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Abstract. This paper investigates a class of IRK-type methods for solving first-order

stiff initial-value problems (IVPs). The IRK-type methods are constructed by using

coefficients of s-stage collocation Gauss-Legendre IRK methods and other 2s-stage col-

location IRK methods. The collocation points used in the 2s-stage methods are chosen

such that at nth integration step, their stage values can be used as the stage values of

the associated collocation Gauss-Legendre IRK methods for (n+2)th integration step.

By this way we obtain the methods in which the integration processes can be proceeded

two-step-by-two-step. The resulting IRK-type methods are called two-step-by-two-step

IRK methods based on Gauss-Legendre collocation points (TBTIRKG methods). Sta-

bility considerations show that these TBTIRKG methods can be A-stable or A(α)-

stable which can be applied to stiff IVPs with a fewer number of implicit relations

that are to be solved in the integration process when compared with the traditional

Gauss-Legendre IRK methods. The stability investigation results for TBTIRKG meth-

ods were applied in considerations of the asymptotic stability of a class of PC methods

based on the TBTIRKG methods.
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1. Introduction

We consider numerical methods for the stiff initial-value problems (IVPs) for the
system of first-order ordinary differential equations (ODEs)

y′(t) = f(t,y(t)), y(t0) = y0, t0 6 t 6 T, (1)

where t denotes time values that lie on some real interval [t0, T ] ⊂ [0,+∞], y :
[t0, T ] → Rd, f : [t0, T ]× Rd → Rd, y0 ∈ Rd. Among various numerical methods
proposed so far, the most efficient methods for solving this stiff IVP (1) are the
IRK methods. In the literature, A-stable IRK methods of various orders can be
found in e.g., [1, 2, 4, 6]. In this paper, we investigate a particular class of IRK-
type methods with the set of coefficients taken from s-stage collocation Gauss-
Legendre IRK methods based on the abscissas c1, . . . , cs and 2s-stage collocation
IRK methods based on the abscissas c1, . . . , cs, 1+c1, . . . , 1+cs. The stage values
of the 2s-stage collocation IRK methods evaluated at tn + (1 + c1)h, . . . , tn +
(1+ cs)h from nth integration step can be used as the stage values of the s-stage
collocation Gauss-Legendre IRK methods for (n+2)th integration step, so that
we can apply a two-step-by-two-step (TBT) integration strategy (the integration
is proceeded two-step-by-two-step). In this way we obtain IRK-type methods
which will be termed two-step-by-two-step IRK methods based on Gauss-Legendre

collocation points (TBTIRKG methods). Thus, we have achieved the new IRK-
type methods with a fast integration process. Stability investigations reveal that
these new TBTIRKG methods are suitable for stiff IVPs.

Section 2 investigates TBTIRKG methods with respect to order of accu-
racy and stability properties. Applying the stability investigation results for
TBTIRKG methods, we consider the asymptotic stability of the TBTPIRKG
methods (a class of PC methods based on TBTIRKG methods considered in
[10]) in Section 3.

2. TBTIRKG methods

Let c = (c1, . . . , cs)
T and c̃ = (c̃1, . . . , c̃s, c̃s+1, . . . , c̃2s)

T := (c1, . . . , cs, 1 +
c1, . . . , 1 + cs)

T , c is the s-dimentional Gauss-Legendre collocation vector. Con-
sider two collocation IRK methods defined by the following Butcher tableaux
(see e.g., [7]):

c̃ A

b̃T
,

c Â

b̂T
.

Notice that here, A = (aij) is a 2s× 2s matrix and b̂ = (b̂i) is a s-dimentional
vector. We now consider an IRK-type method which is defined as:

Yn,i = un + h

2s
∑

j=1

aijf(tn + c̃jh,Yn,j), i = 1, . . . , 2s, (2a)
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un+2 = un + h
s

∑

j=1

b̂j [f(tn + c̃jh,Yn,j) + f(tn + c̃s+jh,Yn,s+j)]. (2b)

Here in (2), un ≈ y(tn), un+2 ≈ y(tn+2) and h is the stepsize. Furthermore, the
vector Yn = (YT

n,1, . . . ,Y
T
n,2s)

T denotes the stage vector representing numerical

approximations to the exact solution vector [(y(tn+c̃1h))
T , . . . , (y(tn+c̃2sh))

T ]T

at nth step. For a convenient presentation, we define the vector

b = (b1, . . . , bs, bs+1, . . . , b2s)
T := (b̂1, . . . , b̂s, b̂1, . . . , b̂s)

T .

