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Abstract. We consider the One-Prime-Not-p and All-Primes-But-p variants of the

Discrete Logarithm (DL) problem in a group of prime order p. We give reductions

to the Diffie-Hellman (DH) problem that do not depend on any unproved conjectures

about smooth or prime numbers in short intervals. We show that the One-Prime-Not-p-

DL problem reduces to DH in time roughly Lp(1/2); the All-Primes-But-p-DL problem

reduces to DH in time roughly Lp(2/5); and the All-Primes-But-p-DL problem reduces

to the DH plus Integer Factorization problems in polynomial time. We also prove that

under the Riemann Hypothesis, with ε log p queries to a yes-or-no oracle one can reduce

DL to DH in time roughly Lp(1/2); and under a conjecture about smooth numbers,

with ε log p queries to a yes-or-no oracle one can reduce DL to DH in polynomial time.

1. Introduction

Almost all commercially deployed public key cryptosystems depend for their
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security on the presumed intractability of one of the following two mathematical
problems: (a) Integer Factorization and (b) Discrete Logarithm. More concretely,
in (a) one assumes that, given an “RSA modulus” N that is the product of two
large primes p and q, it is infeasible to find p and q; and in (b) one assumes
that if G is a suitably chosen group of prime order p, it is infeasible to invert
the function x 7→ xP , where x is an integer mod p and P is a fixed non-identity
group element (here we are using additive notation for the group operation).

However, a matter of great concern since the early days of public key cryptog-
raphy has been the fact that the security implication goes only one way. That
is, an adversary who can factor the RSA modulus or compute discrete loga-
rithms has broken the corresponding cryptosystem. However, there are many
other ways to compromise security short of solving the Integer Factorization or
Discrete Logarithm problem. In RSA encryption [35], for example, in order to
recover plaintext from ciphertext the function that must be inverted is x 7→ xe

mod N (where the encryption exponent e, along with the modulus N , forms the
public key). Someone who knows the factorization of N = pq can easily do this,
and hopefully someone who does not know the factorization cannot. However,
the equivalence of factorization and inversion of the RSA function is a longstand-
ing conjecture — and one that some researchers believe might be false (see [6]).
In other words, inverting the RSA encryption function might be strictly easier
than factoring N .

Similarly, the classic Diffie-Hellman key exchange [10] in G works as follows.
Alice and Bob each generate a random number x and y, respectively, and keep it
secret. Alice sends Bob the group element xP , and he sends her yP ; the shared
key is then xyP . The problem of determining xyP knowing only P , xP , and yP
is called the Diffie-Hellman problem. An adversary who can compute discrete
logarithms can obviously solve the Diffie-Hellman problem, but the converse is
an open conjecture. In contrast to the situation with the RSA problem, though,
there is considerable evidence that the two problems Discrete Logarithm and
Diffie-Hellman are in fact equivalent; see the survey [29].

There can also be successful attacks that do not even attempt to solve the
basic problem of inverting the one-way function. For example, here is a simple
“chosen-ciphertext” attack on RSA encryption. Suppose that the adversary Cyn-
thia wants to learn the plaintext x from the ciphertext y = xe mod N that Alice
received from Bob. She chooses a random integer r and computes y′ = rey mod
N . She then tricks Alice into deciphering y′ for her. (In some practical settings it
is not difficult to obtain the plaintext for a chosen ciphertext provided that it ap-
pears innocuous to Alice, i.e., y′ 6= y.) Cynthia immediately computes the secret
message x = x′/r mod N , where x′ is the decryption of y′ that Alice gave her.
In the case of RSA, a common approach to defending against chosen-ciphertext
attack is to append a random padding to the message before exponentiating.

Starting in the 1980’s, researchers have used the method of reductions in
order to reassure users that no attack on the cryptographic protocol could possi-
bly succeed without the adversary solving a presumably intractable underlying
mathematical problem. For example, they might prove that the problem of in-



Discrete Logarithms, Diffie-Hellman, and Reductions 269

verting the RSA function reduces in polynomial time to the problem of mounting
a successful chosen-ciphertext attack on a particular version of RSA that they’ve
developed. This implies that a successful chosen-ciphertext attacker must also
be able to invert the RSA function. This approach to providing assurances of
resistance to cryptanalysis is called “provable security.”

“Provable security” is controversial; see [15, 16, 17]. Despite the popularity
of reductionist arguments, there is considerable doubt about the practical value
of the assurances that they provide. More generally, no consensus exists on the
real-world value of theoretical results. Some practitioners maintain that the only
way to determine whether one can have confidence in a new cryptosystem is to
challenge the best cryptanalysts to try to break it, and then wait to see what
happens.

The present paper uses the method of reductions to try to shed light on
the relationship between the Diffie-Hellman problem and various versions of
the Discrete Logarithm problem. We do not, however, make any claims about
the practical usefulness of our results. In fact, what is more plausible is the
opposite claim — namely, that this work has so little connection with practical
cryptography that it is “gentle and clean” in the sense of G. H. Hardy’s famous
characterization of number theory [12]:

...both Gauss and lesser mathematicians may be justified in rejoicing that
there is one science at any rate, and that their own, whose very remoteness
from ordinary human activities should keep it gentle and clean.

2. Statement of results

Let G be a group of prime order p, written additively, and let P denote a non-
identity element of G. The Discrete Logarithm (DL) problem asks, given P,Q ∈
G, for the integer x mod p such that xP = Q. The Diffie-Hellman (DH) problem
asks, given P,Q,R ∈ G, for the element S ∈ G such that z ≡ xy (mod p),
where Q = xP , R = yP , S = zP . The DH problem trivially reduces to the DL
problem, and there has been a long history of efforts to prove that DL reduces
to DH (see [29]).

