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1. Introduction

The integral equation with the Toeplitz plus Hankel kernel is studied in [4, 20]

f(x) +

∞
∫

0

[k1(x+ y) + k2(x− y)]f(y)dy = ϕ(x), x > 0, (1)

where k1, k2, ϕ are given functions, and f is an unknown function. Many partial
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cases of this equation have been used in physics, medicine and biology (see [6, 7]).
Unfortunately, the solution of this equation in general case of Hankel kernel k1

and Toeplitz kernel k2 in a closed form is still not known.

Recently, in [16], several classes of integral equations with Toeplitz plus Hankel
kernel were studied, where solutions can be obtained in a closed form with the
help of generalized convolutions.

In this paper, we will introduce a new polyconvolution with a weight func-
tion for the Fourier sine and Kontorovich-Lebedev integral transforms in order
to solve several classes of integral equations and also systems of integral equa-
tions with the Toeplitz plus Hankel kernel. This class of Toeplitz plus Han-
kel integral equations are quite different from [16]. To a deeper view of gen-
eralized convolutions and polyconvolutions, we refer the reader to references
[8, 9, 10, 15, 17, 18, 19].

The paper is organized as follows. In Section 2, we recall some known con-
volutions and generalized convolutions and their properties. In Section 3, we
introduce a new polyconvolution (6) with a weight function of three functions
f, g, h for the Fourier sine and Kontorovich-Lebedev integral transforms and
prove the existence of this polyconvolution on certain function spaces as well as
the factorization identity (7). Boundedness properties of the polyconvolution op-
erator on Lp(R+) are also considered. These properties are quite different from
[21] because of the different technique and also, the polyconvolution (6) is quite
different from those of generalized convolutions introduced in [21]. In Sections 4
and 5, with the help of new polyconvolution (6), we consider some new classes
of equations and systems of integral equations with Toeplitz plus Hankel kernel
that can be solved in a closed form. These equations and systems of integral
equations with Toeplitz plus Hankel kernel are first introduced in this paper and
seem to be difficult to be solved by other techniques.

2. Preliminaries

In this section, we recall some known results which are useful in this paper. The
Fourier convolution is defined by (see [13])

(f ∗
F
g)(x) =

∞
∫

−∞

f(x− u)g(u)du,

where F denotes the Fourier transform [13]

(Ff)(y) =
1√
2π

∞
∫

−∞

e−ixyf(x)dx.

The convolution with a weight function γ(x) = sinx of two functions f and g
for the Fourier sine transform was introduced in [8] as follows
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(f
γ∗g)(x) =

1

2
√

2π

+∞
∫

0

f(y)[sign(x+y−1)g(|x+y−1|)+sign(x−y+1)g(|x−y+1|)

− g(x+ y + 1) − sign(x− y − 1)g(|x− y − 1|)]dy, x > 0. (2)

For this convolution the following factorization identity holds

Fs(f
γ∗g)(y) = sin y(Fsf)(y)(Fsg)(y), ∀y > 0, f, g ∈ L1(R+),

where Fs is the Fourier sine transform, that is

(Fsf)(y) =

√

2

π

∞
∫

0

sin yx.f(x)dx, y > 0.

The generalized convolution of two functions f, g for the Fourier sine and Fourier
cosine transforms

(f ∗
1
g)(x) =

1√
2π

∞
∫

0

f(u)[g(|x− u|) − g(x+ u)]du, x > 0, (3)

was introduced in [13]. There the following factorization identity was proved

Fs(f ∗
1
g)(y) = (Fsf)(y).(Fcg)(y), ∀y > 0, f, g ∈ L1(R+),

where Fc is the Fourier cosine transform defined as follows:

(Fcf)(y) =

√

2

π

∞
∫

0

cos yxf(x)dx, y > 0.

For the Fourier convolution [13], the Young’s theorem states that

∣

∣

∣

∣

∣

∣

∞
∫

−∞

(f ∗
F
g)(x).h(x)dx

∣

∣

∣

∣

∣

∣

6 ‖f‖Lp(R).‖g‖Lq(R).‖h‖Lr(R), (4)

where
1

p
+

1

q
+

1

r
= 2, f ∈ Lp(R), g ∈ Lq(R), h ∈ Lr(R) [1]. An important

corollary of this theorem is the so-called Young’s inequality for the Fourier con-
volution

‖f ∗
F
g‖Lr(R) 6 ‖f‖Lp(R)‖g‖Lq(R), (5)

where
1

p
+

1

q
= 1 +

1

r
, f ∈ Lp(R), g ∈ Lq(R).

Note, however, that for the typical case f, g ∈ L2(R), the inequality (5) does not
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hold. In [11, 12], S. Saitoh et al. introduced a weighted Lp(R) inequality for the
Fourier convolution.

