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Abstract. The Araki-Kudo-Dyer-Lashof algebra R, which is an algebra of operations

acting on the homology of infinite loop space, is isomorphic to the algebra of Dickson
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1. Introduction and Statement of Results

Let F be the free graded associative algebra with unit over F2 generated by the
symbols Q0, Q1, . . . , Qi, . . . , where degQi = i. For any string of non-negative
integers I = (ik−1, . . . , i0), define QI = Qik−1 · · ·Qi0 . We call that QI (or I) is
admissible if is ≤ 2is−1, for 1 ≤ s ≤ k − 1, and define the excess of QI (or I) to
be

e(QI) = ik−1 −

k−2
∑

j=0

ij .

The length of QI , `(QI) is the number of integers in I, i.e. `(QI) = `(I) = k
if I = (ik−1, . . . , i0). The degree of QI is ik−1 + · · · + i0.
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Let J be the two-sided ideal of F generated by the elements of one of the
following forms:

(i) QaQb +
∑

i

(

i−b−1
2i−a

)

Qa+b−iQi, a > 2b.

(ii) QI , with e(QI) < 0.

The quotient algebra R = F/J is called the Araki-Kudo-Dyer-Lashof algebra.
It was used to describe the mod 2 homology of the infinite loop space QS0 ([1],
[3]), namely,

H∗(QS0) = P [QI [1]|I admissible, e(QI) ≥ 0] ⊗ F2[Z],

where [1] ∈ H∗(QS0) is the image of the non-base point generator of H0S
0 =

F2 ⊗ F2 under the canonical inclusion S0 ↪→ QS0.

The relations (i) are usually called Adem relations because of their similarity
with the usual Adem relations in the Steenrod algebra. Together with (ii), it is
well-known that the set of all admissible monomials of non-negative excess forms
an additive basis of R. This basis is called the admissible basis.

Let R[k] be the subspace of R spanned by the elements QI of length k. In
fact, R[k] is a sub-coalgebra of R.

In this paper, we provide a new additive basis for the Araki-Kudo-Dyer-Lashof
algebra, and discuss the relationship between this basis and the known bases.

The following is one of our main results.

Theorem 1.1. The set of all monomials Qjk−1 · · ·Qj0 , where jn ≥ 2jn−1, for

1 ≤ n ≤ k − 1, and jn is divisible by 2n, is an additive basis of R[k].

For example, the set {Q12Q0, Q10Q2, Q8Q4} is an additive basis for R[2] in
degree 12.

Let QI and QJ be monomials of length k, we call QI ≤ QJ (resp. QI ≤R QJ)
if I ≤ J in the lexicographic ordering from the left (resp. from the right).

Let AAdm be the admissible basis for R, and let AC be the basis in Theo-
rem 1.1. We choose the order ≤ for AAdm and the order ≤R for AC . Then, using
Lemma 2.2 and Theorem 1.1, we obtain the following result.

Corollary 1.2. The change of basis matrix between AAdm and AC is upper tri-

angular with respect to the order chosen for each basis.

In order to find the change of basis matrix we first describe the basis AC and
then use Adem relations to convert them to the admissible basis. For example,
in degree 12,

AC = {Q12Q0, Q10Q2, Q8Q4} and AAdm = {Q6Q6, Q7Q5, Q8Q4}.

On the other hand, by direct inspection, we have

Q12Q0 = Q6Q6; Q10Q2 = Q7Q5 + Q6Q6; Q8Q4 = Q8Q4.
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So the change of basis matrix is





1 1 0
0 1 0
0 0 1



 .

For any linear ordering on the set of monomials in R, a monomial is called
maximal (minimal) with respect to the given ordering if it cannot be expressed
as combination of larger (smaller) monomials. An easy but crucial observation,
which was used in great effect in Arnon’s work on the construction of new bases
for the Steenrod algebra (see [2]), is that the set of maximal (minimal) monomials
with respect to any given linear ordering forms a vector space basis for R.

The following theorem, which claims that our basis is the basis of maximal
monomials with respect to the order ≤, is the second main result in this paper.

Theorem 1.3. AC is the basis consisting of all maximal monomials of R[k] with

respect to the order ≤.

Remark 1.4. It is straightforward to verify that the admissible basis is the
basis consisting of all minimal monomials with respect to the left lexicographic
ordering.

The Araki-Kudo-Dyer-Lashof algebra is closely related to the Dickson-Mùi
algebra. To be more precise, define a sequence Iik, each of length k, as follows:

Iik =

{

(2k−i−1(2i − 1), . . . , 2(2i − 1), 2i − 1, 2i−1, . . . , 2, 1), 1 ≤ i < k;
(2k−1, . . . , 2, 1), i = k.