Using the new vector b, the method (2) can be presented in a very compact
form:

Yn,i = un + h

2s
∑

j=1

aijf(tn + c̃jh,Yn,j), i = 1, . . . , 2s, (3a)

un+2 = un + h

2s
∑

j=1

bjf(tn + c̃jh,Yn,j). (3b)

The method (3) can be conveniently presented by the Butcher tableau (see e.g.,
[7])

c̃ A

un+2 bT

and will be called two-step-by-two-step IRK methods based on Gauss-Legendre

collocation points (TBTIRKG methods). The matrix A and the vector b̂ are
defined by the simplifying conditions C(2s) (based on vector c̃) and B(s) (based
on vector c), respectively (see e.g., [3, 13, 14]). They can be explicitly expressed
in terms of the collocation vectors c and c̃ as follows (see e.g., [7, 11])

A = PR−1, b̂T = ĝT R̂−1, (4)

where

P =
(

pij
)

=
( c̃ji
j

)

, R =
(

rij
)

=
(

c̃j−1
i

)

, i, j = 1, . . . , 2s.

R̂ =
(

r̂ij
)

=
(

cj−1
i

)

, ĝ =
(

ĝi
)

=
(1

i

)

, i, j = 1, . . . , s.

2.1. Orders of accuracy

Definition 2.1. Suppose that un = y(tn), then the TBTIRKG method (3)
is said to have the step point order p if y(tn+2) − un+2 = O(hp+1) and the
stage order q = min{p, q1} if in addition, y(tn + c̃ih) − Yn,i = O(hq1+1), for
i = 1, . . . , 2s.

The Definition 2.1 above is more general than the one given in [10]. For the step
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point order, and stage order of the TBTIRKG method (3), we have the following
theorem:

Theorem 2.2. If the function f is Lipschitz continuous, then the TBTIRKG

method (3) has the step point order p = 2s and the stage order q = 2s.

Proof. The collocation principle applied to the 2s-stage collocation IRK methods
defined by (c̃, A, b̃) gives the following local order relation

y(tn + c̃ih)−Yn,i = O(h2s+1), i = 1, . . . , 2s. (5)

The step point order p = 2s can be proved by using Definition 2.1, the order
relation (5) and the step point order 2s of Gauss-Legender IRK method defined

by (c, Â, b̂). Thus, we suppose that un = y(tn) and consider

y(tn+2)−un+2= y(tn+2)− y(tn)− h

2s
∑

j=1

bjf(tn + c̃jh,Yn,j)

= y(tn+1)− y(tn)− h

s
∑

j=1

b̂jf(tn + cjh,y(tn + cjh))

+ h

s
∑

j=1

b̂j [f(tn + cjh,y(tn + cjh))− f(tn + cjh,Yn,j)]

+ y(tn+2)− y(tn+1)− h

s
∑

j=1

b̂jf(tn+1 + cjh,y(tn+1 + cjh))

+ h

s
∑

j=1

b̂j[f(tn+1+ cjh,y(tn+1+ cjh))−f(tn+1 + cjh,Yn+1,j)]

= O(h2s+1) +O(h2s+2) +O(h2s+1) +O(h2s+2).

From here, we obtain

y(tn+2)− un+2 = O(h2s+1). (6)

By Definition 2.1, the order relations (5) and (6) prove Theorem 2.2.

2.2. Linear stability

The linear stability of the TBTIRKG method (3) is investigated by using the
model test equation y′(t) = λy(t), where λ is assumed to be lying in the left
half-plane. For the model test equation, the method (3) has the form

Yn = eun + zAYn, un+2 = un + zbTYn, (7)

where z := hλ, Yn = (Yn,1, . . . , Yn,2s)
T and e = (1, . . . , 1)T are 2s-dimensional

vectors. The relation (7) leads us to the recursion
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un+2 = [1 + zbT (I − zA)−1e]un = R(z)un. (8)

The function R(z) = 1 + zbT (I − zA)−1e defined by (8) which determines the
stability of the TBTIRKG method, will be called the stability function. Similarly
to the case of IRK methods, we can find an alternative expression for the stability
function R(z) (cf. e.g., [12]).

Lemma 2.3. The stability function R(z) of TBTIRKG method (3) is given by

R(z) =
det[I − z(A− ebT )]

det[I − zA]
. (9)

Proof. This lemma can be proved by applying the approach used in e.g., [19, p.
200] for the case of (step-by-step) IRK methods. First, we write the equations
(7) in the following form





















1− za1,1 −za1,2 · · · za1,2s 0
−za2,1 1− za2,2 . . . −za2,2s 0

· · · · · · ·
· · · · · · ·
· · · · · · ·

−za2s,1 −za2s,2 . . . 1− za2s,2s 0
−zb1 −zb2 . . . −zb2s 1









































Yn,1

Yn,2

·
·
·

Yn,2s

un+2





















=





















un

un

·
·
·
un

un





















.