The idea of introducing versions of DL where one is given an oracle to solve
DL on groups of a different prime order first appeared in [24], where the authors
wanted to express the assumption that intractability of the DL problem “holds
even in the presence of oracles breaking the [DL problem] for other groups.” The
following two problems were first stated in [18].

• The All-Primes-But-p Discrete Logarithm problem. You are given a t-bit
prime p, a group G of order p, and two elements P,Q ∈ G. You are also
given an oracle that, acting as a black box, returns the solution to any dis-
crete logarithm problem in any group of order q, where q is any prime of at
most t bits other than p. You must find the discrete logarithm of Q to the
base P .
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• The One-Prime-Not-p Discrete Logarithm problem. You are given a t-bit
prime p, a group G of order p, and two elements P,Q ∈ G. For a single
prime q of your choice that has at most t bits and is not equal to p you are
given an oracle that, acting as a black box, returns the solution to any dis-
crete logarithm problem in any group of order q. You must find the discrete
logarithm of Q to the base P .

Remark 2.1. In these formulations it is understood that the oracle must be
supplied with the group elements and group operation. The latter can be given
in the form of either a set of rules or a group-operation oracle.

In [18] the second of these problems was shown to reduce in polynomial time to
the Diffie-Hellman problem. However, this result assumed a conjecture about the
distribution of primes in short intervals that, although plausible, is out of reach of
current techniques of analytic number theory. In this paper we give reductions of
these two problems to DH whose analyses require no such assumption; however,
the price we have to pay for complete rigor is that we get much weaker results.

For 0 ≤ α ≤ 1 let Lp(α) denote exp(c(log p)α(log log p)1−α) for some unspec-
ified constant c > 0. When we say that some version of the discrete logarithm
problem “Lp(α)-reduces to DH,” we mean that there is a probabilistic algorithm
that reduces the DL-type problem to the Diffie-Hellman problem and has rig-
orously analyzed expected running time bounded by Lp(α) bit operations. Our
main goal is to prove the following theorems.

Theorem 2.2. The One-Prime-Not-p Discrete Logarithm problem Lp(1/2)-redu-

ces to the Diffie-Hellman problem.

Theorem 2.3. The All-Primes-But-p Discrete Logarithm problem Lp(2/5)-redu-

ces to the Diffie-Hellman problem.

Theorem 2.4. The All-Primes-But-p Discrete Logarithm problem reduces in

polynomial time to the Diffie-Hellman plus Integer Factorization problems.

Remark 2.5. In most applications, the group G is chosen so that there is no
known subexponential-time algorithm for the DL problem. Even when G is cho-
sen to be a subgroup of the multiplicative group of a finite field Fq (as in DSA)
or to have an imbedding into the multiplicative group of Fqk for k small (as in
pairing-based protocols), the finite field Fq or Fqk is usually chosen to be large
enough so that the algorithms that are subexponential in the size of the field
have running times that are comparable to those of the squareroot algorithms
for the DL in G. It is because the DL problem in the groups G used in cryptogra-
phy generally has no known subexponential-time algorithm that L(α)-reductions
(where α < 1) are significant. In contrast, an L(1/2)- or L(2/5)-reduction would
have little significance for the Integer Factorization problem, because integers
can be factored in rigorously analyzed time L(1/2) (see [33, 23]) and heuristic
time L(1/3) (see [20]).
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Finally, we prove two theorems about the oracle complexity of reducing the
Discrete Logarithm problem to Diffie-Hellman. Suppose we have an omniscient
oracle that gives correct answers to yes-or-no questions — or, equivalently, to
queries asking for one bit of data. Informally, the oracle complexity of a problem
is the number of queries of such an oracle that are needed in order to solve
the problem in polynomial time. Here the problem need only be solved with
overwhelming probability, not necessarily 100% of the time. In cryptography the
most important oracle complexity result is due to Maurer [27], who proved that
factorization of an n-bit integer has oracle complexity εn for any ε > 0. His
result is conditional upon the following conjecture about smooth integers in the
Hasse interval; we recall that an integer is y-smooth if all of its prime divisors
are at most y.

Conjecture 2.6. (Maurer [27]) For every 0 < β < 0.5 and c > 1/(0.5 − β) and

for all sufficiently large x, the fraction of (logc x)-smooth integers in the interval

(x+ 1 −√
x, x+ 1 +

√
x) is at least x−1/c−β.

Under the same conjecture we prove that the Discrete Logarithm problem in
the presence of a Diffie-Hellman oracle also has oracle complexity εn, where n
is the bitlength of the group order p. Without using any smoothness conjecture
(but under the Riemann Hypothesis) we prove that εn queries to the yes-or-no
oracle are enough to reduce the time for DL-to-DH reduction from Lp(2/3) to
Lp(1/2) — which, amusingly, also happens to be the fastest known heuristic

running time for the DL-to-DH reduction without the yes-or-no oracle [5]. More
precisely, we prove the following theorems:

Theorem 2.7. Let n = dlog2 pe be the bitlength of the group order p, and let

ε > 0 be arbitrary. Under the Riemann Hypothesis, if one is allowed at most εn
queries to an oracle that correctly answers arbitrary yes-or-no questions, then

the Discrete Logarithm problem Lp(1/2)-reduces to the Diffie-Hellman problem

with at most p−ε/2 probability of failure.

Theorem 2.8. Let n = dlog2 pe be the bitlength of the group order p, and let

ε > 0 be arbitrary. Under Conjecture 2.6, if one is allowed at most εn queries to

an oracle that correctly answers arbitrary yes-or-no questions, then the Discrete

Logarithm problem reduces in polynomial time to the Diffie-Hellman problem

with at most p−ε/2 probability of failure.

