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Abstract. A discrete model of nonautonomous competitive Lotka-Volterra type with

infinite delay for d species is considered. It is shown that if coefficients satisfy some

certain inequalities, then any solution with positive components at some point will

have all of its last d − 1 components tending to zero, while the first one will approach

to a positive solution of a logistic equation.

2000 Mathematics Subject Classification: 34A12, 39A10, 34C11, 34C27, 92B05.

Key words: Extinction, discrete model of Lotka-Volterra type, logistic equation.

1. Introduction

Consider the following discrete competitive Lotka - Volterra model

ui(n+1) = ui(n) exp[ai(n)−
d

∑

j=1

bij(n)

n
∑

s=−∞

Hij(n− s)uj(s)], i = 1, ..., d, (1)

where ui(n) is the density of population of species i at nth time step (year, month,
day), ai(n) represents the intrinsic growth rate of species i at nth time step, and
bij(n) reflects the interspecific or intraspecific competitive intensity of species j
to species i at nth time step. It is assumed that ai(n) and bij(n) (i, j = 1, ..., d)
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are defined and bounded on Z, Hij(n) > 0,
+∞
∑

n=0
Hij(n) = 1. Many authors (see

for e.g. [1, 7]) have argued that the discrete time models governed by difference
equations are more appropriate than the continuous ones when the populations
have nonoverlapping generations. Discrete time models can also provide efficient
computational models of continuous models for numerical simulations (see [4] -
[16]). System (1) is a counterpart of continuous Lotka - Volterra model. In [2]
the authors considered the following continuous Lotka - Volterra model

v′i(t) = vi(t)[ri(t) + pi(t) −
d

∑

j=1

qij(t)vj(t)], i = 1, ..., d, (2)

where qij(t) is continuous and bounded above and below by positive constants,

ri(t) is continuous, T -periodic and r̄i = 1
T

T
∫

0

ri(t)dt > 0, pi(t) is continuous and

|pi(t)| 6 αie
−βit, where αi and βi are positive constants. In [2], Ahmad has

shown that if for each i = 2, ..., d, there exist numbers λi1, ..., λii−1 > 0,
λi1 + ... + λii−1 > 0 such that

λi1r̄i1 + ... + λii−1r̄i−1

λi1q1j(t) + ... + λii−1qi−1j(t)
>

r̄i

qij(t)
, j = 1, ..., i (3)

for t > t0, then vi(t) → 0 exponentially for i = 2, ..., d and v1(t) − V ∗(t) → 0
as t → +∞, where (v1(t), ..., vd(t)) is any solution of (2) with vi(t0) > 0,
(i = 1, ..., d) and V ∗(t) is the unique positive solution of the logistic equation
V ′(t) = V (t)[r1(t) − q11(t)V (t)]. In [7] Muroya extended this result to discrete
models of pure-delay nonautonomous Lotka - Volterra type. The purpose of this
paper is to extend the Ahmad’s results in [2] to discrete system with infinite
delay (1). The paper is organized as follows: In section 2 we study the discrete
logistic equation and in section 3, we state and prove our main result on an
extinction of species in discrete model which is expessed by system (1).

2. Discrete logistic equation

Consider the dynamics of the logistic equation on [0, +∞):

x(n + 1) = x(n) exp[a(n) − b(n)x(n)], (4)

where a, b : Z → R are bounded and b(n) > 0. Let Z+ be the set of nonnegative
intergers and aM = sup

n∈Z

a(n), bM = sup
n∈Z

b(n). Equation (4) is complete forward,

i.e., any solution x(n) of (4) corresponding to initial value x(n0) > 0 is defined
for all n > n0. Moreover, the interval (0, +∞) is positive invariant with respect
to (4), i.e, any solution x(n) of (4) corresponding to positive initial value x(n0)
remains positive for all n > n0.
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Lemma 2.1. Assume that there exist positive intergers λ and ω such that

lim inf
p→+∞

p+λ−1
∑

n=p

a(n) > 0 (5)

and

lim inf
p→+∞

p+ω−1
∑

n=p

b(n) > 0. (6)

Then there exist positive constants m, M such that m 6 lim inf
n→+∞

x(n) 6 lim sup
n→+∞

x(n)

6 M for any solution x(n) of (4) with initial value x(n0) > 0.

Proof. Let x(n) be a solution of (4) with x(n0) > 0. By (5) and (6), there exist
n1 > n0, m1 > 0, M1 > 0 and δ > 0 such that for all p > n1 we have

p+λ−1
∑

n=p

[a(n) − b(n)m1] > δ (7)

and p+ω−1
∑

n=p

[a(n) − b(n)M1] < −δ. (8)

Claim 1. There exists n2 > n1 such that x(n2) < M1. Indeed, suppose on the
contrary that x(n) > M1 for all n > n1. By (4) and (8), for any positive interger
j we have x(n1 + ωj) 6 x(n1) exp(−δj). Therefore lim

j→+∞

x(n1 + ωj) = 0. This

contradiction proves our claim.

Let us put M2 = M1 exp(aM ), M = M2 exp(aMω), we have M1 < M2 6 M .

Claim 2. If there exist p > n2 and µ ∈ Z+ such that M1 < x(p) ≤ M2

and x(p + i) > M2 for i = 1, ..., µ, then µ < ω. To this end, in the way
of contradiction, we assume that µ > ω. Then by (4) and (8) it follows that

M2 < x(p + ω) 6 x(p) exp
{ p+ω−1

∑

n=p

[a(n) − b(n)M1]
}

6 M2 exp(−δ) < M2. This

contradiction proves the claim.