Extending the notion of convolutions and generalized convolutions, Kakichev
V.A. [9] introduced the notion of polyconvolution:

Definition 2.1. ([9])Consider the integral transforms Ki : Ui(Xi) → V (Y ), i =
1, ..., 4, where Ui(Xi) are linear spaces, and V (Y ) is an algebra. Then a poly-
convolution of functions f ∈ U1(X1), g ∈ U2(X2), h ∈ U3(X3) with a weight
function γ for the integral transforms K4,K3,K2,K1 is a multi-linear operator

ξ :
3
∏

i=1

Ui(Xi) → V (Y ) such that the following factorization equality holds

(K4ξ)(x) = γ(x)(K1f)(x)(K2g)(x)(K3h)(x).

3. A Polyconvolution

Definition 3.1. The polyconvolution with the weight function γ = sinx of func-
tions f, g, and h for the Fourier sine and the Kontorovich-Lebedev integral trans-
forms is defined as follows

γ∗(f, g, h)(x) =
1

4
√

2π

∫

R
3
+

(

4
∑

i=1

θi(x, u, v, w)

)

f(u)g(v)h(w)dudvdw, x > 0, (6)

here

θ1(x, u, v, w) =e−w cosh(x+u+v+1) − e−w cosh(x+u+v−1);

θ2(x, u, v, w) =e−w cosh(x−u+v−1) − e−w cosh(x−u+v+1);

θ3(x, u, v, w) =e−w cosh(x+u−v−1) − e−w cosh(x+u−v+1);

θ4(x, u, v, w) =e−w cosh(x−u−v+1) − e−w cosh(x−u−v−1).

First of all, we will show that this definition really gives the notion of polyconvo-
lution, that is the operator (6) satisfies the equality in Definition 2.1 for suitable
integral transforms.

We consider functions in the function space Lα,β
p ≡ Lp(R+, t

αK0(βt)), α ∈
R, 0 < β 6 1, whose norm is defined as follows [21]

‖f‖Lα,β
p

=
(

∞
∫

0

|f(t)|pK0(βt)t
αdt
)

1
p

<∞.

The Kontorovich-Lebedev integral transform is of the form (see [14])

Kix[f ] =

∞
∫

0

Kix(t)f(t)dt,



A New Polyconvolution and Its Application 221

here Kix(t) denotes the modified Bessel function (see [2]).

Theorem 3.2. Let f, g ∈ L1(R+) and let h ∈ L0,β
1 , 0 < β 6 1, then the polycon-

volution (6) belongs to L1(R+) and the following factorization equality holds

Fs(
γ∗(f, g, h))(y) = sin y(Fsf)(y)(Fsg)(y)(Kiyh), ∀y > 0. (7)

Besides, the following norm estimation holds

‖ γ∗ (f, g, h)‖L1(R+) 6

√

2

π
‖f‖L1(R+)‖g‖L1(R+)‖h‖L0,β

1
(R+).

Moreover, in case β ∈ (0; 1), the polyconvolution
γ∗(f, g, h)(x) also belongs to

C0(R+) and the following Parseval type identity holds

γ∗(f, g, h)(x) =

√

2

π

∞
∫

0

(Fsf)(y)(Fsg)(y)(Kiyh) sin y sinxydy, ∀x > 0. (8)

Lemma 3.3. The following estimation holds

∞
∫

0

|θ(x, u, v, w)|dx 6

√

2

π
K0(w).

Proof. We have

∞
∫

0

|e−w cosh(x+u+v+1) − e−w cosh(x−u−v−1)|dx

<

∞
∫

0

e−w cosh(x+u+v+1)dx+

∞
∫

0

e−w cosh(x−u−v−1)dx

=

∞
∫

−∞

e−w cosh ydy = 2K0(w). (9)

Proof of Theorem 3.2. Using Fubini theorem and the above lemma, we have

∞
∫

0

| γ∗ (f, g, h)(x)|dx 6

√

2

π

∫

R
3
+

|f(u)||g(v)||h(w)|K0(w)dudvdw

6

√

2

π

∫

R
3
+

|f(u)||g(v)||h(w)|K0(βw)dudvdw.
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Therefore

‖ γ∗ (f, g, h)‖L1(R+) 6

√

2

π
‖f‖L1(R+)‖g‖L1(R+)‖h‖L0,β

1
(R+) <∞,

the norm estimation is obtained.

We now prove the factorization equality. Indeed, we have

sin y (Fsf)(y)(Fsg)(y)(Kiyh) =

=
2

π

∞
∫

0

∞
∫

0

∞
∫

0

sin y sin(yu) sin(yv)Kiy(w)f(u)g(v)h(w)dudvdw.

