due to the
unboundedness of the delay involved, and because the Sobolev embeddings are
no longer compact. These introduce a major obstacle for proving the existence
of solutions. To overcome these difficulties, in this paper we try to combine
the techniques used for Navier-Stokes equations in unbounded domains (see e.g.
[15, 6]) and the techniques used in [11] in dealing with the infinite delays.

Let X be a Banach space. Given a function u : (−∞, T ) → X , for each
t < T we denote by ut the function defined on (−∞, 0] by the relation ut(s) =
u(t+ s), s ∈ (−∞, 0].

One possibility to deal with infinite delays, and which we will use here, is to
consider, for any γ > 0, the space



g-Navier-Stokes equations with infinite delays 59

Cγ(Hg) = {ϕ ∈ C((−∞, 0];Hg) : ∃ lim
s→−∞

eγsϕ(s) ∈ Hg},

which is a Banach space with the norm

||ϕ||γ := sup
s∈(−∞,0]

eγs|ϕ(s)|.

Here the space Hg is defined in Section 2 below and | · | denotes the norm in Hg.

In order to study problem (1), we make the following assumptions:

(H1) The domain Ω can be an arbitrary (bounded or unbounded) domain in R
2

without any regularity assumption on its boundary Γ , provided that the
Poincaré inequality holds on Ω: There exists λ1 > 0 such that

∫

Ω

φ2gdx ≤ 1

λ1

∫

Ω

|∇φ|2gdx ∀φ ∈ H1
0 (Ω);

(H2) g ∈ W 1,∞(Ω) such that

0 < m0≤g(x)≤M0 for all x = (x1, x2) ∈ Ω, and |∇g|∞ < m0λ
1/2
1 ;

(H3) f ∈ L2(τ, T ;V ′
g), where V

′
g is the dual of the space Vg defined in Section 2;

(H4) F (t, ut) : (τ, T )× Cγ(Hg) → L2(Ω, g) such that

(i) ∀ξ ∈ Cγ(Hg), the mapping (τ, T )∋t 7→ F (t, ξ) is measurable,

(ii) F (t, 0) = 0 for all t ∈ (τ, T ),

(iii) there exists a constant LF > 0 such that ∀t ∈ (τ, T ) and ξ, η ∈Cγ(Hg):

|F (t, ξ)− F (t, η)| ≤ LF ||ξ − η||γ .

Here the space L2(Ω, g) is defined in Section 2 below.

We now give an example of the delay term F (t, ut). Let F : (τ, T )×Cγ(Hg) →
L2(Ω, g) be defined as follows

F (t, ξ) =

∫ 0

−∞

G(t, s, ξ(s))ds ∀t ∈ (τ, T ), ξ ∈ Cγ(Hg),

where the function G : (τ, T ) × (−∞, 0) × R
2 → R

2 satisfies the following as-
sumptions:

1. G(t, s, 0) = 0 for all (t, s) ∈ (τ, T )× (−∞, 0);

2. There exists a function κ : (−∞, 0) → (0,∞) such that

‖G(t, s, u)−G(t, s, v)‖R2 ≤ κ(s)‖u− v‖R2

∀u, v ∈ R
2, ∀(t, s) ∈ (τ, T ∗)× (−∞, 0),
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and the function κ satisfies that κ(·)e−(γ+ε)· ∈ L2(−∞, 0) for some ε > 0.

Then the function F satisfies (H4). Indeed, (H4-i) and (H4-ii) are obviously
satisfied, for (H4-iii) we have

|F (t, ξ)− F (t, η)|2

=

∫

Ω

(

∫ 0

−∞

κ(s)‖ξ(s)(x) − η(s)(x)‖R2ds
)2

dx

≤
∫

Ω

(

∫ 0

−∞

κ2(s)e−2(γ+ε)sds
)(

∫ 0

−∞

e2(γ+ε)s‖ξ(s)(x) − η(s)(x)‖2
R2ds

)

dx

= ‖κ(·)e−(γ+ε)·‖2L2(−∞,0)

∫ 0

−∞

∫

Ω

e2(γ+ε)s‖ξ(s)(x) − η(s)(x)‖2
R2dxds

≤ ‖κ(·)e−(γ+ε)·‖2L2(−∞,0)

[

sup
s∈(−∞,0]

e2γs
∫

Ω

‖ξ(s)(x) − η(s)(x)‖2
R2dx

]

∫ 0

−∞

e2εsds

= ‖κ(·)e−(γ+ε)·‖2L2(−∞,0)||ξ − η||2γ
1

2ε

= L2
F ||ξ − η||2γ .

The rest of the paper is organized as follows. In the next section, we recall
some auxiliary results on function spaces and inequalities for the nonlinear terms,
which are related to the g-Navier-Stokes equations. In Section 3, we prove the
existence of a weak solution to problem (1) by using the Galerkin method. The
existence, uniqueness and global stability of a stationary solution are studied in
the last section under some additional conditions.

2. Preliminary results

Let L2(Ω, g) = (L2(Ω))2 and H1
0 (Ω, g) = (H1

0 (Ω))2 be endowed, respectively,
with the inner products

(u, v)g =

∫

Ω

u · vgdx, u, v ∈ L2(Ω, g),

and

((u, v))g =

∫

Ω

2
∑

j=1

∇uj · ∇vjgdx, u = (u1, u2), v = (v1, v2) ∈ H1
0 (Ω, g),

and norms |u|2 = (u, u)g, ‖u‖2 = ((u, u))g. Thanks to assumption (H2), the
norms | · | and ‖ ·‖ are equivalent to the usual ones in (L2(Ω))2 and in (H1

0 (Ω))2.

Let
V = {u ∈ (C∞

0 (Ω))2 : ∇ · (gu) = 0}.
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Denote byHg the closure of V in L2(Ω, g), and by Vg the closure of V inH1
0 (Ω, g).

It follows that Vg ⊂ Hg ≡ H ′
g ⊂ V ′

g , where the injections are dense and continu-
ous. We will use || · ||∗ for the norm in V ′

g , and 〈·, ·〉 for duality pairing between
Vg and V ′

g .