The solution for un+2 can be defined by Cramer’s rule as un+2 = N/D, where

N = det





















1− za1,1 −za1,2 · · · za1,2s un

−za2,1 1− za2,2 . . . −za2,2s un

· · · · · · ·
· · · · · · ·
· · · · · · ·

−za2s,1 −za2s,2 . . . 1− za2s,2s un

−zb1 −zb2 . . . −zb2s un





















,

D = det





















1− za1,1 −za1,2 · · · za1,2s 0
−za2,1 1− za2,2 . . . −za2,2s 0

· · · · · · ·
· · · · · · ·
· · · · · · ·

−za2s,1 −za2s,2 . . . 1− za2s,2s 0
−zb1 −zb2 . . . −zb2s 1





















.

Subtracting the last row of N from each of the upper rows leaves N unaltered,
whence
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N = det





















1− za1,1 + zb1 −za1,2 + zb2 · · · za1,2s + zb2s 0
−za2,1 + zb1 1− za2,2 + zb2 . . . −za2,2s + zb2s 0

· · · · · · ·
· · · · · · ·
· · · · · · ·

−za2s,1 + zb1 −za2s,2 + zb2 . . . 1− za2s,2s + zb2s 0
−zb1 −zb2 . . . −zb2s un





















= un det[I − z(A− ebT )].

Clearly that D = det[I − zA], and we obtain un+2 = N/D = R(z)un, where
R(z) is defined by (9) in Lemma 2.3.

The stability region denoted by S of the TBTIRKG method (3) is defined as

S :=
{

z ∈ C : |R(z)| 6 1,Re(z) 6 0
}

.

Definition 2.4. Let C− :=
{

z ∈ C : Re(z) 6 0
}

. If S = C−, then the TBTIRKG
method (3) is said to be A-stable.

A-stability is a highly desirable property for numerical methods to possess when
solving stiff IVPs. However, this property is not always possible to obtain because
other qualities such as efficiency, robustness and reliability are also necessary and
these can be in conflict with A-stability (cf. [3]).

There exist numerical methods, which are not A-stable, but also are very
useful for stiff IVPs, that is A(α)-stable methods.

Definition 2.5. Let α denote an angle satisfying 0o < α 6 90o. The TBTIRKG
method (3) is said to be A(α)-stable if its stability region S contains the infinite
wedge W(α) :=

{

z ∈ C : −α < π − arg(z) < α
}

.

The notion of A(α)-stability was firstly introduced in [21]. It also was considered
in e.g., [3, 20]). Definition 2.4 and Definition 2.5 show that A(90o)-stability
implies A-stability.

Theorem 2.6. The TBTIRKG method (3) is A(α)-stable if and only if (i) all

poles of R(z) lie outside the wedge W(α) and (ii) R(z) is bounded by 1 on the

sides (boundaries) of the wedge W(α).

Proof. Necessity. (i) follows from the fact that if z∗ ∈ W(α) is a pole of R(z)
then limz→z∗ |R(z)| = ∞, hence |R(z)| > 1 for some z close enough to z∗. (ii)
follows from the fact that if there exists z = x + iy on the sides of the wedge
W(α) such that |R(z)| > 1, then |R(zǫ)| > 1 for some zǫ = −ǫ+ x+ iy ∈ W(α).
Sufficiency. (i) and (ii) imply that R(z) is analytic in the wedge W(α) and
bounded by 1 on the sides of the wedge W(α) so that by the maximum modulus
principle, |R(z)| 6 1 on the wedge W(α) and the TBTIRKG method (3) is A(α)-
stable.
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Lemma 2.3 indicates that the stability function R(z) of the TBTIRKGmethod
(3) is a rational function (the ratio of two polynomials) with the denominator
polynomial det[I − zA] (see (9)). It can be seen that the eigenvalues of the
matrix A are the poles of the stability function R(z). Thus we have the following
corollary

Corollary 2.7. The TBTIRKG method (3) is A(α)-stable if and only if (i) all

the eigenvalues of the matrix A lie outside the wedge W(α) and (ii) R(z) is

bounded by 1 on the sides of the wedge W(α).