Using formula 1.13.75, p. 62 in [3] we get

sin y (Fsf)(y)(Fsg)(y)(Kiyh) =

=
2

π

∞
∫

0

∞
∫

0

∞
∫

0

∞
∫

0

sin y sin(yu) sin(yv) cos(yα)e−w coshαf(u)g(v)h(w)dudvdwdα

=
1

4π

∞
∫

0

∞
∫

0

∞
∫

0

∞
∫

0

e−w cosh α[sin y(1 + α+ u− v) + sin y(1 + α− u+ v)

+ sin y(1 − α+ u− v) + sin y(1 − α− u+ v) − sin y(1 + α+ u+ v)

− sin y(1 + α− u− v) − sin y(1 − α+ u+ v)

− sin y(1 − α− u− v)]f(u)g(v)h(w)dudvdwdα. (10)

Interchanging variables we have

∞
∫

0

e−w cosh α[sin y(u− 1 + v + α)− sin y(u+ 1 + v + α)]dα

=

∞
∫

0

θ4(x, u, v, w) sin yxdx. (11)

Similarly,
∞
∫

0

e−w cosh α[sin y(u+ 1 − v + α)− sin y(u− 1 − v + α)]dα

=

∞
∫

0

θ2(x, u, v, w) sin yxdx; (12)

∞
∫

0

e−w cosh α[sin y(1 + α− u+ v)− sin y(α− u− 1 + v)]dα
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=

∞
∫

0

θ3(x, u, v, w) sin yxdx; (13)

∞
∫

0

e−w cosh α[sin y(α− u− 1 − v)− sin y(α− u+ 1 − v)]dα

=

∞
∫

0

θ1(x, u, v, w) sin yxdx. (14)

From formulas (10) - (14) we have

sin y (Fsf)(y)(Fsg)(y)(Kiyh) = Fs(
γ∗(f, g, h))(y).

By virtue of formula 1.13.75, p. 62 in [3] and the estimation [21]

|Kix(t) 6 e−|x| arccosβK0(βt), 0 < β 6 1,

the condition 0 < β 6 1 is sufficient for absolute convergence in x of the integral
(6). From the help of the Fubini theorem we easily see that

γ∗(f, g, h)(x) =

√

(

2

π

)3 ∫

R4
+

f(u)g(v)h(w)Kit(w) sin t sinxt sin tu sin tvdudvdwdt

=

√

2

π

∞
∫

0

sinxt(Fsf)(t)(Fsg)(t)(Kith) sin tdt.

The Parseval type identity is proved. Finally, since the integral (6) is absolutely

converges in x, from Riemann-Lebesgue lemma we have
γ∗(f, g, h)(x) ∈ C0(R+).

The proof is complete.

For the Fourier convolution, the Young theorem is fundamental [1]. Next, we
prove the Young’s type theorem for the Fourier sine convolution with a weight
function (2) in order to study the boundedness of the polyconvolution (6) in the
spaces Lp(R+), p > 1, and establish some norm estimations.

Lemma 3.4 (An Young’s type theorem). Let p, q, r > 1, be such that
1

p
+

1

q
+

1

r
= 2, and let f ∈ Lp(R+), g ∈ Lq(R+), h ∈ Lr(R+), then

∣

∣

∣

∣

∣

∣

∞
∫

0

(f
γ∗g)(x).h(x)dx

∣

∣

∣

∣

∣

∣

6 ‖f‖Lp(R+).‖g‖Lq(R+).‖h‖Lr(R+).

Proof. Let p1, q1, r1 be the conjugate exponentials of p, q, r, respectively, i.e.,
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1

p
+

1

p1
= 1,

1

q
+

1

q1
= 1,

1

r
+

1

r1
= 1.

Then it is obvious that
1

p1
+

1

q1
+

1

r1
= 1. Put

U(x, u) = | sign(x+ u− 1)g(|x+ u− 1|)
+ sign(x− u+ 1)g(|x− u+ 1|)|q/p1 .|h(x)|r/p1 ;

V (x, u) = |f(u)|p/q1 .|h(x)|r/q1 ;

W (x, u) = |f(y)|p/r1 .| sign(x+ u− 1)g(|x+ u− 1|)
+ sign(x− u+ 1)g(|x− u+ 1|)|q/r1 .

We have

(U.V.W )(x, u) = f(u)h(x)[sign(x+u−1)g(|x+u−1|)+sign(x−u+1)g(|x−u+1|)].
(15)

On the other hand, in the space Lp1
(R2

+) we have

‖U‖p1

Lp1
(R2

+
)
=

=

∞
∫

0

∞
∫

0

| sign(x+ u− 1)g(|x+ u− 1|) + sign(x− u+ 1)g(|x− u+ 1|)|q|h(x)|rdxdu

=

∞
∫

0





∞
∫

0

| sign(x+ u− 1)g(|x+ u− 1|) + sign(x− u+ 1)g(|x− u+ 1|)|qdu



×

× |h(x)|rdx.

Note that tq is a convex function, therefore, by changing variables we have

∞
∫

0

| sign(x+ u− 1)g(|x+ u− 1|) + sign(x− u+ 1)g(|x− u+ 1|)|qdu

6 2q−1
(

∞
∫

0

|g(|x+ u− 1|)|qdu+

∞
∫

0

|g(|x− u+ 1|)|qdu
)

= 2q

∞
∫

0

|g(u)|qdu.