We now define the trilinear form b by

b(u, v, w) =

2
∑

i,j=1

∫

Ω

ui
∂vj
∂xi

wjgdx,

whenever the integrals make sense. It is easy to check that if u, v, w ∈ Vg, then

b(u, v, w) = −b(u,w, v).

Hence

b(u, v, v) = 0 and b(u, u, u− v)− b(v, v, u− v) = b(u− v, v, u− v) ∀u, v ∈ Vg.

Set A : Vg → V ′
g by 〈Au, v〉 = ((u, v))g , B : Vg × Vg → V ′

g by 〈B(u, v), w〉 =
b(u, v, w). Denote D(A) = {u ∈ Vg : Au ∈ Hg}, then D(A) = H2(Ω, g)∩ Vg and
Au = −Pg∆u ∀u ∈ D(A), where Pg is the ortho-projector from L2(Ω, g) onto
Hg.

Using the Hölder inequality, the Ladyzhenskaya inequality (when n = 2):

|u|L4 ≤ c|u|1/2|∇u|1/2 ∀u ∈ H1
0 (Ω),

and the interpolation inequalities, as in [15] one can prove the following

Lemma 2.1. If n = 2, then

|b(u, v, w)| ≤























c1|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2 ∀u, v, w ∈ Vg,

c2|u|1/2‖u‖1/2‖v‖|Aw|1/2|w|1/2 ∀u ∈ Vg, v ∈ D(A), w ∈ Hg,

c3|u|1/2|Au|1/2‖v‖|w| ∀u ∈ D(A), v ∈ Vg, w ∈ Hg,

c4|u|‖v‖|w|1/2|Aw|1/2 ∀u ∈ Hg, v ∈ Vg, w ∈ D(A),

(2)
where ci, i = 1, . . . , 4, are appropriate constants.

Lemma 2.2. [2] Let u ∈ L2(τ, T ;Vg), then the function Bu defined by

(Bu(t), v)g = b(u(t), u(t), v) ∀v ∈ Vg, a.e. t ∈ [τ, T ],

belongs to L2(τ, T ;V ′
g).

Lemma 2.3. [2] Let u ∈ L2(τ, T ;Vg), then the function Cu defined by

(Cu(t), v)g = ((
∇g
g

· ∇)u, v)g = b(
∇g
g
, u, v) ∀v ∈ Vg,
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belongs to L2(τ, T ;Hg), and hence also belongs to L2(τ, T ;V ′
g). Moreover,

|Cu(t)| ≤ |∇g|∞
m0

· |u(t)| for a.e. t ∈ (τ, T ),

and

‖Cu(t)‖∗ ≤ |∇g|∞
m0λ

1/2
1

· ‖u(t)‖ for a.e. t ∈ (τ, T ).

Since

−1

g
(∇ · g∇)u = −∆u− (

∇g
g

· ∇)u,

we have

(−∆u, v)g = ((u, v))g + ((
∇g
g

· ∇)u, v)g = (Au, v)g + (Cu, v)g ∀u, v ∈ Vg.

Denote by V(O) the same space as V but with an open set O instead of Ω, and
analogously define Vg(O) the closure of V(O) in H1

0 (O, g), Hg(O) the closure of
V(O) in L2(O, g), and D(A(O)) = H2(O, g) ∩ Vg(O).

3. Existence and uniqueness of weak solutions

Definition 3.1. A weak solution on the interval (τ, T ) of problem (1) is a func-
tion u ∈ C((−∞, T ];Hg)∩L2(τ, T ;Vg) with uτ = φ, and such that for all v ∈ Vg,

d

dt
(u(t), v)g+ν((u(t), v))g+b(u(t), u(t), v)+ν(Cu(t), v)g= 〈f(t), v〉+(F (t, ut), v)g,

(3)
in the sense of D′(τ, T ).

It is noticed that if u is a weak solution of (1), then u satisfies the following
energy equality

|u(t)|2 + 2ν

∫ t

s

‖u(r)‖2dr + 2ν

∫ t

s

b(
∇g
g
, u(r), u(r))dr

= |u(s)|2 + 2

∫ t

s

[

〈f(r), u(r)〉 + (F (r, ur), u(r))g

]

dr.

Theorem 3.2. Suppose that φ ∈ Cγ(Hg) is given and that 2γ > νλ1γ0, where

γ0 = 1− |∇g|∞

m0λ
1/2
1

> 0. Then, there exists a unique weak solution u of problem (1)

on the interval (τ, T ).

Proof. (i) Uniqueness. Let u, v be two weak solutions of problem (1) with the
same initial condition and set w = u − v. Then, using the energy equality, we
obtain
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|w(t)|2 + 2ν

∫ t

τ

||w(s)||2ds+ 2ν

∫ t

τ

b(
∇g
g
, w(s), w(s))ds

= − 2

∫ t

τ

b(w(s), v(s), w(s))ds + 2

∫ t

τ

(F (s, us)− F (s, vs), w(s))gds.

By Lemmas 2.1 and 2.3, we have

∣

∣

∣

∣

2

∫ t

τ

b(w(s), v(s), w(s))ds

∣

∣

∣

∣

≤ 2c1

∫ t

τ

|w(s)|‖w(s)‖‖v(s)‖ds

≤ ν

∫ t

τ

‖w(s)‖2ds+ c21
ν

∫ t

τ

‖v(s)‖2|w(s)|2ds

and
∣

∣

∣

∣

2ν

∫ t

τ

b(
∇g
g
, w(s), w(s))ds

∣

∣

∣

∣

≤ 2ν
|∇g|∞
m0λ

1/2
1

∫ t

τ

‖w(s)‖|w(s)|ds

≤ ν

∫ t

τ

‖w(s)‖2ds+ ν|∇g|2∞
m2

0λ1

∫ t

τ

|w(s)|2ds.

Because of (H4-iii), we have

∣

∣

∣

∣

2

∫ t

τ

(F (s, us)− F (s, vs), w(s))ds

∣

∣

∣

∣

≤ 2

∫ t

τ

|F (s, us)− F (s, vs)||w(s)|ds

≤ 2LF

∫ t

τ

‖ws‖γ |w(s)|ds.