Numerical computations of the spectrum of the matricesA defining the TBTIRKG
methods and numerical searches for their stability functions R(z) along the sides
of the wedges W(α) give the following results:

• For s = 2, 3, all the eigenvalues of A are lying outside the wedge W(90o) and
the stability functions R(z) are bounded by 1 on its sides;

• For s = 4, all the eigenvalues of A are lying outside the wedge W(89.99o) and
the stability function R(z) is bounded by 1 on its sides;

• For s = 5, all the eigenvalues of A are lying outside the wedge W(87.79o) and
the stability function R(z) is bounded by 1 on its sides.

Thus, we have achieved 4th-order and 6th-order TBTIRKG methods which are
A(90o)-stable (A-stable); 8th-order TBTIRKGmethod which is A(89.99o)-stable
(almost A-stable) and 10th-order TBTIRKG method which is A(87.79o)-stable.

We summarize the main characteristics of the achieved TBTIRKG methods
in the Table 1, in which p denotes the step point order, q denotes the stage order
and s∗ denotes the number of implicit stages. From the Table 1, we see that for

Table 1 Summary of the main characteristics for various TBTIRKG methods

Methods p q s∗ Stability

TBTIRKG4 4 4 4 A-stable

Gauss-Legendre IRK4 4 2 2 A-stable

TBTIRKG6 6 6 6 A-stable

Gauss-Legendre IRK6 6 3 3 A-stable

TBTIRKG8 8 8 8 A(89.99o)-stable

Gauss-Legendre IRK8 8 4 4 A-stable

TBTIRKG10 10 10 10 A(87.79o)-stable

Gauss-Legendre IRK10 10 5 5 A-stable

a given order of accuracy p with competitive stability property, the TBTIRKG
methods have the stage order q two times larger than the stage order of the
Gauss-Legender IRK methods. We observe that the TBTIRKG methods also
have the stage number s∗ larger than that of Gauss-Legendre IRK methods. The
larger s∗ is a disadvantage of the TBTIRKG methods. This disadvantage will be
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not important on parallel machines when a suitable parallel iteration approach
(functional iteration for nonstiff problems, diagonally implicit iteration for stiff
problems) is applied (cf. e.g., [8, 9, 10, 11, 15, 16, 17]).

Applying to TBTIRKG methods defined by (3) a parallel PC iteration scheme,
we obtain TBTPIRKGmethods, which have been investigated in [10]. The inves-
tigations in [10] show that the TBTPIRKG methods are very efficient numerical
integration methods for nonstiff IVPs. The stability consideration results for the
TBTIRKG methods allow us to investigate the asymptotic stability regions of
the TBTPIRKG methods as an application.

2.3. Numerical illustrations

In this section, we illustrate the efficiency of the new investigated methods. For
this purpose, we apply TBTIRKGmethods and Gauss-Legendre IRK methods to
the numerical solution of two test stiff IVPs taken from ODE literature. These
two IVPs possess exact solutions in closed form. Initial conditions are taken
from the exact solutions. The first test stiff IVP is taken from [20] and has the
following form

dy1
dt

= −αy2 + (1 + α) cos(t),
dy2
dt

= αy1 − (1 + α) sin(t), 0 6 t 6 100, (10)

with α = 10 and exact solution y1 = sin(t) and y2 = cos(t) for all values of the
parameter α. The second test stiff IVP is taken from [18] and has the following
form

dy1
dt

= −(2 + ǫ−1)y1 + ǫ−1(y2)
2,

dy2
dt

= y1 − y2(1 + y2), 0 6 t 6 1, (11)

with ǫ = 10−8. The exact solution of this IVP is given by y1 = exp(−2t) and
y2 = exp(−t) for all values of the parameter ǫ.

We confine on the consideration of TBTIRKG and Gauss-Legendre IRK methods
of order 4 and order 6 respectively denoted by TBTIRKG4, IRK4, TBTIRKG6
and IRK6.

The absolute error obtained at the end point of the integration interval is pre-
sented in the form 10−NCD so that NCD indicates the accuracy and may be
interpreted as the average number of correct decimal digits. The values of NCD
are plotted as a function of the stepsize h. The numerical results presented in
Figure 1 and Figure 2 show that the TBTIRKG methods clearly are suitable for
stiff IVPs. These numerical results also show that the TBTIRKG methods are
superior to the original Gauss-Legendre IRK methods.

