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Abstract. In the present paper we obtain a condition for an invariant lightlike sub-

manifold of indefinite Sasakian space form to be of constant φ-sectional curvature.

Then, we study contact CR-lightlike submanifolds of (ε)-Sasakian manifolds exten-

sively and concluded with the study of totally contact umbilical contact CR-lightlike

submanifolds.

2000 Mathematics Subject Classification: 53B30, 53C25, 53D15.

Key words: Contact CR-lightlike submanifolds, indefinite Sasakian manifolds, totally

contact umbilical contact CR-lightlike submanifolds.

1. Introduction

Cauchy Riemann (CR) submanifolds of Kaehlerian manifolds with Riemannian
metric were introduced by Bejancu in 1978, [2]. Then, contact CR-submanifolds
of Sasakian manifolds with definite metric were introduced and studied by Yano-
Kon in 1982, [9]. Recently, Duggal-Sahin [6] introduced the theory of contact CR-
lightlike submanifolds of indefinite Sasakian manifolds and studied the integra-
bility conditions of their distributions and investigated the geometry of leaves of
the distributions involved in the induced contact CR-structure. They also stud-
ied geometric conditions for an irrotational contact CR-lightlike submanifold of
an indefinite Sasakian manifold to be a contact CR-lightlike product. Contact
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geometry has a significant role in optics, phase spaces of a dynamical system
and many more, see [1, 8]. So, we study geometry of contact submanifolds, in
particular, contact CR-lightlike submanifolds of indefinite Sasakian manifolds.

2. Lightlike Submanifolds

We recall notations and fundamental equations for lightlike submanifolds, which
are due to the book [5] by Duggal-Bejancu.

Let (M̄, ḡ) be a real (m + n)-dimensional semi-Riemannian manifold of con-
stant index q such that m, n ≥ 1, 1 ≤ q ≤ m + n − 1 and (M, g) be an m-
dimensional submanifold of M̄ and g the induced metric of ḡ on M . If ḡ is
degenerate on the tangent bundle TM of M then M is called a lightlike sub-
manifold of M̄ . For a degenerate metric g on M

TM⊥ = ∪{u ∈ TxM̄ : ḡ(u, v) = 0, ∀v ∈ TxM, x ∈ M},

is a degenerate n-dimensional subspace of TxM̄ . Thus, both TxM and TxM⊥

are degenerate orthogonal subspaces but no longer complementary. In this case,
there exists a subspace Rad(TxM) = TxM ∩ TxM⊥ which is known as radical
(null) subspace. If the mapping

Rad(TM) : x ∈ M −→ Rad(TxM),

defines a smooth distribution on M of rank r > 0 then the submanifold M of M̄

is called r-lightlike submanifold and Rad(TM) is called the radical distribution
on M .

Let S(TM) be a screen distribution which is a semi-Riemannian complemen-
tary distribution of Rad(TM) in TM , that is,

TM = Rad(TM)⊥S(TM), (1)

S(TM⊥) is a complementary vector subbundle to Rad(TM) in TM⊥. Let
tr(TM) and ltr(TM) be complementary (but not orthogonal) vector bundles
to TM in TM̄ |M and to Rad(TM) in S(TM⊥)⊥ respectively. Then, we have

tr(TM) = ltr(TM)⊥S(TM⊥), (2)

TM̄ |M= TM ⊕ tr(TM) = (Rad(TM) ⊕ ltr(TM))⊥S(TM)⊥S(TM⊥). (3)

Let u be a local coordinate neighborhood of M and consider the local quasi-
orthonormal fields of frames of M̄ along M , on u as

{ξ1, . . . , ξr, Wr+1, . . . , Wn, N1, . . . , Nr , Xr+1, . . . , Xm},

where {ξ1, . . . , ξr}, {N1, . . . , Nr} are local lightlike bases of Γ (Rad(TM) |u),
Γ (ltr(TM) |u) and {Wr+1, . . . , Wn}, {Xr+1, . . . , Xm} are local orthonormal
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bases of Γ (S(TM⊥) |u) and Γ (S(TM) |u), respectively. For this quasi-orthonormal
fields of frames, we have

Theorem 2.1. [5] Let (M, g, S(TM), S(TM⊥)) be an r-lightlike submanifold of

a semi-Riemannian manifold (M̄, ḡ). Then, there exists a complementary vector

bundle ltr(TM) of Rad(TM) in S(TM⊥)⊥ and a basis of Γ (ltr(TM) |u) consist-

ing of smooth section {Ni} of S(TM⊥)⊥ |u, where u is a coordinate neighborhood

of M , such that

ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = 0, (4)

where {ξ1, . . . , ξr} is a lightlike basis of Γ (Rad(TM)).