Claim 3. x(n) 6 M for all n > n2. In deed, we assume that there exists n3 > n2

such that x(n3) > M and x(n) 6 M for n = n2, n2 +1, ..., n3 − 1. Clearly that
if x(q) 6 M1 for some q > n2, then x(q + 1) 6 x(q) exp(aM ) 6 M1 exp(aM ) =
M2. Thus, there exitst p > n2 such that M1 < x(p) 6 M2, x(n) > M2 for
n = p+1, p+2, ..., n3. By Claim 2, n3−p < ω. Thus we obtain the claim from
the following contradiction: M < x(n3) 6 x(p) exp[(n3 − p)aM ] 6 M2 exp[(n3 −
p)aM ] < M2 exp(ωaM ) = M.

Claim 4. There exists n4 > n2 such that x(n4) > m1. To this end, in the way of
contradiction, we assume that x(n) 6 m1 for all n > n2. By (4) and (7), for any
positive integer j we have x(n2 + jλ) > x(n2) exp(jδ). Thus lim

j→+∞

x(n2 + jλ) =

+∞. This contradiction proves the claim.
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Let us put m2 = m1 exp(−bMM), m = m2 exp(−bMMλ), we have m1 >
m2 > m.

Claim 5. If there exist p > n4 and ν ∈ Z+ such that m2 6 x(p) < m1 and
x(p + i) < m2 for all i = 1, ..., ν, then ν < λ. To prove the claim, by the way
of contradiction we assume that ν > λ. Then by (4) and (7) we have m2 >

x(p + λ) > exp{∑p+λ−1
n=p [a(n)− b(n)m1]} > m2 exp(δ) > m2. This contradiction

proves the claim.

Claim 6. x(n) > m for all n > n4. To prove the claim, we assume that there
exists n5 > n4 such that x(n5) < m and x(n) > m for n = n4, n4 +1, ..., n5−1.
Clearly that if x(q) > m1 for some q > n4, then x(q +1) > x(q) exp[−bMx(q)] >

m1 exp[−bMM ] = m2. Thus there exists p > n4 such that m1 > x(p) > m2 and
x(n) < m2 for n = p + 1, p + 2, ..., n5. By Claim 5, n5 − p < λ. Thus m >
x(n5) > x(p) exp[−bMM(n5 − p)] > m2 exp(−λbMM) = m. This contradiction
proves the claim.

The Lemma follows from Claim 3 and Claim 6.

Remark. A result similar to Lemma 2.1 is given in [16] when the coefficients of
the equation are bounded above and below by positive constants.

Let B+ be the set {g : Z → R|0 < inf
n∈Z

g(n) 6 sup
n∈Z

g(n) < +∞}.

Lemma 2.2. Let a(n) and b(n) satisfy conditions (5) and (6). If there exist

positive intergers λ̄ and ω̄ such that

lim inf
p→−∞

p+λ̄−1
∑

n=p

a(n) > 0 (9)

and lim inf
p→−∞

p+ω̄−1
∑

n=p

b(n) > 0, (10)

then equation (4) has at least one solution x∗(.) ∈ B+.

Proof. By (9) and (10) exist n1 ∈ Z, m̄1 > 0, M̄1 > 0 and δ̄ > 0 such that for
all p 6 n1 we have

p+λ̄−1
∑

n=p

[a(n) − b(n)m1] > δ̄ and

p+ω̄−1
∑

n=p

[a(n) − b(n)M1] < −δ̄. (11)

Let us put
M̄2 = M̄1 exp(aM ), M̄ = M̄2 exp(aM ω̄),

m̄2 = m̄1 exp(−bMM̄), m̄ = m̄2 exp(−bMM̄λ̄),

then m̄ 6 m̄2 < m̄1 < M̄1 < M̄2 6 M̄. By the same argument as given in the
proofs of Claims 2, 3, 4, 6 of Lemma 2.1, we can show that if x(n0) ∈ (m̄1, M̄1)
for some n0 < n1, then x(n) ∈ [m̄, M̄ ] for n0 6 n 6 n1.
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Let γ ∈ (m̄1, M̄1). For each positive interger k such that −k 6 n1, let xk(n)
(n > n1) be the solution of (4) with the initial condition xk(−k) = γ. By the
same argument as given in the proofs of Claim 1 and Claim 2 of Lemma 2.1,
we can show that xk(n) ∈ [m̄, M̄ ] for −k 6 n 6 n1. Define a function x̄k(t) on
(−∞, n1] by putting

x̄k(t) =

{

M̄, if t 6 −k,

[xk(n + 1) − xk(n)](t − n) + xk(n), if t ∈ (n, n + 1], (−k < n 6 n1).

It is easy to see that x̄k(t) ∈ [m̄, M̄ ] for all t ∈ (−∞, n1] and {x̄k(.)} is equicon-
tinuous on (−∞, n1]. By Ascoli’s theorem (see [6]), there exists a subsequence
{x̄ks(.)} of {x̄k(.)} which converges to some function x̄∗(t), uniformly on any
compact subset of (−∞, n1]. Put x̂∗(n) = x̄∗(n) for n ∈ Z ∩ (−∞, n1]. Then
x̂∗(n) is a solution of (4). Moreover, x̂∗(n) ∈ [m̄, M̄ ] for all n 6 n1. Let x̃∗(n)
(for n > n1) be the solution of (4) with x̃∗(n1) = x̂∗(n1). By Lemma 2.1,
0 < inf

n∈[n1,+∞)
x̃∗(t) 6 sup

n∈[n1,+∞)

x̃∗(t) < +∞. Let

x∗(n) =

{

x̂∗(n), if n ∈ Z ∩ (−∞, n1],

x̃∗(n), if n ∈ Z ∩ (n1, +∞),

then x∗(.) ∈ B+ and x∗(.) is a solution of (4). The lemma is proved.

Lemma 2.3. Let (5), (6) and (9) hold. If

lim inf
n→−∞

b(n) > 0 (12)

and lim sup
n→−∞

[

a(n) + ln
b(n + 1)

b(n)

]

< 1 + ln 2, (13)

then equation (4) has a unique solution x∗(.) ∈ B+.