3. Asymptotic stability of TBTPIRKG methods

In this section, we investigate the asymptotic stability region of the TBTPIRKG
methods based on the TBTIRKG methods of the form (3) considered in [10],
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Fig. 1 Numerical results for the problem (10)
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Fig. 2 Numerical results for the problem (11)

which are of the following form

Y
(0)
n,i = yn + h

2s
∑

j=1

vijf(tn−2 + c̃jh,Y
(m)
n−2,j), i = 1, . . . , 2s, (12a)
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Y
(k)
n,i = yn + h

2s
∑

j=1

aijf(tn + c̃jh,Y
(k−1)
n,j ), i = 1, . . . , 2s, k = 1, . . . ,m, (12b)

yn+2 = yn + h

2s
∑

j=1

bjf(tn + c̃jh,Y
(m)
n,j ). (12c)

It is evident that if the iteration process defined by (12b) converges, then Y
(m)
n,i

converges to Yn,i as m tends to ∞. The convergence conditions for (12b) as
defined in [10, Section 3.2] are given by

|z| <
1

ρ(A)
or h <

1

ρ(∂f/∂y)ρ(A)
. (13)

The values 1/ρ(A) are called convergence boundaries of the TBTPIRKG meth-
ods. The convergence region Sconv is defined as

Sconv := {z : z ∈ C, |z| < 1/ρ(A)}. (14)

The convergence boundaries 1/ρ(A) of our four TBTPIRKG methods are listed
in Table 2.

Table 2 Convergence boundaries for various TBTPIRKG methods

TBTPIRKG method of order p p = 4 p = 6 p = 8 p = 10

Convergence boundary 1/ρ(A) 2.506 3.443 4.392 5.345

Asymptotic stability regions of TBTPIRKG methods is the stability regions
when the number m in (12b) tends to ∞. For defining the asymptotic stability
regions, first, we consider the stability regions for a fixed number m by applying
the methods (12) to the model test equation y′(t) = λy(t) and obtain (cf. [10,
Section 3.3])

(

Y
(m)
n

yn+2

)

= Mm(z)

(

Y
(m)
n−2

yn

)

, (15a)

where Mm(z) is the (2s+ 1)× (2s+ 1) matrix defined by

Mm(z) =

(

zm+1AmV [I + zA+ · · ·+ (zA)m]e
zm+2bTAmV 1 + zbT [I + zA+ · · ·+ (zA)m]e

)

. (15b)

The matrix Mm(z) in (15) which determines the stability of the TBTPIRKG
methods, will be called the amplification matrix, its spectral radius ρ

(

Mm(z)
)

the stability function. For a given number of iterations m, the stability region
denoted by Sstab(m) of the TBTPIRKG methods is defined as

Sstab(m) :=
{

z : ρ
(

Mm(z)
)

< 1,Re(z) 6 0
}

.
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The asymptotic stability regions denoted by Sstab(∞) is estimated by the fol-
lowing theorem:

Theorem 3.1. The asymptotic stability region Sstab(∞) of the TBTPIRKG

methods (12) for m → ∞ contains the intersection in the left-half plane of the

stability region of the TBTIRKG methods defined by (3) and the convergence

region defined by (14) of the TBTPIRKG methods (12).

Proof. From (15b), we see that if z satisfies the convergence condition defined by
(13), then as m tends to ∞, Mm(z) converges to a matrix denoted by M∞(z),
which is given by

M∞(z) =

(

O2s×2s (I − zA)−1e

O2s×2s 1 + zbT (I − zA)−1e

)

,

where O2s×2s is the 2s× 2s matrix with zero entries. Thus, ρ(Mm(z)) converges
to ρ(M∞(z)) as m tends to ∞. Since

ρ(M∞(z)) = |R(z)| = |1 + zbT (I − zA)−1e|

(see Section 2.2.), the stability function of the TBTPIRKG methods (12) con-
verges to absolute value of the stability function of the TBTIRKG methods
defined by (3) as m tends to ∞. Hence, the asymptotic stability region of the
TBTPIRKG methods (12) as m tends to ∞, Sstab(∞), contains the intersection
on the left-half plane of the stability region of the TBTIRKG methods defined
by (3) and convergence region defined by (14) of the TBTPIRKG methods (12).
Theorem 3.1 is then completely proved.

4. Concluding remarks

In this paper, we considered a class of new methods, that is the two-step-by-
two-step IRK methods based on Gauss-Legendre collocation points (TBTIRKG
methods). We have showed that the investigated methods have a good stabil-
ity property and are suitable for solving stiff IVPs. We have also estimated
the asymptotic stability regions of a class of PC methods based on these new
TBTIRKG methods (i.e. TBTPIRKG methods considered in [10]).

In forthcoming papers, we will pursue investigations of these TBTIRKG meth-
ods with respect to parallel diagonally implicit iterations of TBTIRKG methods
for stiff IVPs.
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