Let ∇̄ be the Levi-Civita connection on M̄ . Then, according to decomposition
(3), the Gauss and Weingarten formulas are given by

∇̄XY = ∇XY + h(X, Y ), ∀X, Y ∈ Γ (TM), (5)

∇̄XU = −AUX + ∇⊥

XU, ∀X ∈ Γ (TM), U ∈ Γ (tr(TM)), (6)

where {∇XY, AUX} and {h(X, Y ),∇⊥

XU} belongs to Γ (TM) and Γ (tr(TM)),
respectively. Here ∇ is a torsion-free linear connection on M , h is a symmetric
bilinear form on Γ (TM) which is called second fundamental form, AV is a linear
operator on M , known as shape operator.

According to (2), considering the projection morphisms L and S of tr(TM)
on ltr(TM) and S(TM⊥), respectively, (5) and (6) give

∇̄XY = ∇XY + hl(X, Y ) + hs(X, Y ), (7)

∇̄XU = −AUX + Dl
XU + Ds

XU, (8)

where, we put hl(X, Y ) = L(h(X, Y )), hs(X, Y ) = S(h(X, Y )), Dl
XU =

L(∇⊥

XU), Ds
XU = S(∇⊥

XU).

As hl and hs are Γ (ltr(TM))-valued and Γ (S(TM⊥))-valued respectively,
therefore, we call them the lightlike second fundamental form and the screen
second fundamental form on M . In particular

∇̄XN = −ANX + ∇l
XN + Ds(X, N), (9)

∇̄XW = −AW X + ∇s
XW + Dl(X, W ), (10)

where X ∈ Γ (TM), N ∈ Γ (ltr(TM)) and W ∈ Γ (S(TM⊥)).

Using (2)-(3) and (7)-(10), we obtain

ḡ(hs(X, Y ), W ) + ḡ(Y, Dl(X, W )) = g(AW X, Y ), (11)

ḡ(hl(X, Y ), ξ) + ḡ(Y, hl(X, ξ)) + g(Y,∇Xξ) = 0,

ḡ(ANX, N ′) + ḡ(N, AN′X) = 0,

ḡ(ANX, P̄Y ) = ḡ(N, ∇̄X P̄Y ), (12)
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for any ξ ∈ Γ (Rad(TM)), W ∈ Γ (S(TM⊥)) and N, N ′ ∈ Γ (ltr(TM)). P̄ is a
projection of TM on S(TM).

Now, we consider decomposition (1), we can write

∇XP̄Y = ∇∗

XP̄ Y + h∗(X, P̄Y ), (13)

∇Xξ = −A∗

ξX + ∇∗⊥

X ξ, (14)

for any X, Y ∈ Γ (TM) and ξ ∈ Γ (Rad(TM)), where {∇∗

XP̄Y, A∗

ξX} and

{h∗(X, P̄ Y ), ∇∗⊥

X ξ} belong to Γ (S(TM)) and Γ (Rad(TM)), respectively. Here
∇∗ and ∇∗⊥

X are linear connections on S(TM) and Rad(TM) respectively. By
using (7)-(8) and (13)-(14), we obtain

ḡ(hl(X, P̄Y ), ξ) = g(A∗

ξX, P̄Y ),

ḡ(h∗(X, P̄Y ), N) = ḡ(ANX, P̄ Y ). (15)

3. Invariant Lightlike Submanifolds

Let M̄ be a real (2n + 1)-dimensional differentiable manifold endowed with an
almost contact structure (φ, η, V ), where φ is a tensor field of type (1, 1), η is a
1-form and V is a characteristic vector field on M , such that