It yields

‖U‖p1

Lp1
(R2

+
)
6 2q

∞
∫

0





∞
∫

0

|g(u)|qdu



 |h(x)|rdx = 2q‖g‖p
Lq(R+)‖h‖

r
Lr(R+). (16)
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Similarly,
‖W‖r1

Lr1
(R2

+
)
6 2q‖f‖p

Lp(R+)‖g‖
q
Lq(R+). (17)

It is obvious that ‖V ‖Lq1
(R2

+
) = ‖f‖p/q1

Lp(R+) ‖h‖
r/q1

Lr(R+). Hence, from (16) and (17)

we have

‖U‖Lp1
(R2

+
)‖V ‖Lq1

(R2
+

)‖W‖Lr1
(R2

+
) 6 2‖f‖Lp(R+)‖g‖Lq(R+)‖h‖Lr(R+). (18)

By a similar argument, we have

U1(x, u) =|g(x+ u+ 1) + sign(x − u− 1)g(|x− u− 1|)|
q

p1 |h(w)|
r

p1 ;

W1(x, u) =|f(u)

p

r1 |g(x+ u+ 1) + sign(x− u− 1)g(|x− u− 1|)|
q

r1 .

We obtain

‖U1‖Lp1
(R2

+
)‖V ‖Lq1

(R2
+

)‖W1‖Lr1
(R2

+
) 6 2‖f‖Lp(R+)‖g‖Lq(R+)‖h‖Lr(R+). (19)

From (15), (18) and (19), by the three-function form of Hölder’s inequality (see
[1]) we have

∣

∣

∣

∣

∣

∣

∞
∫

0

(f
γ∗
Fs

g)(x).h(x)dx

∣

∣

∣

∣

∣

∣

6
1

2
√

2π

∞
∫

0

∞
∫

0

(U(x, u).V (x, u).W (x, u) + U1(x, u).V (x, u).W1(x, u))dudx

6
1

2
√

2π

(

‖U‖Lp1
(R2

+
)‖V ‖Lq1

(R2
+

)‖W‖Lr1
(R2

+
) + ‖U1‖Lp1

(R2
+

)‖V ‖Lq1
(R2

+
)‖W1‖Lr1

(R2
+

)

)

6

√

2

π
‖f‖Lp(R+).‖g‖Lq(R+).‖h‖Lr(R+).

The proof is complete.

Corollary 3.5 (An Young’s type inequality). Let p, q, r be positive numbers

such that p > 1, q > 1, r > 1 and
1

p
+

1

q
= 1+

1

r
, and let f ∈ Lp(R+), g ∈ Lq(R+).

Then the Fourier sine convolution with a weight function (2) f
γ∗g belongs to

Lr(R+), moreover,

‖fγ∗g‖Lr(R+) 6

√

2

π
‖f‖Lp(R+)‖g‖Lq(R+).

Using Fourier sine convolution (2) and formula 2.16.48.19 in [10] one can prove
the following expression
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Lemma 3.6. For f, g ∈ L1(R+) and h ∈ L0,β
1 (R+), 0 < β 6 1, we have

γ∗(f, g, h)(x) =
1

2

∫

R
2
+

(f
γ∗ g)(u)h(u)[e−w cosh(u−x) − e−w cosh(u+x)]dudw.

The boundedness of the polyconvolution operator (6) in the function spaces
Lα,γ

r (R+), 1 6 r, α > −1, 0 < γ 6 1, is proved in the following theorem

Theorem 3.7. Let p > 1, q > 1, r > 1 be such that
1

p
+

1

q
= 1+

1

r
, and let s be the

conjugate exponential of r, and let f ∈ Lp(R+), g ∈ Lq(R+), h ∈ L0,β
s (R+), 0 <

β 6 1. Then the polyconvolution (6) exists, is continuous and bounded for all

x > 0. Moreover,
γ∗(f, g, h) ∈ Lα,γ

r (R+), 1 6 r < ∞, α > −1, 0 < γ 6 1, the

coefficients r, β, γ are independent and the following estimation holds

‖ γ∗ (f, g, h)‖Lα,γ
r (R+) 6 C‖f‖Lp(R+)‖g‖Lq(R+)‖h‖L0,β

s (R+),

where C =

√

2

π
(2γ)

−
1

r

(

2

γ

)

α

r
Γ

2

r

(

α+ 1

2

)

.

If, in addition, f ∈ L1(R+)∩Lp(R+), g ∈ L1(R+)∩Lq(R+), then the polycon-

volution (6) satisfies the factorization equality (7). Moreover, in case β ∈ (0, 1),

the polyconvolution
γ∗(f, g, h) ∈ C0(R+) and the Parseval identity (8) holds.