Proof. Clearly, condition (12) implies condition (10) for any positive interger ω̄.
Thus the existence follows from Lemma 2.2. In order to show the uniqueness, we
assume that x∗

1(n) and x∗

2(n) are two distinct solutions of (4) which are defined
on Z and x∗

1(n), x∗

2(n) ∈ [m′, M ′] for all n ∈ Z (0 < m′ < M ′ < +∞). By (12)
there exists n1 such that b(n) > 0 for all n 6 n1. For n 6 n1 and i = 1, 2, in
view of (4), it follows that

b(n)x∗

i (n) = b(n)x∗

i (n−1) exp[a(n−1)−b(n−1)x∗

i (n)] 6
b(n)

b(n − 1)
exp[a(n−1)−1],

where we used max
x∈R

{x exp(r−hx)} = exp(r−1)
h

for h > 0. Thus, by (12) and (13),

for 0 < µ < lim inf
n→−∞

b(n), there exist α ∈ (0, 2) and n2 6 n1 such that

inf
n6n2

b(n) ≥ µ and 0 < µm′
6 b(n)x∗

i (n) 6 α < 2 for n 6 n1, i = 1, 2. (14)
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Let x∗

1(n3) 6= x∗

2(n3) for some n3 ∈ Z, then x∗

1(n) 6= x∗

2(n) for all n 6 n3. Put
n4 = min{n3, n2}. By the mean value theorem of differential calculus, for each
n there exists θ(n) lying between x∗

1(n) and x∗

2(n) such that

lnx∗

1(n + 1) − lnx∗

2(n + 1) = [lnx∗

1(n) − lnx∗

2(n)] − b(n)[x∗

1(n) − x∗

2(n)]

= (1 − b(n)θ(n))[ln x∗

1(n) − lnx∗

2(n)].
(15)

Thus for each l ∈ Z+

lnx∗

1(n4) − lnx∗

2(n4) =
{

l
∏

s=1

(1 − b(n4 − s)θ(n4 − s))
} lnx∗

1(n4 − l)

lnx∗

2(n4 − l)
. (16)

It follows from (14) that there exists γ ∈ (0, 1) such that

|1 − b(n4 − s)θ(n4 − s)| < γ, for s > 1. (17)

It reduces from (16) and (17) that

| lnx∗(n4) − lnx∗∗(n4)| 6 γl| lnM ′ − lnm′| for l > 1.

Thus lnx∗

1(n4) = lnx∗

2(n4). This contracdiction implies the uniqueness. The
lemma is proved.

Lemma 2.4. Let c : Z → R be a function with lim
n→+∞

c(n) = 0. Let (5) hold. If

lim inf
n→+∞

b(n) > 0 (18)

and lim sup
n→+∞

[

a(n) + ln
b(n + 1)

b(n)

]

< 1 + ln 2, (19)

then lim
n→+∞

|x(n)− y(n)| = 0 for any two solutions x(n) and y(n) respectively of

equation (4) and

y(n + 1) = x(n) exp[a(n) + c(n) − b(n)y(n)], (20)

with initial values x(n0) > 0 and y(n0) > 0.

Proof. Clearly, condition (18) implies condition (6) for any positive interger ω.
By Lemma 2.1, there exist n1 > n0, m, M ∈ (0, +∞) (m < M) such that

m 6 x(n) 6 M, m 6 y(n) 6 M, for n > n1. (21)

By (18) and (19), for 0 < µ < lim inf
n→+∞

b(n), there exists n2 > n1 such that

inf
n>n2

b(n) > µ, sup
n>n2

[a(n) + ln
b(n + 1)

b(n)
] < 1 + ln 2,
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and sup
n>n2

[a(n) + c(n) + ln
b(n + 1)

b(n)
] < 1 + ln 2. (22)

Since x(n) and y(n) respectively satisfy equations (4) and (20), for n > n2 we
have

x(n) = x(n − 1) exp[a(n − 1) − b(n − 1)x(n)] 6
exp[a(n − 1) − 1]

b(n − 1)
,

y(n) = y(n−1) exp[a(n−1)+c(n−1)−b(n−1)y(n)] 6
exp[a(n − 1) + c(n − 1) − 1]

b(n − 1)
,

where we used max
x∈R

{x exp(r−hx)} = exp(r−1)
h

for h > 0. Thus by (21) and (22),

there exists α ∈ (0, 2) such that

0 < µm 6 b(n)x(n) 6 α < 2, 0 < µm 6 b(n)y(n) 6 α < 2, for n > n2. (23)

By the mean value theorem, there exists θ(n) lying between x(n) and y(n)] such
that

lnx(n + 1) − ln y(n + 1) = lnx(n) − ln y(n) − b(n)[x(n) − y(n)] − c(n)

= (1 − b(n)θ(n))[ln x(n) − ln y(n)] − c(n) for n > n2.
(24)

By (23) there exists γ ∈ (0, 1) such that

|1 − b(n)θ(n)| < γ, for n > n2. (25)

(24) and (25) imply that

| lnx(n + 1) − ln y(n + 1)| 6 γ| lnx(n) − ln y(n)| + |c(n)|

6γn+1−n2 | lnx(n2) − ln y(n2)| +
n

∑

k=n2

|c(k)|γn−k for n > n2.
(26)

Let ε > 0. Let δ > 0 such that δ
1−γ

< ε
2 . Since lim

n→+∞

c(n) = 0 there exists

n3 > n2 such that |c(n)| < δ for all n > n3. Since γ ∈ (0, 1) there exists n4 > n3

such that

n
∑

k=n2

|c(k)|γn−k =

n3
∑

k=n2

|c(k)|γn−k+
n

∑

k=n3+1

|c(k)|γn−k
6

ε

2
+

δ

1 − γ
6 ε for n > n4.

Thus lim
n→+∞

n
∑

k=n2

|c(k)|γn−k = 0, and then by (26), lim
n→+∞

| lnx(n)− ln y(n)| = 0.

Then by (21) we have lim
n→+∞

|x(n) − y(n)| = 0. The lemma is proved.