φ2(X) = −X + η(X)V ; η(V ) = 1. (16)

It follows that

η(φ(X)) = 0; φ(V ) = 0; rankφ = 2n, (17)

then M̄ is called an almost contact manifold. If there exists a semi-Riemannian
metric ḡ satisfying

ḡ(φX, φY ) = ḡ(X, Y ) − εη(X)η(Y ),

where ε± 1, then (φ, η, V, ḡ) is called an (ε)-almost contact metric structure and
M̄ is called an (ε)-almost contact manifold [4, 7]. Here

η(X) = εḡ(X, V ); ε = ḡ(V, V ). (18)

If dφ(X, Y ) = ḡ(X, φY ), then M̄ is said to have (ε)-contact Riemannian
structure (φ, V, η, ḡ). If, moreover, this structure is normal then it is known an
(ε)-Sasakian structure and M̄ is known an (ε)-Sasakian manifold. Also, an (ε)-
almost contact metric structure is (ε)-Sasakian, if and only if,

(∇̄Xφ)Y = −ḡ(X, Y )V + εη(Y )X, (19)

∇̄XV = φX. (20)
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Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of (M̄, ḡ). For any
vector field X tangent to M , we put

φX = PX + FX, (21)

where PX and FX are the tangential and transversal components of φX, re-
spectively. Therefore, (17) implies that PV = 0 and FV = 0.

Let M be tangent to structure vector field V , then V ∈ Γ (S(TM)), [3]. It
follows that M is invariant in M̄ if φX ∈ Γ (TM), that is, φX = PX, for all
X ∈ Γ (TM). For any λ ∈ Γ (tr(TM)), we put

φλ = tλ + fλ,

where tλ and fλ are the tangential and transversal components of φλ, respec-
tively. Clearly, M tangent to the structure vector field V is invariant in M̄ if
φλ = fλ. Therefore, if M is an invariant submanifold of an indefinite Sasakian
manifold M̄ then F = 0 and t = 0. For any vector fields λ, λ́ ∈ Γ (tr(TM)), we

have ḡ(φλ, λ́) = ḡ(fλ, λ́), this implies ḡ(fλ, λ́) is skew-symmetric. Also, for any
X ∈ Γ (TM), we have

ḡ(FX, λ) + g(X, tλ) = 0.

Define covariant derivatives of P, t, F and f , respectively as

(∇XP )Y = ∇X(PY ) − P (∇XY ), (22)

(∇Xt)λ = ∇X(tλ) − t(∇⊥

Xλ),

(∇XF )Y = ∇⊥

X(FY ) − F (∇XY ), (23)

(∇Xf)λ = ∇⊥

X(fλ) − f(∇⊥

Xλ).

From (19), we have

−ḡ(X, Y )V + εη(Y )X = ∇̄X(φY ) − φ(∇̄XY )

= ∇X(PY ) + h(X, PY ) − AFY X + ∇⊥

X(FY )

− P (∇XY ) − F (∇XY ) − th(X, Y ) − fh(X, Y ).

Use (22) and (23), then compare the tangential and transversal components, we
get

(∇XP )Y = −g(X, Y )V + εη(Y )X + AFY X + th(X, Y ), (24)

(∇XF )Y = −h(X, PY ) + fh(X, Y ). (25)

Similarly, we can obtain

(∇Xt)λ = AfλX − PAλX, (26)

(∇Xf)λ = −FAλX − h(X, tλ).
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Lemma 3.1. Let M be an invariant lightlike submanifold of an indefinite Sasakian

manifold M̄ . Then,

hl(X, V ) = 0, hs(X, V ) = 0, ANV = 0, AW V = 0,

φh(X, Y ) = h(φX, Y ) = h(X, φY ). (27)

Proof. For an invariant lightlike submanifold, (7) and (20) give

∇XV = PX, hl(X, V ) = 0, hs(X, V ) = 0. (28)

Let N ∈ Γ (ltr(TM)), then ḡ(N, φX) = ḡ(N, ∇̄XV ). Since M is tangent to
the structure vector field V and ∇̄ is metric connection, we have ḡ(∇̄XN, V ) +
ḡ(N, ∇̄XV ) = 0, therefore

ḡ(N, φX) = −ḡ(∇̄XN, V ) = ḡ(ANX, V ). (29)

Using (7), we also have

ḡ(N, φX) = ḡ(N,∇XV ) + ḡ(N, hl(X, V )). (30)

Therefore, from (29) and (30), we obtain

ḡ(ANX, V ) = ḡ(N,∇XV ) + ḡ(N, hl(X, V )). (31)

Using (28) in (31), we get

ḡ(ANX, V ) = ḡ(N, PX). (32)

Replace X by V and use V being a non-null vector field then we get

ANV = 0.