Since w(s) = 0 ∀s ≤ τ, we have

‖ws‖γ = sup
θ≤0

eγθ|w(s+ θ)|

≤ sup
θ∈[τ−s,0]

eγθ|w(s+ θ)| for τ ≤ s ≤ T.

Therefore, one has

|w(t)|2 ≤ c21
ν

∫ t

τ

‖v(s)‖2|w(s)|2ds+
(

2LF +
ν|∇g|2∞
m2

0λ1

)

∫ t

τ

sup
r∈[τ,s]

|w(r)|2ds.

Hence we deduce that

sup
r∈[τ,t]

|w(r)|2 ≤
∫ t

τ

(

2LF +
ν|∇g|2∞
m2

0λ1
+
c21
ν
‖v(s)‖2

)

sup
r∈[τ,s]

|w(r)|2ds,

whence the Gronwall inequality completes the proof of uniqueness.

(ii) Existence. We split the proof of the existence into several steps.

Step 1. A Galerkin scheme. Since Vg is separable and V is dense in Vg, there exists
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a sequence of linearly independent elements {v1, v2, ...} ⊂ V which is total in Vg.
Denote Vm = span{v1, ..., vm} and consider the projector Pmu =

∑m
j=1(u, vj)vj .

Define also

um(t) =

m
∑

j=1

αm,j(t)vj ,

where the coefficients αm,j are required to satisfy the following system

d

dt
(um(t), vj)g + ν〈Aum(t), vj〉+ ν(Cum(t), vj)g + b(um(t), um(t), vj)

= 〈f(t), vj〉+ (F (t, umt ), vj)g ∀j = 1, ...,m,
(4)

and the initial condition um(τ + s) = Pmφ(s) for s ∈ (−∞, 0].

The above system of ordinary functional differential equations with infinite
delay in the unknown (αm,1(t), ..., αm,m(t)) fulfills the conditions for existence
and uniqueness of local solutions (see [7, Theorem 1.1, p. 36]), so the approximate
solutions um exist.

Step 2. A priori estimates. Multiplying (4) by αm,j(t) and summing in j, we
obtain

d

dt
(um(t), um(t))g + ν〈Aum(t), um(t)〉 + ν(Cum(t), um(t))g

+ b(um(t), um(t), um(t)) = 〈f(t), um(t)〉+ (F (t, umt ), um(t))g.
(5)

Because b(um(t), um(t), um(t)) = 0 and (Cum(t), um(t))g = b(
∇g
g
, um(t), um(t)),

from (5) we have

d

dt
(um(t), um(t))g + ν〈Aum(t), um(t)〉 + νb(

∇g
g
, um(t), um(t))

= 〈f(t), um(t)〉+ (F (t, umt ), um(t))g

and therefore,

d

dt
|um(t)|2 + 2ν‖um(t)‖2 = 2〈f(t), um(t)〉 + 2(F (t, umt ), um(t))g

− 2νb(
∇g
g
, um(t), um(t)). (6)

Using the Cauchy inequality and Lemma 2.3, we get

d

dt
|um(t)|2 + 2ν‖um(t)‖2 ≤ 2ǫν‖um(t)‖2 + ‖f(t)‖2∗

2ǫν
+ 2LF‖umt ‖2γ

+ 2ν
|∇g|∞
m0λ

1/2
1

‖um(t)‖2

and hence
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d

dt
|um(t)|2 + 2ν(γ0 − ǫ)‖um(t)‖2 ≤ 2

(‖f(t)‖2∗
4ǫν

+ LF ‖umt ‖2γ
)

, (7)

where γ0 = 1− |∇g|∞

m0λ
1/2
1

> 0 and ǫ > 0 is chosen such that γ0− ǫ > 0. Noting that

‖um(t)‖2 ≥ λ1|um(t)|2, we also have

d

dt
|um(t)|2+ νλ1(γ0 − ǫ)|um(t)|2+ ν(γ0 − ǫ)‖um(t)‖2 ≤ 2

(‖f(t)‖2∗
4ǫν

+ LF‖umt ‖2γ
)

.

Hence

|um(t)|2 + ν(γ0 − ǫ)

∫ t

τ

e−νλ1(γ0−ǫ)(t−s)‖um(s)‖2ds

≤ e−νλ1(γ0−ǫ)(t−s)|um(τ)|2 + 2

∫ t

τ

e−νλ1(γ0−ǫ)(t−s)
[‖f(s)‖2∗

4ǫν
+ LF‖ums ‖2γ

]

ds.

(8)
Furthermore,

‖umt ‖2γ ≤ max
{

sup
θ∈(−∞,τ−t]

e2γθ|φ(θ + t− τ)|2; sup
θ∈[τ−t,0]

[

e2γθ−νλ1(γ0−ǫ)(t−τ+θ)|u(τ)|2

+ 2e2γθ
∫ t+θ

τ

e−νλ1(γ0−ǫ)(t+θ−s)
(‖f(s)‖2∗

4ǫν
+ LF‖ums ‖2γ

)

ds
]}

.

On one hand,

sup
θ∈(−∞,τ−t]

eγθ|φ(θ + t− τ)| = sup
θ≤0

eγ(θ−(t−τ))|φ(θ)| = e−γ(t−τ)‖φ‖γ .

On the other hand, as we are assuming that 2γ > νλ1γ0,

sup
θ∈[τ−t,0]

e2γθ−νλ1(γ0−ǫ)(t−τ+θ)|u(τ)|2 ≤ e−νλ1(γ0−ǫ)(t−τ)|u(τ)|2

and

sup
θ∈[τ−t,0]

e2γθ
∫ t+θ

τ

e−νλ1(γ0−ǫ)(t+θ−s)
(‖f(s)‖2∗

4ǫν
+ LF ‖ums ‖2γ

)

ds

≤
∫ t+θ

τ

e−νλ1(γ0−ǫ)(t−s)
(‖f(s)‖2∗

4ǫν
+ LF‖ums ‖2γ

)

ds.