Our purpose is to contribute to a theoretical understanding of the relations
between various types of problems that arise in discrete-logarithm-based cryp-
tography. Since the “holy grail” of a polynomial time reduction from Discrete
Logarithm to Diffie-Hellman seems a long way off, it is interesting to investigate
what types of additional features might bridge this gap. There are several possi-
ble ways to relax the problem: one can ask for only a subexponential-time, rather
than polynomial-time reduction; one can give the discrete-logarithm solver ac-
cess to powerful oracles, such as a one-prime-not-p or any-prime-but-p discrete-
logarithm solver, an oracle that answers yes-or-no questions, or an oracle that
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factors integers; and one can assume certain number-theoretic conjectures, in
other words, one can be satisfied with a heuristic complexity analysis.

The algorithms we present are not designed to be practical; rather, our focus
is on rigorously analyzed running times. As Shafi Goldwasser has said:1

There is this tension between having an algorithm that has an analysis
and is completely useless in practice, and having an algorithm that has no
analysis and is useful in practice.

3. The den Boer – Maurer method

The den Boer – Maurer method (see [9, 26, 28, 29, 40]) for reducing DL to DH
uses an auxiliary group defined over Fp, where p is the order of the group G.
The idea of the method goes back to the Crypto ’88 Rump Session paper [9] by
den Boer, who showed that DL reduces to DH if the prime p is such that p−1 is
smooth (that is, not divisible by any large primes). For den Boer the auxiliary
group was simply F

∗
p, and in fact the method can be most easily understood in

that setting. For simplicity let us assume that p−1 is a product of distinct small
primes

p− 1 =
∏

`i.

We are given P,Q ∈ G and need to find x ∈ Fp such that Q = xP .

We suppose that we have a DH-oracle O with the property that O(aP, bP ) =
abP . By repeatedly using the oracle, we can compute expressions of the form xkP
without knowing x. For example x2P = O(Q,Q) and x5P = O(Q,O(x2P, x2P )).
The usual repeated-squaring procedure allows one to compute xkP in polyno-
mially many (in log k) calls to O.

Let g be a generator of F
∗
p, and let j be the discrete logarithm of x to the base

g in F
∗
p. To find x it suffices to find j, and this is done using Pohlig-Hellman [32]

and either exhaustive search or baby-step/giant-step. Namely, by the Chinese
Remainder Theorem it suffices to find j mod `i for each `i | p− 1. Let ` be one
of the `i, and set u = (p− 1)/`. Use the oracle to compute the point Q1 = x1P ,

where x1 = xu. Set g1 = gu and g2 = g
d
√

`e
1 , and compute gr

2P , 1 ≤ r ≤ d
√
`e,

and gs
1Q1, 1 ≤ s < d

√
`e. When you have a match, you know that the discrete

logarithm of x1 to the base g1 in F
∗
p — which is j mod ` – is equal to rd

√
`e− s.

4. Proof of Theorem 2.4

Proof. We are given non-identity elements P,Q in a group G of prime order
p, and we must find the value of x mod p such that Q = xP . We have an

1 At ECC 2010, 18 October 2010, Redmond, Washington.
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oracle for integer factorization, which we use to find the prime factorization
p − 1 =

∏

`αi

i . We also have a Diffie-Hellman oracle in the group G and a
discrete logarithm oracle that can be called upon polynomially many times to
find discrete logarithms in any group of prime order ` 6= p.

We use the den Boer method. Let g be a fixed generator of F
∗
p; it suffices to

find the discrete logarithm j of x to the base g in F
∗
p. By the Chinese Remainder

Theorem, for this it suffices to find j mod `αi

i for each prime power factor of p−1.
Let `α be one of these prime powers, and let js be j mod `s for s = 1, . . . , α. We
find js by induction on s. Set us = (p− 1)/`s for 1 ≤ s ≤ α, and set R = gu1P .
Let H be the subgroup of F

∗
p generated by gu1 , where an element gru1 , 0 ≤ r < `,

is represented implicitly by gru1P , and where the group operation is performed
using the DH oracle in G. First, j1 is clearly equal to the discrete logarithm of
the element xu1P (we can compute this element using the DH oracle without
knowing x) to the base R in H. By assumption, this can be computed using the
discrete logarithm oracle. Next, for s = 2, . . . , α suppose that we know js−1.
We use the DH oracle to compute (g−js−1x)usP , and then find js by asking the
discrete logarithm oracle for the discrete logarithm of this element to the base
R in H. This discrete logarithm is the s-th base-` digit of j mod `α. In this way
we find j mod `α.

Remark 4.1. The above proof also shows that, without the Integer Factoriza-
tion oracle, the All-Primes-But-p Discrete Logarithm problem Lp(1/2)-reduces
to the Diffie-Hellman problem. This is because there are factoring algorithms
with rigorously analyzed Lp(1/2) running time (see [33, 23]). However, in §7. we
shall prove a better result (Theorem 2.3) using genus-2 curves.

5. The Maurer-Wolf Genus-2 variant

The version of the den Boer – Maurer method using the jacobians of hyperel-
liptic curves of genus 2 was first developed in [40]. This variant was a natural
generalization of [26] from genus 1 to genus 2.

In cryptography elliptic curves defined over finite fields have often been used
as auxiliary groups to achieve objectives that have nothing to do with the curves
themselves. The first such use was Lenstra’s Elliptic Curve Method (ECM) of
factoring integers [19]. Soon after, Goldwasser and Kilian [11] showed how to use
elliptic curves to quickly certify primality. Somewhat later, Maurer and Wolf [26,
28, 29] as well as Boneh and Lipton [5] used elliptic curves to provide evidence
that the Discrete Logarithm and Diffie-Hellman problems are equivalent.