Proof. From Lemma 3.6 and the Hölder inequality we obtain

| γ∗ (f, g, h)(x)| 6

(

∫

R
2
+

|f γ∗
Fs

g)(u)|pe−wdudw
)

1
r
(

∞
∫

0

|h(w)|qK0(w)dw
)

1
s

6

(

∫

R
2
+

|f γ∗
Fs

g)(u)|rdu
)

1
r
(

∞
∫

0

|h(w)|sK0(βw)dw
)

1
s

.

Then Lemma 3.4 gives us

|(γ∗(f, g, h)(x)| 6

√

2

π
‖f‖Lp(R+)‖g‖Lq(R+)‖h‖L0,β

s (R+). (20)

It shows the boundedness, absolute convergence, and continuity of the polycon-

volution operator
γ∗(f, g, h)(x) on R+. Hence, by virtue of formula 2.16.2.2 in

[10] we get

‖ γ∗ (f, g, h)‖Lα,γ
r

(R+) 6

(

∞
∫

0

tαK0(γt)dt
)

1

r

√

2

π
‖f‖Lp(R+)‖g‖Lq(R+)‖h‖L0,β

s (R+)
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= C‖f‖Lp(R+)‖g‖Lq(R+)‖h‖L0,β
s (R+),

where C =

√

2

π
(2γ)−

1
r

(

2

γ

)
α
r

Γ
2
r

(

α+ 1

2

)

.

Besides, since f, g ∈ L1(R+), and the fact that L0,β
p (R+) ⊂ L0,β

1 (R+), Theorem

3.2 implies that
γ∗(f, g, h) ∈ C0(R+)∩L1(R+), then the factorization identity (7)

and the Parseval equality hold for β ∈ (0 ; 1). The proof is complete.

Corollary 3.8. With the same hypothesis as in Theorem 3.7, the polyconvolution

(6) exists for all x > 0, is continuous and belongs to Ll(R+). Moreover, the

following estimation holds

‖ γ∗ (f, g, h)‖Ll(R+) 6

(

π

2β

)

1

p ‖f‖|Lp(R+)‖g‖|Lq(R+)‖h‖|L0,β
s (R+). (21)

Especially, in case r = 2, we get the Parseval type equality

∞
∫

0

| γ∗ (f, g, h)(x)|2dx =

∞
∫

0

| sinx(Fsf)(x)(Fsg)(x)(Kixh)|2dx.

Proof. Using formulas (9), (20), Lemmas 3.4, 3.6, and the fact that

∞
∫

0

K0(βθ)dθ =
π

2β
,

we have

∞
∫

0

| γ∗ (f, g, h)(x)|rdx 6

(

∫

R2
+

|(f γ∗
Fs

g)(u)|rK0(βθ)dudθ
)(

∞
∫

0

|h(w)|sK0(βw)dw
)

r

s

6
π

2β

(

‖f‖Lp(R+)‖g‖Lq(R+)‖h‖L0,β
s (R+)

)r
.

Therefore the inequality (21) holds. Then using the factorization equality in
Theorem 3.2 we obtain the Parseval identity of Fourier type. The corollary is
proved.

Corollary 3.9. For f, g ∈ L1(R+), h ∈ L2(R+), the polyconvolution exists, is

continuous, bounded and belongs to Lα,γ
r (R+), 1 6 r < ∞, α > −1, 0 < γ 6 1,

moreover, the following estimation holds

‖ γ∗ (f, g, h)‖Lα,γ
r (R+) 6 C‖f‖L1(R+)‖g‖L1(R+)‖h‖L2(R+).

Proof. Using Schwarz inequality and the polyconvolution (6) we have
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| γ∗ (f, g, h)| 6
1

4
√

2π

(

∫

R
3
+

8|f(u)||g(v|e−wdudvdw
)1/2

×

×
(

∫

R
3
+

|f(u)||g(v)||h(w)|28e−wdudvdw
)1/2

6

√

2

π

(

∫

R2
+

|f(u)||g(v)|dudv
)1/2(

∫

R2
+

|f(u)||g(v)|h(w)|2dudvdw
)1/2

=

√

2

π
‖f‖L1(R+)‖g‖L1(R+)‖h‖L2(R+).

Therefore, by virtue of formulas (9), (20) we get

‖ γ∗ (f, g, h)‖Lα,γ
r (R+) 6 C‖f‖L1(R+)‖g‖L1(R+)‖h‖L2(R+).

The following corollary is proved similarly.

Corollary 3.10. For f, g, h ∈ L1(R+), the polyconvolution (6) exists. Moreover,

the polyconvolution operator is continuous, bounded, and belongs to Lα,γ
r (R+), 1 6

r <∞, α > −1, 0 < γ 6 1 and the following estimation holds

‖ γ∗ (f, g, h)‖Lα,γ
r (R+) 6 C‖f‖L1(R+)‖g‖L1(R+)‖h‖L1(R+).