It is clear that for each pair k < i, QIik is an admissible monomial of non-
negative excess. Let ξik be the dual of QIik in R[k]∗. That is, ξik is such that
〈

ξik, QIik
〉

= 1 and
〈

ξik, QI
〉

= 0 for all other admissible sequence I 6= Iik. In
[6], Madsen computed the dual R[k]∗ and proved that it is isomorphic to the
polynomial algebra on the generators ξik:

R[k]∗ ∼= F2[ξ1k, . . . , ξkk],

where ξik is in degree 2k−i(2i−1). This was soon extended to odd primary cases
by May [7]. Later, it was recognized that this dual algebra is exactly the Dickson
algebra of invariant elements of the polynomial rings Pk = F2[x1, . . . , xk] under
the usual action of the general linear group GLk of k×k invertible matrices over
the field F2.

To describe our next results, we need to introduce several definitions. Let Ek

be a k-dimensional vector space over F2. It is well-known that the cohomology of
BEk is the polynomial algebra Pk := F2[x1, . . . , xk] where each xi is in degree 1.
The homology of BEk, H∗(BEk) = Γ (a1, . . . , ak), is the divided power algebra
generated by a1, . . . , ak, each of degree 1, where ai is the dual of xi ∈ H1(BE1).
The general linear group GLk = GL(Ek) acts regularly on Ek and therefore on
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the homology and cohomology of BEk. The Dickson algebra [4], which is the
algebra of all GLk-invariants has the following well-known description:

Dk := H∗(BEk)GLk ∼= F2[x1, · · · , xk]GLk = F2[Qk,0, Qk,1, · · · , Qk,k−1],

where Qk,i denotes the Dickson invariant of degree 2k − 2i (see Section 4).

In [10], Mùi provided an explicit isomorphism R[k] ∼= D∗
k as coalgebra over

the Steenrod algebra. We note in passing that a description of the dual of the
Araki-Kudo-Dyer-Lashof algebra was worked out in [7] by May in odd primary
cases, but the situation is much more complicated. Kechagias in [5] provided a
similar correspondence between R[k]∗ and the invariant rings [H∗(BEk)]GLk -
which was completely identified by Mùi [9]. However, R[k]∗ is not isomorphic
to the entire invariant ring. In [11], Turner introduced an additive basis for the
dual of the Dickson algebra, which we will call the Turner basis.

Theorem 1.5. ([11]) The set {[a
[t1]
1 a

[2(t1+t2)]
2 · · · a

[2k−1(t1+···+tk)]
k ]|ti ≥ 0} forms

a basis for the dual D∗
k of the Dickson algebra.

Under Mùi’s isomorphism, we automatically obtain a basis for the Araki-Kudo-
Dyer-Lashof R[k], which is also called the Turner basis. Order elements of this
basis lexicographically. The following theorem, which claims that the relation
between the admissible basis and the Turner’s basis is upper triangular, is the
final result in this paper.

Theorem 1.6. The change of basis matrix between the admissible basis and

Turner’s one is triangular with respect to the order chosen for each basis.

Combining Theorem 1.6 and Corollary 1.2, we have the following result.

Corollary 1.7. The change of basis matrix between our basis and Turner’s basis

is upper triangular with respect to the order chosen for each basis.

2. Proof of Theorem 1.1

For a fixed positive integer k, we define two sets

S = {I = (ik−1, . . . , i0) : 0 ≤ in ≤ 2in−1, e(I) ≥ 0},

S′ = {J = (jk−1, . . . , j0) : jn ≥ 2jn−1 ≥ 0, 2n
∣

∣jn}.

Let ∆ : S → S′ be a function such that ∆(ik−1, . . . , i0) = (jk−1, . . . , j0), where

jk−1 = 2k−1i0, jn = 2n(ik−1−n −

k−n−2
∑

s=0

is) if 0 ≤ n ≤ k − 2. (1)

Lemma 2.1. The function ∆ is a bijection.
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Proof. It is clear from (1) that jn is divisible by 2n and

j0 = ik−1 − ik−2 − · · · − i0 = e(I) ≥ 0.

By direct inspection, we have jn = 2n+1ik−1−n−2nik−n+2jn−1, ∀ 0 < n ≤ k − 1.

Hence jn − 2jn−1 = 2n(2ik−1−n − ik−n) ≥ 0. Moreover, j0 ≥ 0 and it follows
that jn are also non-negative for all 0 ≤ n ≤ k − 1. Thus, ∆ is well defined.