Similarly, let W ∈ Γ (S(TM⊥)), then we have

ḡ(W, φX) = ḡ(AW X, V ), (33)

and
ḡ(W, φX) = ḡ(W, hs(X, V )). (34)

Therefore, from (33) and (34), we have

ḡ(AW X, V ) = ḡ(W, hs(X, V )). (35)

Using (28) in (35), we get
AW X = 0,

in particular, we have
AW V = 0. (36)
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Since for an invariant lightlike submanifold, F = 0, therefore (25) implies (27).

The Screen distribution S(TM) is said to define the totally geodesic foliation
in M , if and only if, ∇XY ∈ Γ (S(TM)), for any X, Y ∈ Γ (S(TM)).

Lemma 3.2. Let M be an invariant lightlike submanifold of an indefinite Sasakian

manifold M̄ such that the screen distribution defines the totally geodesic foliation

in M . Then,

φANX = −ANφX = AφNX, (37)

φAW X = −AW φX = AφW X. (38)

Proof. Replace X by φX in (31) and using the hypothesis, we get ḡ(ANφX, V ) =
−ḡ(AφNX, V ). Moreover, for invariant lightlike submanifolds t = 0, therefore
(37) follows from (26) with above equation, by using the non-degeneracy of
vector field V .

Similarly, we can obtain (38), replacing X by φX in (35).

Theorem 3.3. Let (M, g, S(TM), S(TM⊥)) be an invariant lightlike subman-

ifold of an indefinite Sasakian space form M̄(c). Then, M is of constant φ-

sectional curvature c if M is totally geodesic.

Proof. Denote by R̄ and R the curvature tensors of ∇̄ and ∇, respectively, then
by straightforward calculations [5], we have

R̄(X, Y )Z = R(X, Y )Z + Ahl(X,Z)Y − Ahl(Y,Z)X + Ahs(X,Z)Y

− Ahs(Y,Z)X + (∇Xhl)(Y, Z) − (∇Y hl)(X, Z) + (∇Xhs)(Y, Z)

− (∇Y hs)(X, Z) + Dl(X, hs(Y, Z)) − Dl(Y, hs(X, Z))

+ Ds(X, hl(Y, Z)) − Ds(Y, hl(X, Z)). (39)

The Gauss equation is

R̄(X, Y )Z = R(X, Y )Z + Ahl(X,Z)Y − Ahl(Y,Z)X

+ Ahs(X,Z)Y − Ahs(Y,Z)X, (40)

then using (16), (18), (27), (36), (37), and (38), we have

ḡ(R̄(X, φX)φX, X) = g(R(X, φX)φX, X) + 2ḡ(Ahl(X,X)X, X)

− 2εη(Ahl(X,X)X)η(X). (41)

Further using (32), we have

ḡ(R̄(X, φX)φX, X) = g(R(X, φX)φX, X) + 2ḡ(Ahl(X,X)X, X)

− 2ḡ(hl(X, X), PX)η(X). (42)

Hence, the proof follows from the above equation.
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4. Contact CR-lightlike submanifolds

Definition 4.1. [6] Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold,
tangent to the structure vector field V , immersed in an indefinite Sasakian mani-
fold (M̄, ḡ). Then, M is a contact CR-lightlike submanifold of M̄ if the following
conditions are satisfied:

(i) Rad(TM) is a distribution on M such that Rad(TM)∩φ(Rad(TM)) = {0},

(ii) there exist vector bundles D0 and D′ over M such that

S(TM) = {φ(Rad(TM)) ⊕ D′}⊥D0⊥{V },

φD0 = D0, φD′ = L1⊥ ltr(TM),

where D0 is nondegenerate and L1 is a vector subbundle of S(TM⊥). Therefore
we have

TM = D ⊕ {V } ⊕ D′,

D = Rad(TM)⊥φ(Rad(TM))⊥D0. (43)

A contact CR-lightlike submanifold is said to be proper if D0 6= {0} and L1 6=
{0}. If D0 = {0}, then M is said to be a totally real lightlike submanifold.