4. The Integral Equation with the Toeplitz Plus Hankel Kernel

In this section, we introduce a new class of Toeplitz plus Hankel integral equa-
tions (1) related to polyconvolution (6) which can be solved in a closed form.
Namely, the integral equation (1) with the Hankel kernel k1 and the Toeplitz
kernel k2 defined as follows

k1(t) = k11(t) + k12(t) − k13(t) − k14(t),

k2(t) = k21(t) + k22(t) − k23(t) − k24(t).
(22)

In the case k21 ≡ −k11, k22 ≡ −k12, k23 ≡ −k13; k24 ≡ −k14, and

k11(t) =
1

4
√

2π

∫

R
2
+

e−w cosh(t+v+1)g(v)h(w)dvdw;

k12(t) =
1

4
√

2π

∫

R
2
+

e−w cosh(t−v−1)g(v)h(w)dvdw;
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k13(t) =
1

4
√

2π

∫

R
2
+

e−w cosh(t−v+1)g(v)h(w)dvdw; (23)

k14(t) =
1

4
√

2π

∫

R
2
+

e−w cosh(t+v−1)g(v)h(w)dvdw,

the Toeplitz plus Hankel integral equation with the kernels k1, k2 defined by (22)
is of the form

f(x) +

∞
∫

0

f(y)[k11(x+ y) + k12(x+ y) − k13(x+ y) − k14(x+ y) − k11(x− y)

− k12(x− y) + k13(x+ y) + k14(x − y)]dy = ϕ(x), x > 0. (24)

Theorem 4.1. Let g, ϕ ∈ L1(R+), h ∈ L0,β
1 (R+) be such that 1 + sin y(Fsg)(y)

(Kiyh) 6= 0. Then the equation (24) has a unique solution in L1(R+), which can

be written in a closed form as follows

f(x) = ϕ(x) − (ϕ ∗
1
ξ)(x),

here the function ξ ∈ L1(R+) is defined by

(Fcξ)(y) =
sin y(Fsg)(y)(Kiyh)

1 + sin y(Fsg)(y)(Kiyh)
.

Lemma 4.2. Let g ∈ L1(R+), h ∈ L0,β
1 (R+), then the generalized convolution

(g
γ∗
2
h)(x) belongs to L1(R+) and the respective factorization equality is

Fc(g
γ∗
2
h)(y) = sin y (Fsg)(y)(Kiyh), ∀y > 0,

where

(g
γ∗
2
h)(x) =

1

4

∞
∫

0

∞
∫

0

[e−v cosh(x+u−1) + e−v cosh(x−u+1) − e−v cosh(x+u+1)−

− e−v cosh(x−u−1)]g(u)h(v)dudv, x > 0.

Proof. We now prove Theorem 4.1 with the help of polyconvolution (6) and
convolutions (2), (3). The equation (24) can be rewritten in the following form

f(x) +
γ∗(f, g, h)(x) = ϕ(x).

Using factorization identity (7), this equation becomes

(Fsf)(y) + sin y(Fsf)(y).(Fsg)(y).(Kiyh) = (Fsϕ)(y).
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Therefore, by the given condition

(Fsf)(y) = (Fsϕ)(y)

(

1 − sin y(Fsg)(y)(Kiyh)

1 + sin y(Fsg)(y)(Kiyh)

)

.

Using Lemma 4.2 we get

(Fsf)(y) = (Fsϕ)(y)



1 −
Fc(g

γ∗
2
h)(y)

1 + Fc(g
γ∗
2
h)(y)



 . (25)

We recall that the Wiener-Levy theorem ([5, p.63]) states that if f is the Fourier
transform of an L1(R) function, and ϕ is analytic in a neighborhood of the origin
that contains the domain {f(y), ∀y ∈ R}, and ϕ(0) = 0, then ϕ(f) is also the
Fourier transform of an L1(R) function. For the Fourier cosine transform it means
that if f is the Fourier cosine transform of an L1(R+) function, and ϕ is analytic
in a neighborhood of the origin that contains the domain {f(y), ∀y ∈ R+}, and
ϕ(0) = 0, then ϕ(f) is also the Fourier cosine transform of an L1(R+) function.

With the given condition, the function θ(z) =
z

1 + z
satisfies the conditions

of the Wiener-Levy theorem [5], then there exists a function ξ ∈ L1(R+) such
that

(Fcξ)(y) =
sin y(Fsg)(y)(Kiyh)

1 + sin y(Fsg)(y)(Kiyh)
. (26)

From (25), (26) we have

(Fsf)(y) = (Fsϕ)(y)[1 − (Fcξ)(y)].

Then the solution in L1(R+) of the equation (24) has the form

f(x) = ϕ(x) − (ϕ ∗
1
ξ)(x),

here (· ∗
1
·) is defined by (3). Since ϕ, ξ are functions in L1(R+), one can easily

see that f ∈ L1(R+). The proof is complete.

The following corollaries of Theorem 3.2 give us a necessary condition for a
solution in L1(R+) of equation (24) and a norm estimation on L1(R+) of the
solution.