We now define an inverse of ∆. Let Φ : S′ → S be such that

Φ(jk−1, . . . , j0) = (ik−1, . . . , i0),

where

i0 =
jk−1

2k−1
, is =

2jk−1−s + jk−s + · · · + jk−1

2k−s
, 0 < s ≤ k − 1.

It is straightforward to show that Φ and ∆ are indeed inverse functions of one
another.

Let QaQb be an admissible non-trivial monomial. Thus, we must have
b ≤ a ≤ 2b. The Adem relation shows that

Q2bQa−b =
∑

t≥b

(

t − (a − b) − 1

2t − 2b

)

Qa+b−tQt = QaQb +
∑

t>b

Mt,

where for each t > b, Mt is admissible and strictly less than QaQb.

So, we have

QaQb = Q2bQa−b +
∑

t

Mt, (2)

where Mt is admissible and strictly less than QaQb. More generally, we have the
following.

Lemma 2.2. Let QI = Qik−1 · · ·Qi0 be an admissible non-trivial monomial.

Then

QI = Q∆(I) +
∑

t

Mt,

where Mt is admissible and strictly less than QI.

Example 2.3. If I = (22, 12, 8), then ∆(I) = (32, 8, 2). Thus

Q(22,12,8) = Q(32,8,2) + other terms.

In fact, we have

Q22Q12Q8 = Q32Q8Q2 + Q21Q13Q8 + Q21Q12Q9.

Proof of Lemma 2.2. Clearly, the assertion of the lemma is true for k = 1.
Suppose QI is an admissible monomial of non-negative excess. Then Qik−1 · · ·Qi1
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is also admissible, having non-negative excess. By induction, we may write

Qik−1 · · ·Qi1 = Q2k−2i1 · · ·Qik−1−···−i1 +
∑

t

Pt,

where Pt are admissible and strictly less than Qik−1 · · ·Qi1 . It follows that

QI = Q2k−2i1 · · ·Qik−1−···−i1Qi0 +
∑

t

PtQ
i0

= Q2k−2i1 · · ·Qik−1−···−i1Qi0 +
∑

t

P ′
t ,

(3)

where P ′
t is admissible and strictly less than QI . Because I is admissible, ik−1 −

· · · − i1 ≤ 2i0, and by hypothesis, e(QI) = ik−1 − ik−2 − · · · − i1 − i0 ≥ 0.

Applying (2) for Qik−1−···−i1Qi0 , we get

Q2k−2i1 · · ·Qik−1−···−i1Qi0 = Q2k−2i1 · · ·Q2(ik−2−···−i1)Q2i0Qik−1−···−i0 +
∑

Ns,

where Ns = Q2k−2i1 · · ·Q2(ik−2−···−i1)QusQu′

s , for us < ik−1− ik−2−· · ·− i1 and
u′

s > i0.

Now apply again the Adem relation for Q2(ik−2−···−i1)Qus we obtain

Ns =
∑

l

Q2k−2i1 · · ·Q22(ik−3−···−i1)QuslQvlQu′

s ,

where usl < ik−1 − 2(ik−3 + · · · + i1) < 2(ik−2 − · · · − i1).

Repeatedly applying Adem relation, finally we have

Ns =
∑

Qak−1 · · ·Qa1Qu′

s ,

where ak−1 < ik−1. Thus,

Q2k−2i1 · · ·Qik−1−···−i1Qi0 = Q2k−2i1 · · ·Q2(ik−2−···−i1)Q2i0Qik−1−···−i0 +
∑

Ls,

where Ls is admissible and strictly less than QI .

By induction, we have

Q2k−2i1 · · ·Qik−1−···−i1Qi0 = Q2k−1i0 · · ·Qik−1−···−i0 +
∑

N ′
r,

where N ′
r is admissible and strictly less than QI .

Thus, (3) can be rewritten as,

QI = Q∆(I) +
∑

t

Mt,

where Mt is admissible and strictly less than QI .
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Proof of Theorem 1.1. Put

Ak := {Qjk−1Qjk−2 · · ·Qj0 : js ≥ 2js−1 ≥ 0, 2s
∣

∣js, 1 ≤ s ≤ k − 1}.

Lemma 2.1 shows that in each degree, the number of elements of Ak is equal
to the dimension of R[k]. Therefore, it suffices to prove that Ak is a generating
set for R[k]. Now we make use of Lemma 2.2. For any admissible monomial QI ,
we can write QI as a sum of Q∆(I) and some other monomials Mt which are also
admissible and strictly less than QI . By induction on the order of monomials,
we have the assertion.

Example 2.4. We have

Q21Q13Q8 = Q32Q10Q0 + Q21Q12Q9 + Q21Q11Q10,

Q21Q11Q10 = Q40Q2Q0.