Example 4.2. [6] Let M be a lightlike hypersurface of M̄ , then for ξ ∈
Γ (Rad(TM)), we have ḡ(φξ, ξ) = 0. Hence φξ ∈ Γ (TM). Thus, we get a rank-1
distribution φ(TM⊥) on M such that φ(TM⊥) ∩ TM⊥ = {0} and φ(TM⊥) ∈
S(TM). Now, let N ∈ Γ (ltr(TM)) such that ḡ(φN, ξ) = −ḡ(N, φξ) = 0 and
ḡ(φN, N) = 0. Thus, φN ∈ Γ (S(TM)). Let D′ = φ(tr(TM)), we obtain
S(TM) = {φ(TM⊥) ⊕ D′}⊥D0, where D0 is a nondegenerate distribution and
φD′ = tr(TM). Hence, M is a contact CR-lightlike hypersurface.

Using (16), we have
P 2 = −I − tF + η ⊗ V, (44)

FP + fF = 0,

f2 = −I − F t, (45)

P t + tf = 0.

Lemma 4.3. In a contact CR-lightlike submanifold M of an indefinite Sasakian

manifold M̄, in order to a vector field X tangent to M belongs to D ⊕ {V }, it

is necessary and sufficient that FX = 0.

Proof. The proof follows from (21).

Theorem 4.4. In a contact CR-lightlike submanifold M of an indefinite Sasakian

manifold M̄ , the distribution D ⊕ {V } has an almost contact metric structure

(P, V, η, g) and hence the dimension of D is even.
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Proof. From (44), we have

P 2X = −X − tFX + η(X)V.

Let X, Y ∈ Γ (D ⊕ {V }), then we obtain

P 2X = −X + η(X)V.

Since PV = 0 and g(PX, PY ) = ḡ(φX, φY ) = g(X, Y ) − εη(X)η(Y ), then
D ⊕ {V } has an almost contact metric structure (P, V, η, g).

Define the orthogonal complement subbundle to the vector subbundle L1 in
S(TM⊥) by L⊥

1 . Therefore

tr(TM) = φD′ ⊕ L⊥

1 ,

so put
φW = BW + CW, ∀W ∈ Γ (S(TM⊥)),

where BW ∈ Γ (φL1) and CW ∈ Γ (L⊥
1 ).

Theorem 4.5. For a contact CR-lightlike submanifold M of an indefinite Sasakian

manifold M̄ , the subbundle L⊥

1 has an almost complex structure f and hence the

dimension of L⊥
1 is even.

Proof. For any λ ∈ Γ (L⊥
1 )), from (45) we have f2λ = −λ − F tλ, this implies

f2λ = −λ, which completes the proof.

Lemma 4.6. In a contact CR-lightlike submanifold M of an indefinite Sasakian

manifold M̄ , ∇XV ∈ Γ (S(TM)) for any X ∈ D0.

Proof. Let N ∈ Γ (ltr(TM)) then ḡ(∇XV, N) = ḡ(∇̄XV, N) = ḡ(φX, N) = 0.
Hence, from (4) the result follows.

Theorem 4.7. In a contact CR-lightlike submanifold M of an indefinite Sasakian

manifold M̄ , the distribution D0 has K-contact metric structure (P, V, η, g).

Proof. Use (6) and (19) for any X ∈ Γ (TM) and Z ∈ Γ (D′), we have

φ(∇XZ + h(X, Z)) = −AφZX + ∇⊥

XφZ + g(X, Z)V. (46)

Let Y ∈ Γ (D0⊥{V }), then we have

ḡ(∇XZ, φY ) = ḡ(AφZX, Y ) − εg(X, Z)η(Y ).