Definition 2.5. (see [3])A sequence z : Z → R
d is said to be almost periodic if

the ε-translation set of z:
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E{ε, z} := {τ ∈ Z : ‖z(k + τ) − z(k)‖ < ε, for all k ∈ Z}

is a relatively dense set in Z for all ε > 0, that is, for any given ε > 0 there exists
a positive integer l(ε) such that each discrete interval of length l(ε) contains an
integer τ = τ(ε) ∈ E{ε, z} such that ‖z(k + τ) − z(k)‖ < ε for all k ∈ Z.

Definition 2.6. (see [3]) Let f : Z × D → R
d, where D is an open set in R

d.
The function f(k, z) is said to be almost periodic in k uniformly for z ∈ D, or
uniformly almost periodic for short, if for any ε > 0 and any compact set S in
D, there exists a positive integer l(ε, S) such that any interval of length l(ε, S)
contains an integer τ for which ‖f(k + τ, z) − f(k, z)‖ < ε for all k ∈ Z and
z ∈ S.

In [15], Zhang considered the following almost periodic difference system

v(n + 1) = f(n, v(n)), (27)

where f : Z×SB → R
d, SB = {x ∈ R

d : ‖x‖ < B} and f(n, v) is almost periodic
in n uniformly for v ∈ SB and is continuous in v. Related to system (27), the
author also considered the following product system

v(n + 1) = f(n, v(n)), w(n + 1) = f(n, w(n)), (28)

and obtained the following theorem:

Theorem 2.7. (see [15]) Suppose that there exists a Liapunov function V (n, v, w)
which is defined for n ∈ Z+, ‖v‖ < B, ‖w‖ < B and satisfies the following con-

ditions:

(i) g(‖v−w‖) 6 V (n, v, w) 6 h(‖v−w‖) for all n ∈ Z+, ‖v‖ < B, ‖w‖ < B,

where g, h : [0, +∞) → [0, +∞) are continuous, increasing and g(0) = h(0) = 0;

(ii) |V (n, v, w) − V (n, v̄, w̄)| 6 L(‖v − v̄‖ + ‖w − w̄‖) for all n ∈ Z+, ‖v‖ <
B, ‖w‖ < B, where L is a positive constant;

(iii) ∆V(28)(n, v, w) 6 −αV (n, v, w) for all n ∈ Z+, ‖v‖ < B, ‖w‖ < B, where

α is a positive constant and ∆V(28) = V (n + 1, f(n, v), f(n, w)) − V (n, v, w).

If there exists a solution v̂(n) of (27) such that ‖v̂(n)‖ 6 B∗ < B for all

n ∈ Z+, then there exists a unique uniformly asymptotically stable almost pe-

riodic solution v∗(n) of system (27) satisfying ‖v∗(n)‖ 6 B∗ for all n ∈ Z. In

particular, if f(n, v) is ω-periodic in n and continuous in v, then there exists a

unique uniformly asymptotically stable ω-periodic solution v∗(n) of system (27)
with ‖v∗(n)‖ 6 B∗ for all n = 1, ..., ω.

Applying Theorem 2.7 we can prove the following result on the existence of an
almost periodic solution of equation (4).

Lemma 2.8. Assume that a(n) and b(n) are almost periodic. Let (18) and (19)
hold. If
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lim
N→+∞

1

N

N−1
∑

n=0

a(n) > 0, (29)

then there exists a unique uniformly asymptotically stable almost periodic solu-

tion x∗(.) ∈ B+ of equation (4). In particular, if a(n) and b(n) are ω - periodic,

then there exists a unique uniformly asymptotically stable ω - periodic positive

solution of equation (4).

Proof. Since b(n) is almost periodic, (18) implies infn∈Z b(n) = lim inf
n→+∞

b(n) > 0.

Thus, by (29), there exist positive numbers M1, m1 (M1 > m1), δ and a positive
interger λ such that

p+λ−1
∑

n=p

[a(n) − b(n)m1] > δ,

p+λ−1
∑

n=p

[a(n) − b(n)M1] < −δ, for all p ∈ Z. (30)

Let us put
M2 = M1 exp(aM ), M = M2 exp(aMλ),

m2 = m1 exp(−bMM), m = m2 exp(−bMMλ),

then m 6 m2 < m1 < M1 < M2 6 M. Let x̂(n) be a solution of equation (4)
with x̂(0) ∈ (m1, M1). By the same argument as given in the proofs of Claims
2, 3, 5 and 6 of Lemma 2.1, we get x̂(n) ∈ [m, M ] for all n ∈ Z+. By the change
of variables y(n) = lnx(n) equation (4) is transformed into

y(n + 1) = y(n) + a(n) − b(n) exp y(n). (31)

Clearly, (31) has a bounded solution ŷ(n) = ln x̂(n) ∈ [lnm, lnM ] for all n ∈ Z+.
Put B = max{| lnm|, | lnM |}. Consider the product system of equation (31)

y(n+1) = y(n)+a(n)−b(n) exp y(n), z(n+1) = z(n)+a(n)−b(n) exp z(n). (32)

Define a Liapunov function V (n, y, z) on Z+× [−B, B]× [−B, B] by V (n, y, z) =
|y − z|. Clearly V satisfies conditions (i) and (ii) in Theorem 2.7. By the mean
value theorem there exists θ(n) lying between y(n) and z(n) such that

∆V(32)(n) = |[y(n) − z(n)] − b(n)[exp y(n) − exp z(n)]| − |y(n) − x(n)|
= (|1 − b(n) exp θ(n)| − 1)V (n), n ∈ Z+.