Combining these inequalites we deduce that

‖umt ‖2γ ≤ e−νλ1(γ0−ǫ)(t−τ)‖φ‖2γ + 2

∫ t

τ

e−νλ1(γ0−ǫ)(t−s)
(‖f(s)‖2∗

4ǫν
+ LF ‖ums ‖2γ

)

ds.

By the Gronwall lemma we have

‖umt ‖2γ ≤ e−[νλ1(γ0−ǫ)−2LF ](t−τ)‖φ‖2γ +
1

2ǫν

∫ t

τ

e−[νλ1(γ0−ǫ)−2LF ](t−s)‖f(s)‖2∗ds.
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Then we obtain the following estimates: for any R > 0 such that ‖φ‖γ ≤ R,
there exists a constant C1 depending on λ1, ν, LF , ǫ, f, R, τ , such that

‖umt ‖2γ ≤ C1 ∀t ∈ [τ, T ],m ≥ 1. (9)

In particular, this implies that

{um} is bounded in L∞(τ, T ;Hg). (10)

Integrating (7) from τ to T , we have

|um(T )|2+ 2ν(γ0 − ǫ)

∫ T

τ

‖um(s)‖2ds ≤ |u(τ)|2+ 2

∫ T

τ

[‖f(s)‖2∗
4ǫν

+ LF‖ums ‖2γ)
]

ds

≤ R2 + 2

∫ T

τ

[‖f(s)‖2∗
4ǫν

+ LFC1

]

ds,

thus, there exists a constant C2 depending on R,C1 such that

‖um‖2L2(τ,T ;Vg)
≤ C2 ∀m ≥ 1. (11)

This implies that {um} is bounded in L2(τ, T ;Vg).

Now, observe that (4) is equivalent to

dum

dt
= −νAum − νCum − PmB(um, um) + Pmf(t) + PmF (t, u

m
t ). (12)

Hence, we have
{(um)

′} is bounded in L2(τ, T ;V ′
g). (13)

So, there exist u ∈ L∞(τ, T ;Hg) ∩ L2(τ, T ;Vg) with u′ ∈ L2(τ, T ;V ′
g) and a

subsequence of {um}, relabelled the same, such that

• {um} converges weakly-star to u in L∞(τ, T ;Hg),

• {um} converges weakly to u in L2(τ, T ;Vg),

• {(um)
′} converges weakly to u′ in L2(τ, T ;V ′

g).

If Ω is bounded, then the Aubin-Lions lemma in [13, Chapter 1] allows us to
obtain a compactness result: a subsequence um converges to u in L2(τ, T ;Hg). If
Ω is unbounded, we will have a similar result but not in a straightforward way,
nor on the whole domain Ω. Actually, what holds in this case is the following:
For any bounded open set O ⊂ Ω there exists a subsequence (depending on O
which we relabel) satisfying

um|O → u|O in L2(τ, T ; (L2(O, g)). (14)

For the sake of clarity, we postpone the proof to Lemma 3.4 below. Then we can
pass to the limit in the term b(um, um, ·) thanks to the following lemma whose
proof is exactly the proof of Lemma 3.2 in [15, Chapter III].
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Lemma 3.3. If um converges to u in L2(τ, T ;Vg(O)) weakly and in L2(τ, T ;
Hg(O)) strongly, where O is an open bounded set, then for any vector function

w with components belonging to C1(O), we have

∫ T

τ

b(um(t), um(t), w(t))dt →
∫ T

τ

b(u(t), u(t), w(t))dt.

However, the estimates obtained above are not enough to pass to the limit in
the term F (t, umt ).

Step 3. Convergence in Cγ(Hg(O)) and existence of a weak solution.

We will prove that

umt → ut in Cγ(Hg(O)) ∀t ∈ (−∞, T ].

It is not difficult to check that this holds if we prove the following

Pmφ→ φ in Cγ(Hg(O)), (15)

um → u in C([τ, T ];Hg(O)). (16)

Step 3.1. Approximation in Cγ(Hg(O)) of the initial datum.

We now check the convergence claimed in (15). Indeed, if not, there would
exist ǫ > 0 and a subsequence, that we relabel the same, such that

eγθm |Pmφ(θm)− φ(θm)| > ǫ. (17)

One can assume that θm → −∞, otherwise if θm → θ, then Pmφ(θm) → φ(θ),
since |Pmφ(θm)−φ(θ| ≤ |Pmφ(θm)−Pmφ(θ)|+|Pmφ(θ)−φ(θ)| → 0 asm→ +∞.
But with θm → −∞ as m → +∞, if we denote x = lim

θ→−∞
eγθφ(θ), we obtain

that

eγθm |Pmφ(θm)− φ(θm)| = |Pm(eγθmφ(θm))− eγθmφ(θm)|
≤ |Pm(eγθmφ(θm))− Pmx|+ |Pmx− x|+ |x− eγθmφ(θm)| → 0.

This is a contradiction with (17), so (15) holds.

Step 3.2. Convergence of um to u in C([τ, T ];Hg(O)).

From the strong convergence of {um} to u in L2(τ, T ;Hg(O)), we deduce that

um(t) → u(t) in Hg(O) a.e. t ∈ (τ, T ).

Since

um(t)− um(s) =

∫ t

s

(um)
′

(r)dr in V ′
g(O) ∀s, t ∈ [τ, T ],

from (13) we have that {um} is equi-continuous on [τ, T ] with values in V ′
g(O).

By the compactness of the embeding Hg(O) ⊂ V ′
g(O), from (10) and the equi-

continuity in V ′
g(O), using the Arzela-Ascoli theorem we have
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um → u in C([τ, T ];V ′
g(O)). (18)

Again from (10) we obtain that for any sequence {tm} ⊂ [τ, T ] with tm → t,

um(tm)⇀ u(t) weakly in Hg(O), (19)

where we have used (18) in order to identify which is the weak limit.