Therefore, in particular, for X ∈ Γ (D0) and Y = V , we have

ḡ(AφZX, V ) = 0. (47)



494 Rakesh Kumar, Rachna Rani, and R. K. Nagaich

Since φD′ = L1⊥ ltr(TM) therefore using (47) in (31) and (35) with Lemma
4.6, we have ḡ(hl(X, V ), φZ) = 0 and ḡ(hs(X, V ), φZ) = 0.

Let U ∈ Γ (L⊥

1 ) and X ∈ Γ (D0), then

ḡ(hl(X, V ), U) = 0,

and

ḡ(hs(X, V ), U) = ḡ(∇̄XV −∇XV − hl(X, V ), U) = ḡ(φX, U) = ḡ(X, U) = 0.

Thus, we have hl(X, V ) = 0, hs(X, V ) = 0 for any X ∈ Γ (D0. Since for any X ∈
Γ (D0), we have ∇̄XV = ∇XV + hl(X, V ) + hl(X, V ), therefore, ∇̄XV = ∇XV

or PX = ∇XV . Thus, with Theorem 4.4, the proof follows.

Lemma 4.8. For any λ ∈ Γ (tr(TM)), if tλ = 0 then λ ∈ Γ (L⊥
1 .

Proof. For any λ ∈ Γ (tr(TM)), put φλ = tλ + fλ and let tλ = 0. Then, for any
X ∈ Γ (D′), we have ḡ(φX, λ) = −ḡ(X, φλ) = −ḡ(X, fλ) = 0. This implies that
λ ∈ Γ (L⊥

1 ).

Theorem 4.9. In a contact CR-lightlike submanifold M of an indefinite Sasakian

manifold M̄ , the almost contact structure (P, V, η, g) is Sasakian, if and only if,

th(X, Y ) = 0 for any X, Y ∈ Γ (D) or, if and only if, h(X, Y ) ∈ Γ (L⊥

1 ).

Proof. By virtue of the above lemma and (24), the proof follows.

In [6], Duggal and Sahin studied the integrability of distributions of contact
CR-lightlike submanifolds of indefinite Sasakian manifolds and proved

Theorem 4.10. Let M be a contact CR-lightlike submanifold of an indefinite

Sasakian manifold M̄ . Then, D and D′ ⊕ D are not integrable.

Theorem 4.11. Let M be a contact CR-lightlike submanifold of an indefinite

Sasakian manifold M̄ . Then, D ⊕ {V } is integrable, if and only if, h(X, φY ) =
h(φX, Y ), for any X, Y ∈ Γ (D ⊕ {V }).

Next, we discuss the integrability of the distribution D′.

Lemma 4.12. For any X, Z ∈ Γ (D′), ∇⊥

XφZ −∇⊥

ZφX ∈ Γ (φD′).

Proof. Let U ∈ Γ (L⊥
1 ). Then

ḡ(∇⊥

XφZ −∇⊥

ZφX, U) = ḡ(∇̄XφZ − ∇̄ZφX, U)

= ḡ((∇̄Xφ)Z + φ∇̄XZ − (∇̄Zφ)X − φ∇̄ZX, U)

= ḡ(φ(∇̄XZ − ∇̄ZX) + (∇̄Xφ)Z − (∇̄Zφ)X, U). (48)

From (19), for any X, Z ∈ Γ (D′), we have (∇̄Xφ)Z = −g(X, Z)V then using the
symmetric property of the second fundamental form, the above equation gives
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ḡ(∇⊥

XφZ −∇⊥

ZφX, U) = −ḡ(∇̄XZ − ∇̄ZX, φU)

= −ḡ(∇XZ −∇ZX, φU) = 0.

Therefore, ∇⊥

XφZ −∇⊥

ZφX ∈ Γ (φD′).

Theorem 4.13. In a contact CR-lightlike submanifold M of an indefinite Sasakian

manifold M̄ , the distribution D′ is integrable.