(33)

Since a(n), b(n) are almost periodic, it follows from (18) and (19) that

µ := sup
n∈Z

[

a(n) − 1 + ln
b(n + 1

b(n)

]

= lim sup
n→+∞

[

a(n) − 1 + ln
b(n + 1

b(n)

]

< ln 2. (34)

Put ν = inf
n∈Z

b(n), γ = ν exp(−B), ε = exp [µ+ln 2]
2 . Clearly, 0 < ε < 2. Since

y(n) satisfies equation (31) for n > 1 we have
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γ 6 b(n) exp y(n) = b(n) exp[y(n − 1) + a(n − 1) − b(n − 1) exp y(n − 1)]

6 b(n)max
x∈R

exp[x + a(n − 1) − b(n − 1) exp x]

=
b(n)

b(n − 1)
exp[a(n − 1) − 1] 6 ε < 2.

(35)

Similarly,
γ 6 b(n) exp z(n) 6 ε, for n > 1. (36)

Since θ(n) lies between y(n) and z(n), it follows from (35) and (36) that

0 < γ 6 b(n) exp θ(n) 6 ε < 2 for n > 1. (37)

This implies that there exists α ∈ (0, 1) such that |1 − b(n) exp θ(n)| − 1 6

−α for n > 1. Thus it follows from (33) that ∆V(32)V (n) 6 −αV (n) for n > 1.
By Theorem 2.7 there exists a unique uniformly asymptotically stable almost
periodic solution y∗(n) of equation (31) with −B 6 y∗(n) 6 B. By Lemma
2.3 equation (4) has a unique uniformly asymptotically stable almost periodic
solution x∗(.) = exp y∗(.) ∈ B+. Similarly, if a(n) and b(n) are ω - periodic,
then there exists a unique uniformly asymptotically stable ω - periodic positive
solution of equation (4). The lemma is valid.

3. Extinction of species in discrete models of Lotka-Volterra type

with infinite delay

In this section we consider the following Lotka-Volterra model

ui(n + 1) = ui(n) exp
[

ai(n) + ci(n) −
d

∑

j=1

bij(n)

n
∑

s=−∞

Hij(n − s)hj(s)uj(s)
]

,

i = 1, ..., d,
(38)

where ai, ci : Z → R, bij : Z → (0, +∞) and Hij : Z+ → [0, +∞) are bounded,
hj : Z → R is bounded above and below by positive constants.

We assume that for each i = 1, ..., d there exist αi > 0 and βi > 0 such that

|ci(n)| 6 αi exp[−βin] for all large n. (39)

In addition, we assume that for i, j = 1, ..., d

a∗

iL = lim inf
n→+∞

ai(n) > 0, b∗iiL = lim inf
n→+∞

bii(n) > 0 for n ∈ Z (40)

and

+∞
∑

n=0

Hij(n) = 1, Hii(0) > 0. (41)

For i, j = 1, . . . , d let us put
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hjM = sup
n∈Z

hj(n), hjL = inf
n∈Z

hj(n), a∗

iM = lim sup
n→+∞

ai(n), bijM = sup
n∈Z

bij(n).

(42)
Let R

d
+ = {u = (u1, ..., ud) : ui > 0, i = 1, ..., d}. Denote by intRd

+ the interior
of R

d
+.

From the point of view of biology, in the sequel, we assume that

ui(s) = φi(s) > 0, φi(0) > 0, i = 1, ..., d, s = ...,−n,−n + 1, ...,−1, 0. (43)

Clearly, problem (38) and (43) has a unique solution (u1(n), ..., ud(n)). Moreover,
this solution is defined for all n > 0 and ui(n) > 0 for all n > 0 and i = 1, ..., d.

Lemma 3.1. (see [4]) Let x : Z → R be nonnegative and bounded, H : Z+ → R

be nonnegative such that
+∞
∑

n=0
H(n) = 1. Then

lim inf
n→+∞

x(n) 6 lim inf
n→+∞

n
∑

s=−∞

H(n − s)x(s)

6 lim sup
n→+∞

n
∑

s=−∞

H(n − s)x(s)

6 lim sup
n→+∞

x(n).

Theorem 3.2. Let (39), (40) and (41) hold. Then

(i) There exist positive constants M1, M2, ..., Md such that for any solution

u(n) = (u1(n), ..., ud(n)) of (38) with the initial condition (43) there exists n1 > 0
such that ui(n) 6 Mi for all n > n1 and i = 1, . . . , d.

(ii) There exists γ > 0 such that for any solution u(n) = (u1(n), ..., ud(n)) of

(38) with the initial condition (43) there exists n1 > 0 such that
d
∑

i=1

ui(n) > γ

for all n > n1.

Proof. Let u(n) = (u1(n), ..., ud(n)) be a solution of (38) with the initial condition
(43). There exists p > 0 such that for i = 1, . . . , d,

sup
n>p

[ai(n) + ci(n)] 6 2a∗

iM , inf
n>p

bii(n) >
b∗iiL
2

, inf
n>p

[ai(n) + ci(n)] >
a∗

iL

2
. (44)

(i) For n > p we have

ui(n+1) 6 ui(n) exp
[

2a∗

iM−b∗iiLHii(0)hiLui(n)

2

]

6 2
exp[2a∗

iM − 1]

b∗iiLHii(0)hiL

, i = 1, ..., d.

Here we used max
x∈R

{x exp(r − hx)} = exp(r−1)
h

for h > 0. Therefore ui(n) 6 Mi

for all i = 1, ..., d and n > p + 1, where Mi = 2
exp[2a∗

iM − 1]

b∗iiLHii(0)hiL

.
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(ii) There exists ε > 0 such that

a∗

iL

2
−

d
∑

j=1

2bijMhjMε > 0, i = 1, ..., d. (45)

Claim 1.
a∗

iiL

2
− 2biiMhiMMi < 0 for i = 1, ..., d. (46)

To prove the claim, we first consider the case of a∗

iM > 1/2. Since 0 < Hii(0) 6 1,

a∗

iiL

2
−2biiMhiMMi 6

a∗

iiL

2
−4biiMhiM

exp[2a∗

iM − 1]

b∗iiLhiL

6
a∗

iiL

2
−8

biiMhiMa∗

iM

b∗iiLhiL

< 0.