Corollary 4.3. For g, ϕ ∈ L1(R+), h ∈ L0,β
1 (R+), a necessary condition for the

solution f in L1(R+) of equation (24) is

‖f‖L1(R+) >
‖ϕ‖L1(R+)

1 + ‖g‖L1(R+)‖h‖L0,β
1

(R+)

.

Corollary 4.4. With the same hypothesis as in Theorem 4.1, the solution f of

the equation (24) satisfies the following estimation
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‖f‖L1(R+) 6 ‖ϕ‖L1(R+)(1 + ‖ξ‖L1(R+)).

5. Systems of Integral Equations with the Toeplitz Plus Hankel
Kernels

Finally, in this section, we consider two classes of systems of integral equations
with the Toeplitz plus Hankel kernel related to polyconvolution (6) which can
be solved in a closed form. These systems are introduced for the first time in
this paper.

5.1.We consider the system of two integral equations with the Toeplitz plus
Hankel kernel

f(x) +

∞
∫

0

ξ(u)(k1(x+ u) + k2(x− u))du = p(x)

ξ(x) +

∞
∫

0

f(u)(k3(x+ u) + k4(x− u))du = q(x), x > 0.

(27)

The solutions in a closed form for this system in general case is still open. In
this part we consider the system (27) in the case

k1(t) =k11(t) + k12(t) − k13(t) − k14(t),

k2(t) =k21(t) + k22(t) − k23(t) − k24(t),

k3(t) =k31(t) + k32(t) − k33(t) − k34(t),

k4(t) =k41(t) + k42(t) − k43(t) − k44(t),

(28)

here k1i(t), i = 1, ..., 4 is defined in (23), and k3i(t) as in (23) in the case
g ≡ ϕ, h ≡ ψ; k2i(t) ≡ −k1i, k4i ≡ −k3i, i = 1, ..., 4; f and ξ are unknown;
g, h, ϕ, ψ, p, q are given.

Theorem 5.1. Let g, ϕ, p, q ∈ L1(R+), and h, ψ ∈ L0,β
1 (R+) be such that

1 − sin2 y(Fsg)(y)(Fsϕ)(y)(Kiyh)(Kiyψ) 6= 0.

Then system (27) with kernels defined by (28) has a unique solution in L1(R+)×
L1(R+) and the solution can be expressed in a closed form as follows

f(x) = p(x) + (p ∗
1
l)(x) − γ∗(q, g, h)(x) − (

γ∗(q, g, h) ∗
1
l)(x), x > 0,

ξ(x) = q(x) + (q ∗
1
l)(x) − γ∗(p, ϕ, ψ)(x) − (

γ∗(p, ϕ, ψ) ∗
1
l)(x), x > 0,

here, (· ∗
1
·) is defined by (3),

γ∗(·, ·, ·) is defined by (6), and l ∈ L1(R+) is defined

as
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(Fcl)(y) =
sin2 y(Fsg)(y)(Fsϕ)(y)(Kiyh)(Kiyψ)

1 − sin2 y(Fsg)(y)(Fsϕ)(y)(Kiyh)(Kiyψ)
. (29)

Proof. The system (27) with kernels defined by (28) can be rewritten in the
following form

f(x) +
( γ∗ (g, h, ξ)

)

(x) = p(x), x > 0,
( γ∗ (ϕ, ψ, f)

)

(x) + ξ(x) = q(x).

Using Theorem 3.2 we have

(Fsf)(y) + sin y(Fsg)(y)(Kiyh)(Fsξ)(y) = (Fsp)(y),

sin y(Fsϕ)(y)(Kiyψ)(Fsf)(y) + (Fsξ)(y) = (Fsq)(y), y > 0.

Using Theorem 3.2 and Lemma 4.2 we have

∆ =

∣

∣

∣

∣

1 sin y(Fsg)(y)(Kiyh)
sin y(Fsϕ)(y)(Kiyψ 1

∣

∣

∣

∣

= 1 − Fc(
γ∗(ϕ, g, h) γ∗

2
ψ)(y).

By virtue of Wiener-Levy theorem [5], there exists a unique function l ∈ L1(R+)
satisfying (29), it shows that

1

∆
= 1 + (Fcl)(y). (30)

On the other hand, from Theorem 3.2 we get

∆1 =

∣

∣

∣

∣

(Fsp)(y) sin y(Fsg)(y)(Kiyh)
(Fsq)(y) 1

∣

∣

∣

∣

= (Fsp)(y) − Fs(
γ∗(q, g, h))(y). (31)

Therefore, from (30), (31) and (3) we obtain

(Fsf)(y) = (1 + (Fcl)(y))((Fsp)(y) − Fs(
γ∗(q, g, h))(y))

= (Fsp)(y) + Fs(p ∗
1
l)(y) − Fs(

γ∗(q, g, h))(y) − Fs(
γ∗(q, g, h) ∗

1
l)(y).