Results of this type all depend on heuristic analyses of running time; the
analyses assume conjectures that are out of reach of current analytic techniques
about the distribution of either smooth numbers or prime numbers in short inter-
vals. For example, the Goldwasser-Kilian primality certificate can be rigorously
proved to work only for most primes; it works for all primes if one assumes that
primes occur with the expected frequency in intervals of the form (x, x+ c

√
x).
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Adleman and Huang [2, 3], seeking to put the Goldwasser-Kilian primality
certificate on a rigorous foundation, were the first to realize that this deficiency
of elliptic curves could be removed by working with the jacobians of genus-2
curves. Analogously, Lenstra, Pila, and Pomerance [21, 22] later developed a
genus-2 version of the ECM that has rigorously analyzed running time. In [40],
Wolf did something similar for the den Boer – Maurer method of establishing
reductions from Discrete Logarithm to Diffie-Hellman problems.

The advantage of genus 2 over genus 1 is that the interval over which the group
orders are distributed is larger. That is, for randomly chosen elliptic curves over
Fp, the group orders n fall roughly uniformly in the Hasse interval, which extends
from (

√
p− 1)2 to (

√
p+ 1)2. If x denotes the beginning of this interval, then we

can write x ≤ n ≤ x+(4+o(1))x1/2 . Similarly, the group orders of the jacobians
of genus-2 curves fall roughly uniformly in the genus-2 Hasse-Weil interval, which
extends from (

√
p − 1)4 to (

√
p + 1)4. Again letting x denote the beginning of

this interval, in the genus-2 case we have x ≤ n ≤ x + (8 + o(1))x3/4. From
the standpoint of the study of the distribution of prime and smooth numbers,
intervals of the form (x, x + cx1/2) are too short — almost nothing can be said
about the abundance or even the existence of the desired numbers in such an
interval (see [38]) — whereas intervals of the form (x, x+ cx3/4) are plenty long.

In the den Boer algorithm the Diffie-Hellman oracle was needed only to com-
pute the implicit representations of powers of x — that is, to compute xkP
knowing xP but not x. In the elliptic and hyperelliptic curve versions due to
Maurer and Wolf, one needs to compute expressions of the form f(x)P , where
f(x) is a rational function in the unknown x. Note that since x−1P = xp−2P ,
inverting is a special case of raising to the k-th power. The implicit represen-
tation of any f(x) can be obtained by a combination of inverting, multiplying,
and raising to powers (which require the use of the Diffie-Hellman oracle), along
with addition/subtraction and constant multiplication (which do not). Also note
that there is a probabilistic algorithm that in expected polynomial time can find
the implicit representation of a squareroot of f(x) whenever f(x) is a square in
Fp. For example, if p ≡ 3 (mod 4), then one need only compute f(x)(p+1)/4P ,
which is the desired squareroot. In the general case one uses the algorithm of
Shanks [36], which involves various exponentiations and comparisons that can all
be performed using implicit representations with the help of the Diffie-Hellman
oracle.

Now suppose that a genus-2 curve C is defined by

v2 = g(u) (1)

where g ∈ Fp[u] has degree 5 (see [7, 30]).

Suppose that the elements P,Q ∈ G are an instance of a Discrete Logarithm
problem; in other words, we are asked to find x such that Q = xP . We outline
how to go from the implicit representation Q of x to an element of the jacobian
group JC of the curve C. We first go from Q to the implicit representation
(Q′, R′) of a point on the curve with coordinates (x+ r, y), where r is a random
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integer mod p that we select. Namely, for each random choice of r we compute
Q′ = rP +Q and then test whether g(x+ r) is a square in Fp — which we do by
computing g(x+r)(p−1)/2P and checking whether or not it equals P . If not, then
we choose another r and try again. Once we find Q′ = (x+r)P such that g(x+r)
is a square in Fp, we use the Diffie-Hellman oracle along with Shanks’ algorithm
to compute an implicit representation R′ = yP of y for which y2 = g(x + r).
Then (Q′, R′) is an implicit representation of a point on the curve.

Recall that elements of the jacobian group JC are represented by reduced
divisors div(a, b), where a, b ∈ Fp[u] satisfy deg b < deg a ≤ 2, and a is monic
and divides b2 − g. The points (x, y) on the curve C correspond to the elements
of JC for which a is monic of degree 1; that is, we set a = u − x, b = y in that
case.

We shall say that an element div(a, b) with a = a0+a1u+a2u
2 and b = b0+b1u

is represented implicitly by the 5-tuple (a0P, a1P, a2P, b0P, b1P ) ∈ G
5. Thus,

for example, the element of JC corresponding to the point (x + r, y) ∈ C is
represented implicitly by (−Q′, P,O,R′, O), where O is the identity of G. Let B
be this element of JC .

The group operation on the jacobian JC (see [7, 30]) can be expressed in terms
of rational functions of the components of the reduced divisors. This means that
even when those components are represented implicitly, they can be composed
with the help of the Diffie-Hellman oracle.

The generalization of den Boer’s method to hyperelliptic curves works as
follows. One first constructs a curve for which JC has a Discrete Logarithm
problem that is relatively easy to solve by purely generic means (such as ex-
haustive search or baby-step/giant-step). This means that its order n should be
t-smooth for fairly small t, and in practice it is also useful for n to be squarefree,
so that the jacobian group is cyclic.