Now, we are ready to prove (16) by a contradiction argument. If it would
not be so, then taking into account that u ∈ C([τ, T ];Hg(O)), there would exist
ǫ > 0, a value t0 ∈ [τ, T ] and subsequences (relabelled the same) {um} and
{tm} ⊂ [τ, T ] with lim

m→+∞
tm = t0 such that

|um(tm)− u(t0)| ≥ ǫ ∀ m. (20)

To prove that this is absurd, we will use an energy method. Observe that the
following energy inequality holds for all um:

1

2
|um(t)|2 + ν(1− |∇g|∞

m0λ
1/2
1

)

∫ t

s

‖um(r)‖2dr

≤
∫ t

s

〈f(r), um(r)〉dr + 1

2
|um(s)|2 + C3(t− s) ∀ s, t ∈ [τ, T ],

(21)

where C3 = D
2νλ1

and D corresponds to the upper bound

∫ t

s

|F (r, umr )|2dr ≤ D(t− s) ∀ τ ≤ s < t ≤ T.

On the other hand, from (10), (H4-ii), (H4-iii), there exists ξF ∈ L2(τ, T ;L2(O, g))
such that {F (t, um)} converges weakly to ξF in L2(τ, T ;L2(O, g)). Thus, we can
pass to the limit in equation (12) and deduce that u is a solution of

d

dt
(u(t), v)g+ν((u(t), v))g+ν(Cu(t), v)g+b(u(t), u(t), v) = 〈f(t), v〉+(ξF (t), v)g .

(22)
Therefore, u satisfies the energy equality

|u(t)|2 + 2ν

∫ t

s

‖u(r)‖2dr + 2ν

∫ t

s

(Cu(r), u(r))gdr

= |u(s)|2 + 2

∫ t

s

(

〈f(r), u(r)〉 + (ξF (r), u(r))g
)

dr ∀s, t ∈ [τ, T ],

and for the weak limit ξF we have the estimate
∫ t

s

|ξF |2dr ≤ lim inf
m→+∞

∫ t

s

|F (r, umr )|2dr ≤ D(t− s) ∀τ ≤ s ≤ t ≤ T.

So, we have that u also satisfies inequality (21) with the same constant C3. Now,
consider two functions Jm, J : [τ, T ] → R defined by
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Jm(t) =
1

2
|um(t)|2 −

∫ t

τ

〈f(r), um(r)〉dr − C3t,

J(t) =
1

2
|u(t)|2 −

∫ t

τ

〈f(r), u(r)〉dr − C3t.

It is clear that Jm and J are non-increasing and continuous functions. Moreover,
by the convergence of um to u a.e. in time with value in Hg(O), and weakly in
L2(τ, T ;Hg(O)), it holds that

Jm(t) → J(t) a.e. t ∈ [τ, T ]. (23)

Now we will prove that

um(tm) → u(t0) in Hg(O), (24)

which contradicts (20). First, recall from (19) that

um(tm)⇀ u(t0) weakly in Hg(O), (25)

so we have
|u(t0)| ≤ lim inf

m→+∞
|um(tm)|.

Therefore, if we show that

lim sup
m→+∞

|um(tm)| ≤ |u(t0)|, (26)

we will obtain that lim
m→+∞

|um(tm)| = |u(t0)|, which jointly with (25) imply (24).

Now, observe that the case t0 = τ follows directly from (21) with s = τ
and the definition of um(τ) = Pmφ(0). So, we may assume that t0 > τ . This is
important, since we will approach this value t0 from the left by a sequence {t′k},
i.e. lim

k→+∞
t′k ր t0. Since u(.) is continuous at t0, there is kǫ such that

|J(t′k)− J(t0)| <
ǫ

2
∀ k ≥ kǫ.

On the other hand, takingm ≥ m(kǫ) such that tm > t′kǫ
, as Jm is non-increasing

and for all t′k the convergence (24) holds, one has

Jm(tm)− J(t0) ≤ |Jm(t′kǫ
)− J(t′kǫ

)|+ |J(t′kǫ
)− J(t0)|,

and obviously, taking m ≤ m′(kǫ), it is possible to obtain |Jm(t′kǫ
)−J(t′kǫ

)| < ǫ

2
.

It can also be deduced from Step 2 that

∫ tm

τ

〈f(r), um(r)〉dr →
∫ t0

τ

〈f(r), u(r)〉dr,

so we conclude that (26) holds. Thus, (24) and finally (16) are also true, as we
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wanted to check. Hence, we have

F (·, um) → F (·, u) in L2(τ, T ;L2(O, g)). (27)

In what follows we will show that the convergence results above enable us to
conclude that u is a solution of problem (1). Let ψ be a continuously differentiable
function on [0, T ]. Multiplying (4) by ψ(t), we have

∫ T

τ

(dum(t)

dt
, vjψ(t)

)

g
dt+ ν

∫ T

τ

〈Aum(t), vjψ(t)〉dt

+ ν

∫ T

τ

(Cum(t), vjψ(t))gdt+

∫ T

τ

b(um(t), um(t), vjψ(t))dt

=

∫ T

τ

〈f(t), vjψ(t)〉dt +
∫ T

τ

(F (t, umt ), vjψ(t))gdt.

Taking a diagonal subsequence, denote again as um, that satisfies (14) and (27)
for a sequence of regular bounded open sets Oj ⊂ Ω that contain all supports
of functions vj of the basis. Passing to the limit, we have

∫ T

τ

(du(t)

dt
, vjψ(t)

)

g
dt+ ν

∫ T

τ

〈Au(t), vjψ(t)〉dt

+ ν

∫ T

τ

(Cu(t), vjψ(t))gdt+

∫ T

τ

b(u(t), u(t), vjψ(t))dt

=

∫ T

τ

〈f(t), vjψ(t)〉dt+
∫ T

τ

(F (t, ut), vjψ(t))gdt

holds for all vj in the basis and any continuously differentiable function ψ on
[0, T ]. Thus, we see that u satisfies (3) in the distribution sense.

At the end of this section, we prove the following lemma, which has been used
in the proof of Theorem 3.2.

Lemma 3.4. Under the assumptions of Theorem 3.2, the sequence um given in

(4) is precompact in the following sense: suppose a bounded open set O ⊂ Ω is

given, then there exists a subsequence depending on O, which we relabel, such

that

um|O → u|O in L2(τ, T ;L2(O, g)),
where u is the limit given in (14).