This implies that

f(x) = p(x) + (p ∗
1
l)(x) − γ∗(q, g, h)(x) − (

γ∗(q, g, h) ∗
1
l)(x), x > 0. (32)

Similarly,

∆2 = (Fsq)(y) − Fs(
γ∗(p, ϕ, ψ))(y). (33)

From (30), (33) and (3) we have

(Fsξ)(y) = (1 + (Fcl)(y))((Fsq)(y) − Fs(
γ∗(p, ϕ, ψ))(y))

= (Fsq)(y) + Fs(q ∗
1
l)(y) − Fs(

γ∗(p, ϕ, ψ))(y) − Fs(
γ∗(p, ϕ, ψ) ∗

1
l)(y).
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Therefore

ξ(x) = q(x) + (q ∗
1
l)(x) − γ∗(p, ϕ, ψ)(x) − (

γ∗(p, ϕ, ψ) ∗
1
l)(x), x > 0. (34)

From the hypothesis, and since l ∈ L1(R+), we can easily see that f and ξ belong
to L1(R+). The pair (f, g) defined by (32) and (34) is the solution in a closed
form in L1(R+) × L1(R+) of system (27) with kernels defined by (28).

5.2. We now consider the system of three integral equations with Toeplitz plus
Hankel kernels

f(x) +

∞
∫

0

g(u)
(

4
∑

i=1

(k1i(x + u) − k2i(x− u))(−1)
i−1

2
i
)

du =p(x), x > 0,

g(x) +

∞
∫

0

h(u)
(

4
∑

i=1

(k3i(x + u) − k4i(x− u))(−1)
i−1

2
i
)

du =q(x), x > 0,

h(x) +

∞
∫

0

f(u)
(

4
∑

i=1

(k5i(x + u) − k6i(x− u))(−1)
i−1

2
i
)

du =r(x), x > 0.

(35)

Here f, g, h are unknown functions, p, q, r, ϕi, ψi (i = 1, 2, 3) are given functions.
Systems of three integral equations in the general case are still open.

With the same techniques as in the proof of Theorem 5.1, we obtain the
solution of system (35) in the case

k2i ≡ −k1i, k4i ≡ −k3i, k6i ≡ −k5i, i = 1, ..., 4, (36)

where k1i (i = 1, ..., 4) are respectively defined as in (23) in the case h ≡ ϕ1, g ≡
ψ1;
k3i (i = 1, ..., 4) are respectively defined as in (23) in the case h ≡ ϕ2, g ≡ ψ2;
k5i (i = 1, ..., 4) are respectively defined as in (23) in the case h ≡ ϕ3, g ≡ ψ3.

Theorem 5.2. Let ϕi, i = 1, 2, 3, p, q, r be functions in L1(R+), and ψi, i =

1, 2, 3 be functions in L0,β
1 (R+) such that

1 − sin3 y(Fsϕ1)(y)(Fsϕ2)(y)(Fsϕ3)(y)(Kiyψ1)(Kiyψ2)(Kiyψ3) 6= 0,

then the system (35) with kernels defined by (36) has a unique solution (f, g, h)
in L1(R+)×L1(R+)×L1(R+) and the solution can be expressed in a closed form

as follows

f(x) = p(x) + (p ∗
1
η)(x) − γ∗(r, ϕ1, ψ1)(x) − (

γ∗(r, ϕ1, ψ1) ∗
1
η)(x)

+ (
γ∗(γ∗(r, ϕ1, ψ1), ϕ2, ψ2)(x) + (

γ∗(γ∗(r, ϕ1, ψ1), ϕ2, ψ2) ∗
1
η)(x), x > 0,

g(x) = q(x) + (q ∗
1
η)(x) − γ∗(r, ϕ2, ψ2)(x) − (

γ∗(r, ϕ2, ψ2) ∗
1
η)(x)
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+ (
γ∗(γ∗(r, ϕ2, ψ2), ϕ3, ψ3)(x) + (

γ∗(γ∗(r, ϕ2, ψ2), ϕ3, ψ3) ∗
1
η)(x), x > 0,

h(x) = r(x) + (r ∗
1
η)(x) − γ∗(p, ϕ3, ψ3)(x) − (

γ∗(p, ϕ3, ψ3) ∗
1
η)(x)

+ (
γ∗(γ∗(q, ϕ1, ψ1), ϕ3, ψ3)(x) + (

γ∗(γ∗(q, ϕ1, ψ1), ϕ3, ψ3) ∗
1
η)(x), x > 0.

Here, (·∗
1
·) is defined by (3),

γ∗(·, ·, ·) is defined by (6), and η ∈ L1(R+) is defined

by

(Fcη)(y) =

sin3 y
3
∏

i=1

(Fsϕi)(y)(Kiyψ)

sin3 y
3
∏

i=1

(Fsϕi)(y)(Kiyψ)

.

Remark 5.3. Similar results for the polyconvolution (6) with weight functions
γ(x) = sin ξx, ξ ∈ R/{0} can be obtained easily.
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