Given an instance P,Q ∈ G of a Discrete Logarithm problem, one constructs
an implicitly represented point on C and then the corresponding implicitly rep-
resented element B of JC , as above. One also constructs an explicit element of
JC that generates the group and computes its implicit representation A ∈ G

5.
Working with the implicit representatives of elements and using a generic dis-
crete logarithm algorithm, one finds the discrete logarithm of B to the base A.
Since the element A is known explicitly, once one has the discrete logarithm one
can construct B explicitly, thereby getting the x-coordinate x + r of the point
of C that gave the element B of JC . Since r is known, this reveals x.

6. Almost-smooth numbers in the Hasse-Weil interval

In order to prove Theorems 2.2 and 2.3, we have to construct a genus-2 curve
over Fp whose jacobian group JC has a suitable order n. Unlike in the den Boer
case, where the group order is p−1, or in the elliptic curve case, where the group
order also has magnitude close to p, the two-dimensional abelian variety JC has



276 Neal Koblitz, Alfred Menezes and Igor E. Shparlinski

group order n ≈ p2. More precisely, (
√
p − 1)4 ≤ n ≤ (

√
p + 1)4. This means

that it would do us no good to find curves for which n is prime (as was done
in Adleman-Huang primality testing [2, 3]). Rather, in order to use the oracle
that’s available to us in the One-Prime-Not-p or All-Primes-But-p problem, we
need a subgroup of JC of prime order q having no greater bitlength than p.
Thus, we want n to be the product of a prime q no greater than p and a smooth
number s.

We shall want s = n/q to be as smooth as possible, in part so that we can
factor n relatively quickly and in part (in the case of Theorem 2.2, where we
can use the Discrete Logarithm oracle for only one prime q 6= p) so that discrete
logs can be found relatively quickly in subgroups of prime order dividing s. In
the case of factoring, the best rigorously analyzed result is Corollary 1.2 of [21],
which states that all prime factors of n that are less than y can be found in time
Ly(2/3) log2 n. For the discrete log we have no such luck, because we need to
use generic algorithms when we have implicitly represented group elements —
we cannot do better than

√
y.

Let P(x) denote the set of prime numbers in the interval [1, x]; let S(x, y)
denote the set of y-smooth numbers in the interval [1, x]; and let S∗(x, y) denote
the set of squarefree numbers in S(x, y). Thus, S∗(x2, y) \ S∗(x1, y) denotes the
set of y-smooth squarefree integers in the interval (x1, x2]. We further denote
π(x) = #P(x), ψ(x, y) = #S(x, y), and ψ∗(x, y) = #S∗(x, y). Let ρ(u) be the
Dickman – de Bruijn function defined recursively by ρ(u) = 1 for 0 ≤ u ≤ 1 and

ρ(u) = 1 −
∫ u

1

ρ(v − 1)

v
dv, u > 1.

We shall need the following well-known estimates for ρ(u), ψ(x, y), and ψ∗(x, y).

Lemma 6.1. (a) (see Corollary 2.3 of [13]) For u ≥ 1 one has

ρ(u) = exp
(

−u(logu+ log log u) +O(1)
)

. (2)

(b) (see Theorem 1.1 of [13]) Let x ≥ y ≥ 2, and set u = log x/ log y. For any

fixed ε > 0 one has

ψ(x, y) = xρ(u)

(

1 +O

(

log(1 + u)

log y

))

(3)

uniformly in the range y ≥ exp
(

(log log x)(5/3)+ε
)

.

(c) (see Theorem 3 of [14]) For x ≥ y ≥ 2 one has

ψ∗(x, y) =

(

6

π2
+ o(1)

)

ψ(x, y) (4)

as log log x/ log y −→ 0.

The next theorem is the central element in our proof of Theorems 2.2 and 2.3.
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Theorem 6.2. For any fixed ε > 0, for x sufficiently large, and for

y ≥ exp
(

(log log x)(5/3)+ε
)

, (5)

we have

#
{

qs ∈ [x2, x2 + x3/2] : q ∈ P(x), s ∈ S∗(2x, y)
}

≥ Cρ(u)
x3/2

log x
, (6)

where C > 0 is an absolute constant.

We shall need the following result of Matomäki [25]:

Lemma 6.3 (Matomäki). There exist absolute constants c, c4, c6 > 0 and two

functions A4(x, z) and A6(x, z) such that

∫ 2x

x

|Ai(x, z)|idz ≤ cix
2/3, i = 4, 6, (7)

and for all sufficiently large x ≥ 2 and for z ∈ [x, 2x] one has

π

(

z +
z

4
√
x

)

− π(z) ≥ z

4
√
x log z

(c+A4(x, z) +A6(x, z)). (8)

Corollary 6.4. There exists an absolute constant c0 > 0 such that for all suffi-

ciently large x ≥ 2 one has

π

(

z +
z

4
√
x

)

− π(z) ≥ c0
z

4
√
x log z

(9)

for all z ∈ [x, 2x] that are outside of at most O(x2/3) intervals of the form

[n, n+ 1) ⊂ [x, 2x] for n an integer.

Proof. The corollary follows easily from Lemma 6.3. Namely, note that for x fixed,
|A4(x, z)|4 + |A6(x, z)|6 cannot be greater than (c/3)6 = min((c/3)6, (c/3)4)
(where without loss of generality we’re supposing that c < 3) for all z on more
than γx2/3 intervals of the form [n, n+ 1) ⊂ [x, 2x], where γ = (c4 + c6)(3/c)

6,
because that would contradict (7). It follows that for all n ∈ [x, 2x], except for at
most γx2/3 of them, there is a value z ∈ [n, n+ 1) such that |Ai(x, z)|i ≤ (c/3)i

for i = 4, 6, and so, by (8), the inequality (9) holds with c0 = c/3 for such z. Now
for fixed x, as z ∈ [x, 2x] increases from n to n+1 the left-hand side of (9) either
remains constant or increases by 1, whereas the right-hand side of (9) increases
by less than c0/(4x

1/2 log x). For large x this means that, setting c0 = c/4, we
have (9) holding for all z ∈ [n, n + 1) except for at most γx2/3 values of n, as
claimed.