Thus, from Example 2.3, we obtain

Q22Q12Q8 = Q32Q8Q2 + Q32Q10Q0 + Q40Q2Q0.

where all monomials on the right hand side are in A3.

3. Proof of Theorem 1.3

It is sufficient to prove that if QI is not of the form described in AC , then it is
not maximal. A monomial QI = Qjk−1 · · ·Qj0 is not in AC if and only if at least
one of the following is satisfied:

1. js < 2js−1 for some s, or

2. js is not divisible by 2s for some s.

In the first case, if js < js−1 then QjsQjs−1 = 0 and QI = 0 as well. Otherwise,
we can apply the Adem relation:

QI = Qjk−1 · · ·Q2js−1Qjs−js−1 · · ·Qj0 +
∑

t

Mt,

where Qjk−1 · · ·Q2js−1Qjs−js−1 · · ·Qj0 > QI .

We now consider the second case. Let s be such that QI contains a factor
QjsQjs−1 · · ·Qj0 , where jr is divisible by 2r for all 0 ≤ r ≤ s − 1 and js = 2mu,
with m ≤ s − 1 and u odd. Moreover, we can assume that js > 2js−1, js−1 ≥
2js−1, . . . , j1 ≥ 2j0.

We consider two separate cases.

Case 1. If m = 0, then js = u is odd. Since
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QjsQjs−1 =
∑

2t≥js

(

t − js−1 − 1

2t − js

)

Qjs+js−1−tQt,

it follows that QjsQjs−1 6= 0 if and only if there exists some t, js < 2t ≤ js+js−1,
such that

(

t−js−1−1
2t−js

)

is odd. In that case, we have

QjsQjs−1 = Qjs+js−1−tQt + other terms.

Apply relation (2), we have

QjsQjs−1 = Q2tQjs+js−1−2t + other terms.

Therefore, QI can be expressed as

QI = Qjk−1 · · ·Q2tQjs+js−1−2t · · ·Qj0 + other terms,

where 2t > js, so Qjk−1 · · ·Q2tQjs+js−1−2t · · ·Qj0 > QI .

Case 2. If m > 0, the Adem relation for QjsQjs−1 has the form:

QjsQjs−1 = Qjs/2+js−1Qjs/2 +
∑

t>js/2

(

t − js−1 − 1

2t− js

)

Qjs+js−1−tQt.

If there exists t, js

2 < t ≤ js+js−1

2 , such that
(

t−js−1−1
2t−js

)

is odd, then we are
back to the Case 1.

If no such t exist, then QjsQjs−1 = Qjs/2+js−1Qjs/2. Since js/2 > 2js−2, we
can then apply the Adem relation for Qjs/2Qjs−2 . Repeat this process at most
m step, we obtain either Qjs · · ·Qj0 = 0, therefore QI = 0 or Qjs · · ·Qj0 can be
expressed as

Qjs · · ·Qj0 = Qjs/2+js−1 · · ·Qjs/2r+js−r−tQtQjs−r−1 · · ·Qj0 + other terms, (4)

where r ≤ m and js/2r + js−r ≥ 2t > js/2r.

Applying relation (2), we have

Qjs/2r+js−r−tQt = Q2tQjs/2r+js−r−2t + other terms.

Then, (4) can be rewritten as

Qjs · · ·Qj0 = Qjs/2+js−1 · · ·Q2tQjs/2r+js−r−2t · · ·Qj0 + other terms.

Note that

2t > js/2r > js/2r−1 + js−r+1 and 22t ≤ js/2r−1 + 2js−r ≤ js/2r−1 + js−r+1.

Applying (2), and repeating this process, finally (4) can be expressed by
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Qjs · · ·Qj0 = Q2r+1tQjs/2+js−1−2rt · · ·Qjs/2r+js−r−2t · · ·Qj0 + other terms.

Hence,

QI = Qjk−1 · · ·Q2r+1t · · ·Qj0 + other terms,

where QI < Qjk−1 · · ·Q2r+1t · · ·Qj0 .

The proof of Theorem 1.3 is complete.

Using a similar method, we can prove that AAdm is the basis consisting of all
maximal monomials, and AC is the basis consisting of all minimal monomials of
R[k] with respect to the right lexicography order ≤R.

4. Proof of Theorem 1.6

We use the notations for H∗(BEk) = F2[x1, . . . , xk] and H∗(BEk) = Γ (a1, . . . , ak)
as in the introduction.