Proof. Since ∇ is torsion free then for any X, Z ∈ Γ (D′), from (46), we have

φ([X, Z]) = AφXZ − AφZX + ∇⊥

XφZ −∇⊥

ZφX. (49)

For any Y ∈ Γ (D′), (46) gives ḡ(AφZX?, Y ) = ḡ(∇̄X?Z, φY ), for any X? ∈
Γ (TM), Z ∈ Γ (D′). Then, particularly from (12), we obtain

ḡ(AφZX?, Y ) = ḡ(AφY X?, Z). (50)

For any P̄X ∈ Γ (S(TM)), (15) gives

ḡ(h∗(P̄X, P̄Y ), N) = ḡ(AN P̄X, P̄Y ),

since h∗ is bilinear and symmetric, therefore

ḡ(AN P̄X, P̄Y ) = ḡ(P̄X, AN P̄ Y ). (51)

Choose, particularly X? ∈ Γ (D0), then from (50) and (51), we obtain

ḡ(X?, AφZY ) = ḡ(X?, AφY Z),

then the non-degeneracy of D0 implies that

AφZY = AφY Z, (52)

for any Y, Z ∈ Γ (D′). Thus, from (49), (52) and Lemma 4.12, the proof follows.

5. Totally Contact Umbilical Contact CR-lightlike submanifolds

Definition 5.1. [10] If the second fundamental form h of a submanifold, tangent
to the structure vector field V , of an indefinite Sasakian manifold M̄ is of the
form

h(X, Y ) = {g(X, Y ) − η(X)η(Y )}α + η(X)h(Y, V ) + η(Y )h(X, V ),

for any X, Y ∈ Γ (TM), where α is a vector field transversal to M , then M is
called totally contact umbilical and totally contact geodesic if α = 0.
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The above definition also holds for a lightlike submanifold. For a totally con-
tact umbilical lightlike submanifold M , we have

hl(X, Y ) = {g(X, Y ) − η(X)η(Y )}αL + η(X)hl(Y, V ) + η(Y )hl(X, V ), (53)

hs(X, Y ) = {g(X, Y ) − η(X)η(Y )}αs + η(X)hs(Y, V ) + η(Y )hs(X, V ), (54)

where αL ∈ Γ (ltr(TM)) and αs ∈ Γ (S(TM⊥)).

Lemma 5.2. [6] Let M be a totally contact umbilical proper contact CR-lightlike

submanifold of an indefinite Sasakian manifold M̄ . Then, αL = 0.

The distribution D′ is said to define totally geodesic foliation in M , if and
only if, ∇XY ∈ Γ (D′), for any X, Y ∈ Γ (D′).

Theorem 5.3. Let M be a totally contact umbilical proper contact CR-lightlike

submanifold of an indefinite Sasakian manifold M̄ such that D′ defines totally

geodesic foliation in M . Then, M is totally contact geodesic or αs ∈ Γ (L⊥

1 ) or

dimD′ = 1.

Proof. For any X, Y ∈ Γ (D′), from (53) and (54), we have

hl(X, Y ) = 0, hs(X, Y ) = g(X, Y )αs, (55)

then (7) implies
∇̄XY = ∇XY + g(X, Y )αs. (56)

Use (55) in (11), we get

AW X = ḡ(αs, W )X, W ∈ Γ (S(TM⊥)),

then (10) implies

∇̄XW = −ḡ(αs, W )X + ∇s
XW + Dl(X, W ). (57)

Since Y ∈ Γ (D′) so particularly let W = φY ∈ Γ (L1) then

∇̄XφY = −ḡ(αs, φY )X + ∇s
XφY + Dl(X, φY ). (58)

Since (∇̄Xφ)Y = ∇̄XφY − φ∇̄XY , then, from (19), we have

∇̄XφY = φ∇̄XY − g(X, Y )V. (59)

Use (56) and (59) in (58), we get

φ∇XY + g(X, Y )φαs − g(X, Y )V = −ḡ(αs, φY )X + ∇s
XφY + Dl(X, φY ).

Taking inner product with X and then use the hypothesis, we get

ḡ(αs, φY )||X||2 = g(X, Y )ḡ(αs, φX). (60)
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Change the role of X and Y , we get

ḡ(αs, φX)||Y ||2 = g(X, Y )ḡ(αs, φY ),

using (60) in the above equation, we get

ḡ(αs, φY ) =
g(X, Y )2

||X||2||Y ||2
ḡ(αs, φY ). (61)

Then, possible solutions of equation (61) are αs = 0 or αs⊥φY or X||Y , which
completes the proof.