Proof. We now prove Theorem 6.2. Without loss of generality we suppose that
y < x/2. In that case for s ∈ S∗(2x, y) and qs ∈ [x2, x2 + x3/2] we have q ≥
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x/2 > y, and so the different products qs are pairwise distinct. The number on
the left in (6) is at least equal to

∑

s∈S∗(2x,y)
s≥x+

√
x

(

π

(

x2 + x3/2

s

)

− π

(

x2

s

))

≥
∑

s∈S∗(2x,y)\S∗(3x/2,y)

(

π

(

x2 + x3/2

s

)

− π

(

x2

s

))

.

(10)

We fix s ∈ S∗(2x, y)\S∗(3x/2, y) and set z = x2/s. We apply Corollary 6.4 with
x replaced by x/2, that is, x ≥ 4, z ∈ [x/2, x], and 4

√
x is replaced by

√
8x in

(9). Note that x3/2/s = z/
√
x > z/

√
8x, and so Corollary 6.4 can be used to

bound each term in (10) from below. Also since s ≤ 2x, it is easy to see that
there are at most 4 different values of s that give z-values in the same interval
[n, n+ 1). Hence, the bound in Corollary 6.4 can be applied for all but O(x2/3)
values of s ∈ S∗(2x, y) \ S∗(3x/2, y), giving

π

(

x2 + x3/2

s

)

− π

(

x2

s

)

≥ c0
x2/s√

8x log(x2/s)
≥ C0

√
x

log x
(11)

for those values of s, where C0 is an absolute constant.

Meanwhile, Lemma 6.1(b)-(c) shows that for y ≥ exp
(

(log log x)(5/3)+ε
)

we
have the estimate

ψ∗(2x, y) − ψ∗(3x/2, y) =

(

3

π2
+ o(1)

)

xρ(u), (12)

for the number of terms in (10); and by Lemma 6.1(a) we also have ρ(u) = x−o(1).
We recall that there are at most O(x2/3) values of s ∈ S∗(2x, y) \ S∗(3x/2, y)
for which (11) does not apply, and so we subtract O(x2/3) from the right side
of (12). We still obtain the estimate

(

3
π2 + o(1)

)

xρ(u) for the number of s that
remain. Hence, the summation (10) is bounded from below by

∑

s∈S∗(2x,y)\S∗(3x/2,y)

(

π

(

x2 + x3/2

s

)

− π

(

x2

s

))

≥ Cρ(u)
x3/2

log x

for some absolute constant C > 0, as claimed.

7. Proof of Theorems 2.2–2.3

The idea of the proof of both Theorems 2.2 and 2.3 is to find a genus-2 curve
C over Fp for which the order of the jacobian JC(Fp) has been factored and
is equal to the product of a prime q and an Lp(α)-smooth squarefree integer
s (where α ∈ (0, 1) is appropriately chosen). Recall that the notation Lx(α)
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includes an unspecified constant in the exponent, and so equalities of the form
y = Lp(α) should be interpreted as an order of magnitude statement, with
lower order terms neglected. Thus, for example, we shall use the identities
Lx(α)Lx(β) = Lx(max(α, β)) and LLx(α)(β) = Lx(αβ), where lower order terms
in the exponent are neglected. Another useful identity is the following:

Lemma 7.1. For y = Lx(α) and u = log x/ log y we have 1/ρ(u) = Lx(1 − α).

Proof. This follows from Lemma 6.1(a), since neglecting lower order terms we
see that − log ρ(u) is asymptotically equal to

u logu ∼ log x

c logα x log log1−α x
(log log x−α log log x) =

1 − α

c
log1−α x log logα x,

as claimed.

We need the following lemma, which is a slightly weaker version of Theo-
rem 1.1 in [22].

Lemma 7.2. Let p be a sufficiently large prime. Then for all but at most 28p1/2

integers n in the interval [p2−0.5p3/2, p2+0.5p3/2] there are at least p9/2(log p)−3

polynomials g ∈ Fp[u] of degree 5 such that the curve C : v2 = g(u) is of genus 2,

and its jacobian JC has order n.

Proof. We now prove Theorems 2.2 and 2.3.

Let y have order Lp(α), where α ∈ (0, 1) will be chosen later so as to optimize
the total running time. We use Lemma 7.2 in conjunction with Theorem 6.2
with x set equal to

√

p2 − 0.5p3/2. We can define u = log p/ log y rather than
log x/ log y, since the difference does not affect any of the estimates below.

Combining Lemma 7.2 with Theorem 6.2, since there are p6 degree-5 polyno-
mials over Fp, we see that it takes O(log4 p/ρ(u)) random polynomials g ∈ Fp[u]
in order to find one for which the corresponding JC has order n of the form qs,
where q is a prime ≤ x and s is y-smooth and squarefree. Since log4 p is much
smaller than 1/ρ(u), by Lemma 7.1 we can estimate the number of trial curves
by Lp(1−α). For each such curve, a theorem of Pila [31] ensures that the order
n of JC can be computed in polynomial time. According to Corollary 1.2 of [21],
there is an Ly(2/3)-algorithm that finds and factors the y-smooth part s of n
(that is, it finds all prime factors of n that are ≤ y). (Note that the log2 n-factor
in Corollary 1.2 of [21] can be incorporated into Ly(2/3) because (log y)2/3 is
large compared to log logn when y = Lp(α) with α > 0.) Since y = Lp(α), it
follows that Ly(2/3) = Lp(2α/3). Then in deterministic polynomial time one
can check whether or not n/s = q is prime (see [4]).