If a∗

iM < 1/2 then, since 0 < Hii(0) 6 1,

a∗

iiL

2
− 2biiMhiMMi 6

a∗

iiL

2
− 4biiMhiM

exp[2a∗

iM − 1]

b∗iiLhiL

<
a∗

iiL

2
− 4biiMhiM

eb∗iiLhiL

<
a∗

iiL

2
− 1 < 0.

Thus the claim is proved.

Let us put

γi = ε exp
[a∗

iL

2
−

d
∑

j=1

2bijMhjMMj

]

, i = 1, . . . , d. (47)

By (46) it follows that γi < ε for i = 1, . . . , d. Put A1 =
d
∏

i=1

[0, γi], A2 =

d
∏

i=1

[0, ε] \ A1 and A3 =
d
∏

i=1

[0, Mi] \
d
∏

i=1

[0, ε]. Let us consider n > p + 1. Since

ui(n) 6 Mi for all i = 1, . . . , d and n > p+1, it follows that u(n) ∈ A1∪A2∪A3

for all n > p + 1.

Claim 2. There exists q > p + 1 such that u(q) ∈ A2 ∪ A3. To this end, in the
way of contradiction, we assume that u(n) ∈ A1 for all n > p+1. Thus, by (38),
(41) and (45), for all n > p + 1 we have

ui(n + 1)

ui(n)
> exp

[a∗

iL

2
−

d
∑

j=1

2bijMhjM ε
]

> 1.

This implies that u(n) is unbounded, which is impossible and thus the claim is
proved.

Claim 3. If u(n) ∈ A2 for some n > p +1, then u(n + 1) ∈ A2 ∪A3. To this end,
we know that ui(n) 6 ε for all i = 1, . . . , d and there exists i0 ∈ {1, . . . , d}
such that ui0(n) > γi0 . Thus, by (38), (41) and (45) we have
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ui0(n + 1) > ui0(n) exp
[a∗

i0L

2
−

d
∑

j=1

2bi0jMhjMε
]

> ui0(n) > γi0 ,

hence u(n + 1) ∈ A2 ∪A3, since ui(n + 1) 6 Mi for all i = 1, . . . , d. The claim
is proved.

Claim 4. If u(n) ∈ A3 for some n > p +1, then u(n + 1) ∈ A2 ∪A3. To this end,
we can see that ui(n) 6 Mi for i = 1, . . . , d and there exists i0 ∈ {1, . . . , d}
such that ui0(n) > ε. Therefore, by (38), (41)and (47) we have

ui0(n + 1) > ε exp
[a∗

i0L

2
−

d
∑

j=1

2bi0jMhjMMj

]

= γi0 ,

hence u(n + 1) ∈ A2 ∪A3, since ui(n + 1) 6 Mi for all i = 1, . . . , d. The claim
is proved.

By Claims 2, 3 and 4, it follows that there exists q > n0 such that u(n) ∈
A2 ∪ A3 for all n > q.

The theorem is proved.

Theorem 3.3. Let (39), (40) and (41) hold. If for each i = 2, . . . , d, there exist

λi1, . . . , λii−1 > 0,
i−1
∑

j=1

λij > 0, n1 ∈ Z+ and δ > 0 such that for all s 6 n and

n > n1

bij(n)Hij(n−s)
i−1
∑

k=1

λika∗

kL > a∗

iM

i−1
∑

k=1

λikbkj(n)Hkj(n−s)+δξj(n−s), j = 1, ..., i,

(48)
where ξij(n) = max

k=1,...,i
{Hkj(n)}, then ui(n) tends to zero exponentially for i =

2, . . . , d as n → +∞, where (u1(n), . . . , ud(n)) is any solution of (38) with the

initial condition (43). If, in addition, H11(0) = 1 and

lim sup
n→+∞

[

a1(n) + ln
b11(n + 1)h1(n + 1)

b11(n)h1(n)

]

< 1 + ln 2, (49)

then lim
n→+∞

[u1(n)− U∗(n)] = 0, where U∗(.) ∈ B+ is the unique solution of the

equation

U(n + 1) = U(n) exp[a1(n) − b11(n)h1(n)U(n)]. (50)

Proof. By (48), we can choose positive numbers âiL < a∗

iL and âiM > a∗

iM (i =
1, . . . , d) such that for n > n1, s 6 n and i = 2, . . . , d

bij(n)Hij(n−s)

i−1
∑

k=1

λik âkL > âiM

i−1
∑

k=1

λikbkj(n)Hkj(n−s)+
δξj(n − s)

2
, j = 1, . . . , i.

(51)
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Since lim
n→+∞

ci(n) = 0, there exists n2 > n1 such that

inf
n>n2

[ai(n) + ci(n)] > âiL, sup
n>n2

[ai(n) + ci(n)] 6 âiM , i = 1, . . . , d.

(i) First, we prove that ud(n) → 0 exponentially as n → +∞. Let us put

a∗

d =

d−1
∑

i=1

λdiâiL, b∗dj(n, s) =

d−1
∑

i=1

λdibij(n)Hij(n − s), j = 1, . . . , d. (52)

For i = d, condition (51) can now be written as

a∗

dbij(n)Hij(n − s) − âdMb∗dj(n, s) >
δ

2
ξj(n − s), j = 1, . . . , d, n > n2, s 6 n.

(53)
System (38) can be written for i = 1, . . . , d, as

lnui(n + 1) − lnui(n) = ai(n) + ci(n) −
d

∑

j=1

bij(n)

n
∑

s=−∞

Hij(n − s)hj(s)uj(s).

(54i)
Multiplying (54i) by λdi for i = 1, . . . , d − 1 and summing over 1 6 i 6 d − 1,
we obtain

d−1
∑

i=1

[lnuλdi

i (n+1)−lnuλdi

i (n)] =

d−1
∑

i=1

λdi[ai(n)+ci(n)]−
d

∑

j=1

n
∑

s=−∞

b∗dj(n, s)hj(s)uj(s).