Lemma 5.4. Let M be a totally contact umbilical contact CR-lightlike sub-

manifold of an indefinite Sasakian manifold M̄ . Then, ∇XφW ∈ Γ (D′) if

αs ∈ Γ (L⊥

1 ), W ∈ Γ (φD′) and X ∈ Γ (D0).

Proof. Taking into account of (43), it is clear that ∇XφW ∈ Γ (D′), if and
only if, ḡ(∇XφW, N) = ḡ(∇XφW, Y ) = ḡ(∇XφW, φN) = 0, for any N ∈
Γ (ltr(TM)), Y ∈ Γ (D0).

Let X, Y ∈ Γ (D0), W ∈ Γ (φD′) then, from (∇̄Xφ)W = ∇̄XφW − φ∇̄XW

and (19), we get ∇̄XφW = φ∇̄XW . Then, ḡ(∇XφW, N) = ḡ(∇̄XφW, N) −
ḡ(hl(X, φW ), N) = −ḡ(∇̄XW, φN), by using (53). This further gives

ḡ(∇XφW, N) = g(AW X, φN) = 0,

by the use of (11) and (54).

Next, since Y ∈ Γ (D0) so let φY = Y ′ ∈ Γ (D0), then

g(∇XφW, Y ) = ḡ(φ∇̄XW, Y ) = −ḡ(∇̄XW, φY )

= −ḡ(∇̄XW, Y ′) = ḡ(AW X, Y ′) = ḡ(hs(X, Y ′), W ), (62)

by using (11). Now, for X, Y ∈ Γ (D0), from (54), we have hs(X, Y ) = g(X, Y )αs,
then (62) gives g(∇XφW, Y ) = g(X, Y ′)ḡ(αs, W ), since αs ∈ Γ (L⊥

1 ). Therefore,
ḡ(∇XφW, Y ) = 0.

Similarly, by using (11) and (54), finally, we can prove that ḡ(∇XφW, φN) =
0. This completes the proof.

Theorem 5.5. Let M be a totally contact umbilical contact CR-lightlike sub-

manifold of an indefinite Sasakian manifold M̄ and the lightlike transversal

vector bundle is parallel with respect to ∇⊥. Then, M is totally real lightlike

submanifold if αS 6= 0 and αs ∈ Γ (L⊥
1 ).

Proof. Here, for X, Y ∈ Γ (D0), W ∈ Γ (φD′), we have

∇̄XφW = φ∇̄XW

∇XφW + h(X, φW ) = −φAW X + φ∇⊥

XW
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∇XφW + g(X, φW )αs = −φḡ(αs, W )X + φ∇⊥

XW

∇XφW − g(φX, W )αs = φ∇⊥

XW,

this gives
∇XφW = φ∇⊥

XW, (63)

then, by using the above lemma with (63), we get ∇⊥

XW ∈ Γ (φD′). By hypoth-
esis, the lightlike transversal vector bundle ltr(TM) is parallel with respect to
∇⊥ then, by [5, Theorem 2.3, p. 159], ∇⊥ gives a metric connection on tr(TM).
Then, ḡ(W,∇⊥

Xαs) = ḡ(∇⊥

XW, αs). But ∇⊥

XW ∈ Γ (φD′), then ḡ(W,∇⊥

Xαs) = 0.
Hence for any X ∈ Γ (D0), we have ∇⊥

Xαs ∈ Γ (L⊥
1 ). Now, for X ∈ Γ (D0), we

have
∇̄Xφαs = φ∇̄Xαs. (64)

Replace W by αs in (57), we get

∇̄Xαs = −ḡ(αs, αs)X + ∇⊥

Xαs. (65)

Use (65) in (64), we get

∇⊥

Xφαs = −ḡ(αs, αs)φX + φ∇⊥

Xαs. (66)

Therefore, by hypothesis and ∇⊥

Xαs ∈ Γ (L⊥
1 ), then from (66), it follows that

φX = 0 for all X ∈ Γ (D0). Hence D0 = {0}, which completes the proof.
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