Finally, in Theorem 2.2 we need to compute discrete logarithms by exhaustive
search or baby-step/giant-step in subgroups of order a prime divisor of s; either
method takes time of order y = Lp(α). In Theorem 2.2 the discrete logarithm
in the subgroup of order q is supplied by the “prime-not-p” DL oracle, and in
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Theorem 2.3 that oracle supplies the discrete logarithms in the order-` subgroups
for all prime divisors ` of n.

To summarize, the running time is dominated by three steps:

• search for the curve — Lp(1 − α) trials;

• factorization of the group order of each trial jacobian — time Lp(2α/3);

• (Theorem 2.2 only) discrete logarithm computations on the jacobian — time
Lp(α).

Then the running time of the entire algorithm is the largest of these three esti-
mates, and we optimize by choosing α in Theorem 2.2 so that max(1−α, 2α/3, α)
is minimal, and in Theorem 2.3 so that max(1−α, 2α/3) is minimal. The former
choice is α = 1/2 and the latter is α = 3/5 (which gives a running time of
Lp(1 − 3/5) = Lp(2/5)). This gives the desired results.

Remark 7.3. In §4. we saw that a factoring oracle makes a dramatic difference
in the efficiency of reduction of All-Primes-But-p-DL to the Diffie-Hellman prob-
lem. However, the proof of Theorem 2.2 suggests that in the case of One-Prime-
Not-p-DL a factoring oracle would probably not help speed up the reduction. It
should also be noted that the Lp(2/3)-reduction from DL to DH of Maurer-Wolf
(see Theorem 6 of [29]) would not be sped up by a factoring oracle. In these cases
the time needed to compute the discrete logarithm of an implicitly represented
element is much greater than the time needed to factor.

8. Proof of Theorems 2.7–2.8

Proof. We prove Theorem 2.7. The approach is similar to the one taken by
Maurer-Wolf [29] in establishing a rigorously analyzed Lp(2/3) DL-to-DH re-
duction and taken by us in proving Theorems 2.2 and 2.3 in §7.. Namely,
we use the jacobians of genus-2 curves, whose group orders, according to [22]
(see Lemma 7.2), are distributed fairly uniformly on an interval of the form
(x, x+x3/4) (where x = p2−0.5p3/2). The most important difference with those
proofs is that we no longer need a subexponentially small probability that the
number of elements of a jacobian group has the desired smoothness. Rather,
because of our access to the yes-or-no oracle we can use the following recent
result of Soundararajan [38], giving an exponentially small lower bound x−ε on
the probability that an integer in the interval is Lp(1/2)-smooth.

Lemma 8.1. (Soundararajan [38]) Assume the Riemann Hypothesis, let x be

large, suppose that x ≥ y ≥ exp(5
√

log x log log x), and set u = log x/ log y.
Then there is an absolute constant B and constants Cδ depending only on δ
such that for z = Bu

√
x/ρ(u/2) and for any δ > 0

ψ(x+ z, y) − ψ(x, y) ≥ Cδzx
−δ. (13)
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We apply Lemma 8.1 with

x = p2 − 0.5p3/2, y = exp(5
√

log x log log x),

that is, y = Lp(1/2). We find that

u =

(

1

5
+ o(1)

)

√

log x/ log log x

and, by Lemma 6.1(a), we have

1

ρ(u/2)
= exp

((

1

20
+ o(1)

)

√

log x log log x

)

.

Thus, z in the lemma has order of magnitude Lx(1/2)
√
x. Note that the same

result applies when z is replaced by a larger interval length (perhaps changing
the constant Cδ); in particular, we can take z of magnitude x3/4. We conclude
that a number in the interval (p2−0.5p3/2, p2+0.5p3/2) has probability ≥ Cδp

−2δ

of being y-smooth, y = Lp(1/2).

Using Lemma 7.2 and the same argument as in §7., we see that for a randomly
chosen degree-5 polynomial g(u) there is probability at least cδp

−2δ (where cδ is
chosen slightly smaller than Cδ to allow for the log p-factors in Lemma 7.2) that
v2 = g(u) is the equation of a genus-2 curve C for which the number of elements
of the jacobian is y-smooth, y = Lp(1/2). Once we find such a polynomial g(u),
the Maurer-Wolf method allows us to find discrete logarithms in G in time
Lp(1/2) using the DH oracle. Note, however, that we cannot use the Maurer-
Wolf method in quite the same form that was described in §5., because that
requires the jacobian group JC to be of squarefree order (and hence cyclic), and
the y-smooth numbers provided by Lemma 8.1 are not necessarily squarefree.
(We do not know of any way to prove Lemma 8.1 with ψ(x + z, y) − ψ(x, y)
replaced by ψ∗(x + z, y) − ψ∗(x, y); for example, Lemma 6.1(c) does not imply
such a result.) We proceed by first selecting 6 elements uniformly at random
from JC . Since JC has rank at most 4, it follows from a result of Pomerance
[34] that the 6 chosen elements form a generating set for JC with probability
at least 0.29. Indeed, by [34, Corollary 2] the expected value of the first i such
that the first through i-th elements chosen uniformly at random from a finite
abelian group G of rank r generate G is less than r + σ where σ = 2.11458 . . ..
Thus, denoting by ρi the probability that i is the smallest integer such that the
first through i-th elements chosen generate JC , we have

∞
∑

i=r

iρi ≤ r + σ

where r ≤ 4 is the rank of JC . Using
∑∞

i=r ρi = 1 we derive

∞
∑

i=r+1

(i− r)ρi ≤ σ.
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Therefore

r+2
∑

i=r

ρi = 1 −
∞
∑

i=r+3

ρi ≥ 1 − 1

3

∞
∑

i=r+3

(i− r)ρi ≥ 1 − σ/3 > 0.29.