Let GLk and Tk be the general linear group and the group of upper triangular
matrices with 1’s on the main diagonal. These groups act canonically on Ek and
therefore on the homology and cohomology of BEk. The invariant ring of Tk and
GLk are determined by Mùi [9] and Dickson [4] as follows:

F2[x1, . . . , xk]Tk = F2[V1, . . . , Vk],

F2[x1, . . . , xk]GLk = F2[Qk,0, . . . , Qk,k−1],

where
Vn =

∏

λi∈F2

(λ1x1 + · · · + λn−1xn−1 + xn),

and the generators Vi and Qk,j are related by the following recursive formula:

Qk,n = Q2
k−1,n−1 + VkQk−1,n, 0 ≤ n < k.

By convention, let Qk,j = 0 if j < 0 or j > k, and Qn,n = 1.

For a string of non-negative integer I = (t1, . . . , tk), we denote v(I) =
v(t1, . . . , tk) the dual of V t1

1 · · ·V tk

k with respect to the additive basis V h1

1 · · ·V hk

k

of F2[V1, . . . , Vk]. Similarly, let q(I) = q(t1, . . . , tk) be the dual of Qt1
k,0 · · ·Q

tk

k,k−1

with respect to the additive basis Qh1

k,0 · · ·Q
hk

k,k−1 of F2[Qk,0, . . . , Qk,k−1].

In [10], Mùi described explicitly an isomorphism as coalgebra over the Steen-
rod algebra between R[k] and the dual of the Dickson algebra D∗

k:

Qi1 · · ·Qik 7→ [v(i1 − · · · − ik, i2 − · · · − ik, . . . , ik)].

In this section, we will use this isomorphism to find the relationship between
our new basis and Turner’s basis in [11].
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We order the k-tuples I = (i1, . . . , ik) lexicographically from the left.

Proof of Theorem 1.6. It is easy to see that for each k-tuple I = (i1, . . . , ik),

V I = V i1
1 · · ·V ik

k = xi1
1 x2i2

2 · · ·x2k−1ik

k + greater monomials.

Moreover, it is clear that if xi1
1 x2i2

2 · · ·x2k−1ik

k occurs as a nontrivial summand in a
V J , then J must be greater than I. Therefore, we can construct a representation
of v(I) as follows.

Put

θ(I) = a
[i1]
1 a

[2i2]
2 · · · a

[2k−1ik]
k +

s
∑

`=1

µ`a
[u`

1]
1 a

[2u`
2]

2 · · ·a
[2k−1u`

k]
k ,

where I > (u1
1, . . . , u

1
k) > · · · > (us

1, . . . , u
s
k),

∑k
s=1 2s−1u`

s =
∑k

s=1 2s−1is for all
`; and µ` is defined inductively by

µ` =

〈

a
[i1]
1 a

[2i2]
2 · · · a

[2k−1ik]
k +

`−1
∑

j=1

µja
[uj

1
]

1 a
[2uj

2
]

2 · · · a
[2k−1uj

k
]

k , V
u`
1

1 · · ·V
u`

k

k

〉

.

It is easy to check that

〈

θ(I), V J
〉

=

{

1 if I = J,
0 if I 6= J.

Thus, θ(I) is a representation of v(I). So that, under Mùi’s isomorphism,

Qi1 · · ·Qik 7→ [θ(j1, . . . , jk)]

= [a
[j1]
1 a

[2j2]
2 · · · a

[2k−1jk]
k ] + smaller terms.

Since QI is admissible, [a
[j1]
1 a

[2j2]
2 · · · a

[2k−1jk]
k ] is an element in the Turner

basis. The proof is complete.

Example 4.1. In degree 12, the admissible basis and Turner’s basis for R[2] are

{Q8Q8, Q9Q7, Q10Q6}, and {[a
[0]
1 a

[16]
2 ], [a

[2]
1 a

[14]
2 ], [a

[4]
1 a

[12]
2 ]}.

Under the Mùi’s isomorphism and the above analysis, we obtain

Q8Q8 7→ [v(0, 8)] = [θ(0, 8)] = [a
[0]
1 a

[16]
2 ];

Q9Q7 7→ [v(2, 7)] = [θ(2, 7)] = [a
[2]
1 a

[14]
2 ];

Q10Q6 7→ [v(4, 6)] = [θ(4, 6)] = [a
[4]
1 a

[12]
2 ] + [a

[2]
1 a

[14]
2 ].
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Thus, the change of basis matrix is





1 0 0
0 1 1
0 0 1



 .

Final remark. We believe that our basis can be used to describe the struc-
ture of the mod 2 homology of QS0 considered as an E(1)-module, and then
the structure of ExtE(1)(F2, H

∗(QS0)), which is the E2-term of Adams spectral
sequence converging to ku∗(QS0) (see [12]).
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