(55)

For n > n2, put A(n) = ln
u

a∗

d

d (n)
d−1
∏

i=1

uλdiâdM

i (n)

. Multiplying (54d) by a∗

d and (55) by

âdM , and subtracting them, we obtain

A(n + 1) − A(n) = [a∗

dad(n) − âdM

d−1
∑

i=1

λdiai(n)] + [a∗

dcd(n) − âdM

d−1
∑

i=1

λdici(n)]

−
d

∑

j=1

n
∑

s=−∞

[a∗

dbdj(n)Hdj(n − s) − âdMb∗dj(n, s)]hj(s)uj(s) for all n > n2.

(56)
For n > n2 we have

a∗

dad(n) − âdM

d−1
∑

i=1

λdiai(n) 6

d−1
∑

i=1

λdi[âiLad(n) − ai(n)âdM ] 6 0. (57)

By (39) there exist n3 > n2, µ > 0 and ν > 0 such that
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∣

∣

∣
a∗

dcd(n) − âdM

d−1
∑

i=1

λdici(n)
∣

∣

∣
6 µ exp[−νn] for all n > n3. (58)

Let L = min{h1L, . . . , hdM} and ξ(0) = min{ξ1(0), . . . , ξd(0)}. Clearly, L > 0
and ξ(0) > 0. From (53), (56), (57) and (58) we obtain

A(n + 1) − A(n) 6 −Lδξ(0)

2

d
∑

j=1

uj(n) + µ exp[−νn] for all n > n3. (59)

By the part (ii) of Theorem 3.2, there exist n4 > n3 and γ > 0 such that
d
∑

j=1

uj(n) > γ for all n > n4. Thus (59) implies that

A(n + 1) − A(n) 6 −Lδξ(0)

2
γ + µ exp[−νn] for all n > n4. (60)

Therefore, for n > n4 we have

A(n) 6 −(n − n4)
Lδξ(0)

2
γ + µ

n−1
∑

k=n4

exp[−νk] + A(n4),

and thus, for n > n4

u
a∗

d

d (n) 6

u
a∗

d

d (n4)
d−1
∏

i=1

uλdiâdM

i (n)

d−1
∏

i=1

uλdiâdM

i (n4)

{

exp

[

µ

n−1
∑

k=n4

exp(−νk)

]}

× exp

[

−Lδξ(0)

2
γ(n − n4)

]

.

(61)

By the part (i) of Theorem 3.2, there exist n5 > n4 and M1, . . . , Md > 0 such
that ui(n) 6 Mi (i = 1, . . . , d) for all n > n5. Thus (61) implies that for n > n5

ud(n) 6



















u
a∗

d

d (n4)
d−1
∏

i=1

MλdiâdM

i

d−1
∏

i=1

uλdiâdM

i (n4)



















1

a∗

d

{

exp

[

µ exp[−νn4]

a∗

d(1 − exp[−ν])

]}

× exp

[

−Lδξ(0)
2 γ

a∗

d

(n − n4)

]

.

Since ξ(0) > 0, ud(n) → 0 exponentially as n → +∞.

(ii) Next, we will show that ui(n) → 0 exponentially as n → +∞ for i =
2, . . . , d − 1. To this end, we rewrite the system (38) for ui, 1 6 i 6 d − 1 as
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ui(n+1) = ui(n) exp[ai(n)+c∗i (n)−
d−1
∑

j=1

bij(n)
∑

s=−∞

Hij(n−s)hj(s)uj(s)], (62)

where c∗i (n) = ci(n) − bid(n)
n
∑

s=−∞

Hid(n − s)hd(s)ud(s). By Lemma 3.1,

lim sup
n→+∞

|bid(n)

n
∑

s=−∞

Hid(n − s)hd(s)ud(s)| 6 lim sup
n→+∞

bidMhdM

n
∑

s=−∞

Hid(n − s)ud(s)

6 lim sup
n→+∞

bidMhdMud(n).

Thus it follows that for each i = 1, . . . , d−1, c∗i (n) satisfies the hypothesis (39),
since ci(n) and ud(n) both tend to zero exponentially as n → +∞. We note that
the inequalities in (48) are independent of dth in the sense that by dropping
the dth case, the coefficients of the smaller system (62) still satisfy inequalities
(48). Thus, applying the same argument as above, we obtain that ud−1(n) → 0
exponentially as n → +∞. By induction we get ui(n) → 0 exponentially as
n → +∞ for i = 2, . . . , d − 2.

(iii) We now show that lim
n→+∞

[u1(n)−U∗(n)] = 0, where U∗(·) ∈ B+. To this

end, we know that

u1(n + 1) = u1(n) exp[a1(n) + c̃1(n) − b11(n)h1(n)u1(n)],

where c̃1(n) = c1(n) −
d
∑

j=2

b1j(n)
n
∑

s=−∞

H1j(n − s)hj(s)uj(s). Since c1(n) and

uj(n) → 0 exponentially as n → +∞ for j = 2, . . . , d, Lemma 3.1 implies that
lim

n→+∞

c̃1(n) → 0. By Lemma 2.4, lim
n→+∞

[u1(n) − U∗(n)] = 0. The theorem is

proved.

Example 3.4. Consider the system

u1(n + 1) = u1(n) exp
[

a1(n) − b11(n)

n
∑

s=−∞

H11(n − s)u1(s) − b12(n)

×
n

∑

s=−∞

H12(n − s)u2(s)
]

,

u2(n + 1) = u2(n) exp
[

a2(n) − b21(n)

n
∑

s=−∞

H21(n − s)u1(s) − b22(n)

×
n

∑

s=−∞

H22(n − s)u2(s)
]

,

where a1(n) =
|n| + 1

|n| + 2
, a2(n) =

n2 + 1

n2 + 2
, b11(n) =

√
n1 + 1√

n2 + 1 + 1
, b12(n) =
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2n2 + 1

2n2 + 2
, b21(n) =

4
√

2n2 + 1√
2n2 + 1 + 1

, b22(n) = 4
n4 + 1

n4 + 2
, H11(n) =

2

3n+1
, H21(n) =

1

2n+1
, H12(n) =

4

5n+1
, H22(n) =

3

4n+1
. We have a∗

iL = a∗

iM = 1 (i = 1, 2). By

letting λ21 = 1, δ = 1/3, it is easy to see that condition (48) in Theorem 3.3
holds. Thus species u2 in the system is extinct.