To prove Lemma 3.4, we will use the following

Lemma 3.5. [11, Theorem 2.2] Let Θ be a bounded open set of R and X ⊂ E
be Banach spaces with compact injection. Consider 1 ≤ r < q ≤ ∞. Suppose

F ⊂ Lr(Θ;E) satisfies
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(i) ∀ω ⊂⊂ Θ, sup
f∈F

‖τhf − f‖Lr(ω;E) → 0 when h → 0, where τhf is the trans-

lation

(τhf)(x) = f(x+ h),

(ii) F is bounded in Lq(Θ;E) ∩ L1(Θ;X).

Then F is precompact in Lr(Θ;E).

Proof of Lemma 3.4. Fix χ ∈ C1(R+) with χ(s) = 1 for s ∈ [0, 1] and χ(s) = 0
for s ≥ 4. Consider O as in the statement, let R > 0 be such that O ∈ B(0, R)
and denote O′ = Ω ∩ B(0, 2R), and um,R(x) = um(x)χ(|x|2/R2). Again the
compactness holds for X = H1

0 (O′, g) ⊂ E = L2(O′, g) with compact injection,
and we conserve the original um on Ω ∩B(0, R).

For the sake of clarity, we continue the proof directly with um instead of
um,R. Since condition (ii) in Lemma 3.5 is obviously satisfied by (10) and (11),
we concentrate on (i). Actually, we will prove that for the whole domain Ω the
following property holds:

sup
m∈N

‖τhum − um‖L2(0,T−h;L2(Ω,g)) → 0 when h→ 0.

Consider h > 0 arbitrarily small. From (4) we deduce for (t, t+ h) ⊂ (τ, T ) that

∫

Ω

(um(t+ h)− u(t))wjgdx+ ν

∫ t+h

t

∫

Ω

∇um(s) · ∇wjgdxds

+ ν

∫ t+h

t

b(
∇g
g
, um(s), wj)ds+

∫ t+h

t

b(um(s), um(s), wj)ds

=

∫ t+h

t

∫

Ω

f(s)wjgdxds+

∫ t+h

t

F (s, ums )wjgdxds.

Multiplying by γmj(t+ h)− γmj(t) and summing in j we obtain

∫

Ω

|um(t+ h)− u(t)|2gdx = −ν
∫ t+h

t

∫

Ω

∇um(s)(∇um(t+ h)−∇um(t))gdxds

−ν
∫ t+h

t

b
(∇g
g
, um(s), um(t+h)−um(t)

)

ds−
∫ t+h

t

b(um(s), um(s), um(t+h)−um(t))ds

+

∫ t+h

t

∫

Ω

f(s)·(um(t+h)−um(t))gdxds+

∫ t+h

t

∫

Ω

F (s, ums ).(um(t+h)−um(t))gds.

The right-hand side may be bounded by

ν|∇um(t+ h)−∇um(t)|
∫ t+h

t

|∇um(s)|ds

+ ν

∫ t+h

t

|∇g|∞
m0λ

1/2
1

‖um(s)‖|um(t+ h)− um(t)|ds
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+

∫ t+h

t

c|um(s)|‖um(s)‖‖um(t+ h)− um(t)‖ds

+

∫ t+h

t

‖f(s)‖∗‖um(t+ h)− um(t)‖ds+
∫ t+h

t

|F (s, ums )||um(t+ h)− um(t)|ds.

Thus, using (H2) and (10), we have proved that

∫

Ω

|um(t+ h)− um(t)|2gdx ≤ ‖um(t+ h)− um(t)‖
∫ t+h

t

Gm(s)ds,

where the function Gm : R → R is defined as:

Gm(s)=ν‖um(s)‖+ν |∇g|∞
m0λ1

‖um(s)‖+cK1‖um(s)‖+‖f(s)‖∗+λ−1/2
1 |F (s, um(s))|,

with K1 being a constant independent of m such that |um(s)| ≤ K1.

To finish the proof, we will estimate

‖τhum − um‖2L2(τ,T−h;L2(Ω,g)) =

∫ T−h

τ

∫

Ω

|τhum − um|2gdxdt

≤
∫ T−h

τ

‖um(t+ h)− um(t)‖
∫ t+h

t

Gm(s)dsdt.

For the right-hand side, the Fubini theorem yields, using the function

s =











0 if s ≤ 0,

s if 0 < s ≤ T − h,

T − h if s > T − h,

to

∫ T−h

τ

‖um(t+ h)− um(t)‖
∫ t+h

t

Gm(s)dsdt

≤
∫ T

τ

Gm(s)

∫ s

s−h

‖um(t+ h)− um(t)‖dtds ≤ 2(hK2)
1/2

∫ T

τ

Gm(s)ds,

where K2 is a constant independent of m such that
∫ T

τ ‖um(s)‖2ds ≤ K2, and
we have used the Young inequality and the facts that

0 ≤ s− s− h ≤ h for

∫ s

s−h

‖um(t+ h)− um(t)‖ dt,

and

∫ s

s−h

‖um(t+ h)− um(t)‖ dt ≤
(

∫ s

s−h

dt
)1/2(

∫ s

s−h

‖um(t+ h)− um(t)‖ dt
)1/2
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≤ 2h1/2
(

∫ T−h

τ

∫

Ω

|∇um|2gdxdt
)1/2

≤ 2h1/2K
1/2
2 .

To conclude, we observe that
∫ T

τ
Gm(s)ds is bounded. Indeed, one has

∫ T

τ

Gm(s)ds =

∫ T

τ

[(

ν + ν
|∇g|∞
m0λ1

+ cK1

)

‖um(s)‖+ ‖f(s)‖∗ + λ
−1/2
1 |F (s, ums |

]

ds

≤
(

ν + ν
|∇g|∞
m0λ1

+ cK1

)√
T − τ

(

∫ T

τ

‖um(s)‖2ds
)1/2

+
√
T − τ

(

∫ T

τ

‖f(s)‖2∗ds
)1/2

+
√
T − τλ

−1/2
1

(

∫ T

τ

|F (s, ums )|ds
)1/2

and assumptions (H3)-(H4) give the bound for the two last terms.