Thus, r + 2 ≤ 6 randomly chosen elements from JC form a generating set with
probability at least 0.29.

After using the factorization of #JC to determine the orders of the 6 elements,
the Pohlig-Hellman method [32] and baby-step/giant-step search can be used in
a standard manner (see [39]) to express the implicitly represented element B in
terms of the 6 chosen elements.

So it remains to show how at most εn queries to the omniscient yes-or-no ora-
cle can be used to locate such a polynomial g(u), with at most p−ε/2 probability
of failure.

We use essentially the same procedure as Maurer [27]; the method is due to
Chor and Goldreich [8]. We choose some fixed Fp-basis α0, α1, . . . , α5 of Fp6 and
let the polynomial g(u) = a0+a1u+ · · ·+a5u

5 correspond to the element
∑

aiαi

of the field Fp6 . We also list the field elements in some order, say, lexicographically
with ai regarded as the i-th base-p digit of the order of

∑

aiαi in the list.

The algorithm starts by randomly choosing two elements s, t ∈ Fp6 , which
map the ordering of elements to a new ordering according to the rule w 7→ sw+t;
that is, the elements of Fp6 are now listed in the order {sw1+t, sw2+t, . . .}, where
{w1, w2, . . .} is the lexicographical ordering with respect to the basis {αi}. When
we say “first,” we mean with respect to this new ordering. The algorithm then
asks the yes-or-no oracle for the successive bits of the index of the first element
sw+ t ∈ Fp6 that corresponds to a polynomial g(u) that gives a jacobian whose
number of elements is y-smooth, y = Lp(1/2), if the index of that element is
< 2bεnc. If there are more than bεnc bits in that integer, the oracle is instructed
to output 0. The algorithm fails if it outputs 0.

According to a fundamental result of Chor and Goldreich [8], the “pair-
wise random” sequence sw + t behaves randomly enough to get a good sam-
ple and have probability of success not very different from that afforded by a
fully random sequence. Namely, their result tells us that the probability that
none of the first k elements sampled leads to a “good” g(u) is no greater than
(1 − cδp

−2δ)/(kcδp
−2δ) < p2δ/(kcδ). We apply this with k = 2bεnc ≥ 0.25pε and

δ = ε/8. Then the probability of failure is at most pε/4/(pεcε/8) < p−ε/2 for
large p. This completes the proof of Theorem 2.7.

The proof of Theorem 2.8 is similar, except that we use elliptic curves rather
than genus-2 curves, Proposition (2.7) of [19] instead of Lemma 7.2, and Con-
jecture 2.6 instead of Lemma 8.1. We omit the details, which are essentially the
same as for Theorem 2.7.

Remark 8.2. It would seem natural to try to improve the estimate Lp(1/2) in
Theorems 2.7 by using higher genus curves. Indeed, the Hasse-Weil interval for
the jacobian of a genus-g curve is of the form [x, x+ cxβ ], where β = 1− 1/(2g)
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approaches 1 as g −→ ∞. However, for α < 1/2 nothing has been proved about
the abundance of Lx(α)-smooth numbers in an interval of that form, even for
β close to 1 (see [38]). One would need such a result in order to lower the time
estimate in Theorem 2.7.

9. Conclusion

There are at least three ways to compare different versions of problems:

(a) formal reductions allowing the use of unproved conjectures, such as those
having to do with the distribution of primes and smooth numbers;

(b) mathematically rigorous formal reductions;

(c) ignoring reductions entirely and trusting only one’s gut instincts in a real-
world setting.

It’s interesting to compare and contrast the conclusions that follow from (a),
(b), and (c) using Shoup’s language of relativized results (see [37]). We have the
following table of running times “relative to DH” (that is, in the presence of a
Diffie-Hellman oracle).

Table 1 Relativized running times with a DH oracle

DL One-Prime-Not-p DL All-Primes-But-p-DL
(a) heuristic Lp(1/2) polynomial time polynomial time

(b) rigorous Lp(2/3) Lp(1/2) Lp(2/5)

We also showed that ε log p yes-or-no oracle queries brings the lower-left entry
in the table from Lp(2/3) to Lp(1/2) (under the Riemann Hypothesis, with
exponentially small probability of failure) and brings the upper-left entry from
Lp(1/2) to polynomial time (with exponentially small probability of failure). In
addition, we saw that a factoring oracle helps only the lower-right entry in the
table, where it reduces the complexity from Lp(2/5) to polynomial time.

Meanwhile, a guts-trusting practical person would reject the entire “relative
to DH” way of thinking, because the only way a DH would ever be computed is
by first computing the DL. Once that’s rejected, he/she would say that neither
the ability to factor quickly nor the ability to find discrete logarithms in groups
of order q 6= p would be of any help whatsoever.

A somewhat extreme viewpoint would be that, like most of theoretical cryp-
tography, relativized results proved by mathematically rigorous reductions, such
as those in the present paper, live in a Platonic realm that is orthogonal to
the domain of real-world cryptography. According to this view — which we nei-
ther subscribe to nor can easily refute — such results have as little relevance to
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the practical cryptographer as Michael Jordan’s basketball prowess has to the
inhabitants of Flatland [1].
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