Remark. In [7] Muroya considered discrete models of nonautonomous Lotka -
Volterra type with finite delays. Theorem 3.3 is an extention of Muroya’s result
in [7] to discrete Lotka - Volterra models with infinite delay.

Theorem 3.5. Assume that for each i = 1, . . . , d, ai(n) is almost periodic

with āi = lim
ω→+∞

1
ω

ω−1
∑

n=0
ai(n) > 0 and ci(n) satisfies (39), and lim inf

n→+∞

bij(n) >

0 for i, j = 1, . . . , d. If for each i = 2, . . . , d, there exist λi1, . . . , λii−1 > 0,
λi1 + · · · + λii−1 > 0, n1 ∈ Z+ and δ > 0 such that for all s 6 n and n > n1

bij(n)Hij(n−s)

i−1
∑

k=1

λik āk > āi

i−1
∑

k=1

λikbkj(n)Hkj(n−s)+δξj(n−s), j = 1, . . . , i,

(63)
where ξij(n) = max

k=1,...,i
{Hkj(n)}, then ui(n) → 0 exponentially for i = 2, . . . , d

as n → +∞, where (u1(n), . . . , ud(n)) is any solution of (38) with the ini-

tial condition (43). If, in addition, H11(0) = 1 and (49) is satisfied, then

lim
n→+∞

[u1(n)−U∗(n)] = 0 where U∗(.) is the unique solution of equation (50) in

B+.

Proof. There exists ε > 0 such that for i = 2, . . . , d, j = 1, . . . ., i, n > n1, s 6 n
we have

bij(n)Hij(n−s)

i−1
∑

k=1

λik(āk−2ε) > (āi+2ε)

i−1
∑

k=1

λikbkj(n)Hkj(n−s)+
δξj(n − s)

2
.

(64)
Since ai(n) is almost periodic, for i = 1, . . . , d there exists a trigonometric

polynomial ∆i(n) such that supn∈Z
|ai(n) − ∆i(n)| 6 ε. Then

n−1
∑

k=0

[∆i(k) − ∆̄i]

is bounded and |āi − ∆̄i| 6 ε, where ∆̄i = lim
ω→+∞

1
ω

ω−1
∑

n=0
∆i(n). By the change of

variables

ui(n) = vi(n) exp
{

n−1
∑

k=0

[∆i(k) − ∆̄i]
}

, i = 1, . . . , d,

(38) leads to the following system (i = 1, . . . d):

vi(n+1) = vi(n) exp
[

ãi(n)+ci(n)−
d

∑

j=1

bij(n)

n
∑

s=−∞

Hij(n−s)h̃j(s)vj(s)
]

, (65)
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where ãi(n) = ai(n) − ∆i(n) + ∆̄i, h̃j(s) = hj(s) exp
{ s−1

∑

k=0

[∆i(k) − ∆̄i]
}

. Since

s−1
∑

k=0

[∆j(k) − ∆̄j ] is bounded, it follows that h̃j(.) ∈ B+. It is easy to see that

ã∗

iL = lim inf
n→+∞

ai(n) > āi − 2ε, ã∗

iM = lim sup
n→+∞

ãi(n) 6 āi + 2ε for i = 1, . . . , d.

Thus (64) implies that system (65) satisfies condition (48) in Theorem 3.3. By
Theorem 3.3 vi(n) → 0 exponentially for i = 2, . . . , d as n → +∞. Thus
ui(n) → 0 exponentially for i = 2, . . . , d as n → +∞.

If, in addition, (49) holds then

lim sup
n→+∞

[

ã1(n) + ci(n) + ln
b̃11(n + 1)h̃1(n + 1)

b̃11(n)h̃1(n)

]

< 1 + ln 2. (66)

By Theorem 3.3 lim
n→+∞

[v1(n) − V ∗(n)] = 0, where V ∗(n) is the unique solution

of the logistic equation V (n + 1) = V (n) exp[ã1(n)− b̃11(n)h̃1(n)V (n)], which is
defined on Z and bouded above and below by positive constants. This implies
that lim

n→+∞

[u1(n) − U∗(n)] = 0. The theorem is proved.

Remark. If Hij(n) = 0 for all i 6= j, n ∈ Z+ and Hii(0) = 1, i.e., there is no
delay in system (38), then condition (63) becomes condition (3) given by Admad
in [2].

Example 3.6. Consider the system

u1(n + 1) = u1(n) exp
[

a1(n) − f(n)

n
∑

s=−∞

H11(n − s)u1(s) −
g(n)

2

×
n

∑

s=−∞

H12(n − s)u2(s)
]

,

u2(n + 1) = u2(n) exp
[

a2(n) − 5f(n)

2

n
∑

s=−∞

H21(n − s)u1(s) − g(n)

n
∑

s=−∞

H22(n − s)u2(s)
]

,

where a1(n) = 1
2 + sin n, a2(n) = 1

2 + sin
√

2n, f(n) = 1 + 1
2 cos

√
3n, g(n) =

1 + 1
2 cos

√
5n, H11(n) = 2

3n+1 , H21(n) = 1
2n+1 , H12(n) = 4

5n+1 , H22(n) = 3
4n+1 .

We have ā1 = ā2 = 1
2 . By letting λ21 = 1 and δ = 1

16 , it is easy to see that
condition (63) in Theorem 3.5 holds. Therefore, by Theorem 3.5 we obtain that
species u2 in the system are extinct.
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