4. Existence and stability of stationary solutions

In this section, we will study the existence and stability of a stationary solution
to problem (1) under some additional conditions.

The restrictions we must impose to give sense to a stationary solution are
that f ∈ V ′

g and F are now autonomous, i.e. without dependence on time, and
we must clarify how F acts over a fixed element of Hg. This is done with a slight
abuse of notation in the following sense: We consider F (w) as F (w′), where
w′ ∈ Cγ(Hg) is the element that has the only value w for time t ≤ 0. Of course,
as an immediate consequence of the assumptions for F , it follows that

|F (x1)− F (x2)| ≤ LF |x1 − x2| ∀x1, x2 ∈ Hg.

So, consider the following equation

du

dt
+ νAu + νCu+B(u, u) = f + F (ut) ∀t ∈ (τ, T ). (28)

A stationary solution to problem (28) is an element u∗ ∈ Vg such that

ν((u∗, v))g + ν(Cu∗, v)g + b(u∗, u∗, v) = 〈f, v〉+ (F (u∗), v)g ∀v ∈ Vg. (29)

Theorem 4.1. Under the above assumptions and notations, if

ν(1− |∇g|∞
m0λ

1/2
1

) >
LF

λ1
,

then

(a) Problem (28) admits at least one stationary solution u∗. Moreover, any

such stationary solution satisfies the estimate
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[

ν(1− |∇g|∞
m0λ

1/2
1

)− LF

λ1

]

||u∗|| ≤ ‖f‖∗; (30)

(b) If the following condition holds

[

ν(1− |∇g|∞
m0λ

1/2
1

)− LF

λ1

]2

>
c1

λ
1/2
1

‖f‖∗, (31)

where c1 is the constant in Lemma 2.1, then the stationary solution of (28)
is unique.

Proof. (i) Existence. The estimate (30) can be obtained taking into account that
in particular any stationary solution u∗, if it exists, should verify

ν〈Au∗, u∗〉+ ν(Cu∗, u∗)g = 〈f, u∗〉+ (F (u∗), u∗)g

and therefore

ν||u∗||2 ≤ ‖f‖∗||u∗||+
LF

λ1
||u∗||2 + ν|∇g|∞

m0λ
1/2
1

||u∗||2.

For the existence, since Vg is separable there exists a sequence of linearly
independent elements v1, v2, ... which is total in Vg. For eachm ≥ 1, let us denote
Vm = span{v1, ..., vm} and we would like to define an approximate solution um

of (28) by

um =

m
∑

i=1

γmivi,

ν((um, vi))+ νb(
∇g
g
, um, vi)+b(u

m, um, vi)=〈f, vi〉+ (F (um), vi)g, i = 1, . . . ,m.

(32)
To prove the existence of um, we define operators Rm : Vm → Vm by

((Rmu, v)) = ν〈Au, v〉 + ν(Cu, v)g + b(u, u, v)− 〈f, v〉 − (F (u), v)g ∀u, v ∈ Vm.

For all u ∈ Vm,

((Rmu, u)) = ν〈Au, u〉+ ν(Cu, u)g − 〈f, u〉 − (F (u), u)g

≥ ν‖u‖2 − ‖f‖∗‖u‖ −
LF

λ1
‖u‖2 − ν|∇g|∞

m0λ
1/2
1

‖u‖2

=
(

ν(1− |∇g|∞
m0λ

1/2
1

)− LF

λ1

)

‖u‖2 − ‖f‖∗‖u‖.

Thus, if we take

β =
‖f‖∗

ν(1 − |∇g|∞

m0λ
1/2
1

)− LF

λ1

,
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we obtain ((Rmu, u)) ≥ 0 for all u ∈ Vm such that ‖u‖ = β. Consequently, by a
corollary of the Brouwer fixed point theorem (see [15, Chapter 2, Lemma 1.4]),
for each m ≥ 1 there exists um ∈ Vm such that Rm(um) = 0, with ‖um‖ ≤ β.
Replacing vi by u

m in (32) and taking into account that b(um, um, um) = 0, we
get

ν‖um(t)‖2 = 〈f, um〉+ (F (um), um)g − νb(
∇g
g
, um, um)

≤ ‖f‖∗‖um‖+ LF

λ1
‖um‖2 + ν

|∇g|∞
m0λ

1/2
1

‖um‖2.

Hence

[

ν(1 − |∇g|∞
m0λ

1/2
1

)− LF

λ1

]

||um|| ≤ ‖f‖∗. (33)

We extract from {um} a sequence {um′}, which converges weakly in Vg to some
limit u. If Ω is bounded, then the injection of Vg into Hg is compact. Thus, this
convergence holds also in the norm of Hg

um
′ → u weakly in Vg and strongly in Hg,

up to a subsequence. Passing to the limit in (32) with the sequence m′, we find
that u is a weak solution of (28). In the case that Ω is unbounded, the injection
of Vg into Hg is no longer compact. However, this difficulty can be overcome by
using arguments as in [15, p. 168-171].

(ii) Uniqueness. Suppose that u∗ and v∗ are two stationary solutions of (28).
Then

ν〈Au∗−Av∗, v〉+b(u∗, u∗, v)−b(v∗, v∗, v)+ν(Cu∗−Cv∗, v)g = (F (u∗)−F (v∗), v)g

for all v ∈ Vg. Taking v = u∗ − v∗, we have

ν〈Au∗−Av∗, u∗−v∗〉=b(v, v∗, v)−ν(Cu∗−Cv∗, u∗−v∗)g+(F (u∗)−F (v∗), u∗−v∗)g.

Hence

ν‖u∗ − v∗‖2 ≤ c1λ
−1/2
1 ‖u∗ − v∗‖2‖v∗‖+ LF

λ1
‖u∗ − v∗‖2 + ν|∇g|∞

m0λ
1/2
1

‖u∗ − v∗‖2

and therefore

[

ν(1 − |∇g|∞
m0λ

1/2
1

)− LF

λ1

]

‖u∗ − v∗‖2 ≤ c1λ
−1/2
1 ‖u∗ − v∗‖2‖v∗‖. (34)

From (30) and (34) we have



76 C. T. Anh, D. T. Quyet

[

ν(1 − |∇g|∞
m0λ

1/2
1

)− LF

λ1

]2

||u∗ − v∗||2 ≤ c1λ
−1/2
1 ‖f‖∗||u∗ − v∗||2, (35)

and the uniqueness follows from (31) and (35).

Theorem 4.2. Assume that the assumptions in Theorem 3.2 with f and F in-

dependent of time and (31) hold. Then there exists a value λ ∈ (0, 2γ) such that

for the solution u(t) of (1) with τ = 0 and φ ∈ Cγ(Hg), the following estimates

hold for all t ≥ 0

|u(t)− u∗|2 ≤ e−λt(|φ(0)− u∗|2 + LF

2γ − λ
‖φ− u∗‖2γ), (36)

‖ut−u∗‖γ ≤ max
{

e−2γt‖φ−u∗‖2γ , e−λt
(

|φ(0)−u∗|2+ LF

2γ − λ
‖φ−u∗‖2γ

)}

, (37)

where u∗ is the unique stationary solution of (28).

Proof. Denote w(t) = u(t)− u∗, one has

d

dt
(w(t), v)g + ν((w(t), v))g + ν(Cu(t), v)g − ν(Cu∗, v)g + b(u(t), u(t), v)

−b(u∗, u∗, v) = (F (ut)− F (u∗), v)g ∀t > 0, v ∈ Vg.

From the energy equality, (H4-iii), Lemmas 2.1 and 2.3, and introducing an
exponential term eλt with a positive value λ to be fixed later on, we obtain

d

dt
(eλt|w(t)|2)= eλt

[

λ|w(t)|2 − 2ν‖w(t)‖2 + 2ν(Cu∗ − Cu(t), w(t))g

+2(b(u∗, u∗, w(t))−b(u(t), u(t), w(t)))+2(F (ut)−F (u∗), w(t))g
]

≤ eλt
[

λ|w(t)|2 − 2ν‖w(t)‖2 + 2ν|∇g|∞
m0λ

1/2
1

‖w(t)‖2

+
2c1

λ
1/2
1

‖w(t)‖2‖u∗‖+ 2LF ‖wt‖γ |w(t)|
]

.

Hence, using the Cauchy inequality with δ > 0 to be fixed later on and (30), we
have

d

dt
(eλt|w(t)|2) ≤ eλt

LF

δ
‖wt‖2γ

+ eλt
[

λλ−1
1 − 2ν +

δLF

λ1
+

2c1‖f‖∗
λ
1/2
1

(

ν(1 − |∇g|∞

m0λ
1/2
1

)− LF

λ1

)

+
2ν|∇g|∞
m0λ

1/2
1

]

‖w(t)‖2.

Therefore, integrating from 0 to t, we have

eλt|w(t)|2 ≤ |w(0)|2 + LF

δ

∫ t

0

eλs‖ws‖2γds
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+
[

λλ−1
1 − 2ν +

δLF

λ1
+

2c1‖f‖∗
λ
1/2
1

(

ν(1− ν|∇g|∞

m0λ
1/2
1

)− LF

λ1

)

+
2ν|∇g|∞
m0λ

1/2
1

]

∫ t

0

eλs‖w(s)‖2ds.

(38)

In order to control the term
∫ t

0
eλs‖ws‖2γds, we proceed as follows

∫ t

0

eλs sup
θ≤0

e2γθ|w(s+ θ)|2ds

=

∫ t

0

eλs max{ sup
θ≤−s

e2γθ|w(s + θ)|2, sup
θ∈[−s,0]

e2γθ|w(s+ θ)|2}ds

=

∫ t

0

max{e−(2γ−λ)s‖φ− u∗‖2γ , sup
θ∈[−s,0]

e(2γ−λ)θeλ(s+θ)|w(s+ θ)|2}ds.

So, if λ < 2γ, using the above equality in (38), we obtain

eλt|w(t)|2 ≤ |w(0)|2 + LF

δ
‖φ− u∗‖2γ

∫ t

0

e(λ−2γ)sds+
[

λλ−1
1 − 2ν +

δLF

λ1

+
2c1‖f‖∗

λ
1/2
1

(

ν(1 − |∇g|∞

m0λ
1/2
1

)− LF

λ1

) +
2ν|∇g|∞
m0λ

1/2
1

+
LF

λ1δ

]

t
∫

0

max
r∈[0,s]

eλr‖w(r)‖2ds.

Observe that the choice of δ = 1 makes that δλ−1
1 LF + LF (λ1δ)

−1 is minimal
and the coefficient of the last integral becomes

λλ−1
1 − 2ν +

2LF

λ1
+

2c1‖f‖∗
λ
1/2
1

[

ν(1− |∇g|∞

m0λ
1/2
1

)− LF

λ1

] +
2ν|∇g|∞
m0λ

1/2
1

. (39)

Using (31), we have

−2ν +
2LF

λ1
+

2c1‖f‖∗
λ
1/2
1

[

ν(1 − |∇g|∞

m0λ
1/2
1

)− LF

λ1

] +
2ν|∇g|∞
m0λ

1/2
1

< 0.

Thus, we can choose λ ∈ (0, 2γ) such that (39) is negative. So, we can deduce
that

eλt|w(t)|2 ≤ |w(0)|2 + LF

2γ − λ
(1− e(λ−2γ)t)‖φ− u∗‖2γ ,

whence (36) follows.

Finally, (37) can be deduced as follows

‖wt‖2γ = sup
θ≤0

e2γθ|w(t+ θ)|2

= max
{

sup
θ∈(−∞,−t]

e2γθ|w(t+ θ)|2, sup
θ∈[−t,0])

e2γθ|w(t + θ)|2
}
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= max
{

e−2γt‖φ− u∗‖2γ , sup
θ∈[−t,0]

e2γθ|w(t + θ)|2
}

and the second term can be estimated using (36) and the fact that e(2γ−λ)θ ≤ 1
when θ ≤ 0.
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