Vietnam Journal of Mathematics 38:3(2010) 281-286

Vietnam Journal of MATHEMATICS © VAST 2010

An Observation on Definable Bi-Lipschitz Homeomorphism

Ta Le Loi

Department of Mathematics, University of Dalat, Dalat, Vietnam

Received November 07, 2009

Abstract. This short note gives an observation on the directional derivatives of bi-Lipschitz homeomorphisms that are definable in o-minimal structures and, as a consequence, it implies that the dimension of directional sets of definable sets is invariant under definable bi-Lipschitz homeomorphisms.

1991 Mathematics Subject Classification: 14P15, 32B20, 14P10, 57R45. *Key words:* o-minimal structure, bi-Lipschitz homeomorphism, direction set.

1. Introduction

Let $A \subset \mathbb{R}^n$ be such that $0 \in \overline{A}$. Let S^{n-1} denote the unit sphere centered at 0 in \mathbb{R}^n . The *directional set of* A *at* 0 is defined by

$$D(A) = \left\{ a \in S^{n-1} : \exists (x_k) \subset A \setminus \{0\}, x_k \to 0, \frac{x_k}{\|x_k\|} \to a, \text{when } k \to \infty \right\}.$$

Let $h : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ be a homeomorphism or a bi-Lipschitz homeomorphism. We consider the relation between D(A) and D(h(A)).

First let us examine some examples (c.f. [7]).

Example 1.1. Let $h : \mathbb{R}^3 \to \mathbb{R}^3$, $h(x, y, z) = (x, y, z^3)$, and $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^6 = 0\}$. Then h is a polynomial homeomorphism, A and $h(A) = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 = 0\}$ are algebraic sets. It is easy to see that $\dim D(A) = 0, \dim D(h(A)) = 1$.

Example 1.2 (Oscillation). Let $h : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0), h(x, y) = (x, y + f(x))$, where $f(x) = x \sin(\ln |x|)$, and $A = \mathbb{R} \times 0$. Then h is a bi-Lipschitz homeomorphism and h(A) is the graph of f. In this case we have dim D(A) = 0, dim(D(h(A)) = 1.

Example 1.3 (Spiral). Let $h: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be the map defined by

$$h_1(x,y) = x \cos(\ln\sqrt{x^2 + y^2}) + y \sin(\ln\sqrt{x^2 + y^2}), h_2(x,y) = -x \sin(\ln\sqrt{x^2 + y^2}) + y \cos(\ln\sqrt{x^2 + y^2}),$$

in other words, $h(r, \theta) = (r, \theta - \ln r)$ in the polar coordinates. Then h is a bi-Lipschitz homeomorphism. Let A, B be two different segments with an end point at $0 \in \mathbb{R}^2$. Then we have $D(A) \cap D(B) = \emptyset$, and hence $\dim(D(A) \cap D(B)) =$ -1. But h(A), h(B) are the spirals, so $D(h(A)) = D(h(B)) = S^1$ and hence $\dim(D(h(A) \cap D(h(B))) = 1$.

The preceding examples show that the dimension of directional sets is not a homeomorphic nor a bi-Lipschitzian invariant. In this short note we give an observation on the directional derivatives of bi-Lipschitz homeomorphisms that are definable in o-minimal structures and, as a consequence, it implies that the dimension of directional sets of definable sets is invariant under definable bi-Lipschitz homeomorphisms. This result is motivated in [7] and relates to the invariants of bi-Lipschitz equivalence (see [9, 4, 5]).

2. o-minimal structures

An *o-minimal structure* on \mathbb{R} is a sequence $\mathcal{D} = (\mathcal{D}_n)_{n \in \mathbb{N}}$ where each \mathcal{D}_n is a Boolean algebra of subsets of \mathbb{R}^n that contains all algebraic sets and such that $A \times B \in \mathcal{D}_{n+m}$ if $A \in \mathcal{D}_n, B \in \mathcal{D}_m$, and $\pi(A) \in \mathcal{D}_n$ if $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the projection on the first *n* coordinates and $A \in \mathcal{D}_{n+1}$, and elements in \mathcal{D}_1 are precisely the finite unions of intervals and points. A set belonging to \mathcal{D} is said to be *definable* (in that structure). *Definable maps* in structure \mathcal{D} are maps whose graphs are definable sets in \mathcal{D} .

We refer the reader to [2, 3, 1, 8] for the basic properties of o-minimal structures used in this note. In particular, the class of semi-algebraic sets and the class of global sub-analytic sets are examples of such structures. We note that the dimension of definable sets is well defined. Moreover, we will use Motonicity [2, Chapter 3 (1.2)] and Curve selection [2, Chapter 6 (1.5)] in our arguments. In this note we fix an o-minimal structure on \mathbb{R} . "Definable" means definable in this structure.

Theorem 2.1. Let $h : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ be a definable bi-Lipschitz homeomorphisc germ. Define $\bar{h} : S^{n-1} \to S^{n-1}$, by $\bar{h}(a) = \lim_{t \to 0^+} \frac{h(ta)}{\|h(ta)\|}$. Then

(i) \bar{h} is well-defined and depends only on the direction of curves in the sense that if $\gamma: (0,1) \to \mathbb{R}^n$ is a definable curve with $\lim_{t \to 0^+} \gamma(t) = 0$ and $\lim_{t \to 0^+} \frac{\gamma(t)}{\|\gamma(t)\|} = \frac{1}{\|\gamma(t)\|}$

- a, then $\lim_{t \to 0^+} \frac{h(\gamma(t))}{\|h(\gamma(t))\|} = \bar{h}(a).$
 - (ii) \bar{h} is a definable bi-Lipschitz homeomorphism.

Proof. Let r > 0 and l, L > 0 be such that

$$||x - x'|| \le ||h(x) - h(x')|| \le L||x - x'||,$$

when $||x|| \le r, ||x'|| \le r.$

(i) Let $a \in S^{n-1}$. Let $\gamma : (0,1) \to \mathbb{R}^n$ be a definable curve with $\lim_{t \to 0^+} \gamma(t) = 0$ and $\lim_{t \to 0^+} \frac{\gamma(t)}{\|\gamma(t)\|} = a$. First, note that, by Monotonicity, $\lim_{t \to 0^+} \frac{h(\gamma(t))}{\|h(\gamma(t))\|}$ exists and hence h is well-defined. For $k \in \mathbb{N}, k \gg 1$, take $t_k \in (0,1)$ such that $\|\gamma(t_k)\| = \frac{1}{k}$. Then $t_k \to 0$, when $k \to \infty$, and

Ta Le Loi

$$\begin{aligned} \left\| \frac{h(\gamma(t_k))}{\|h(\gamma(t_k))\|} - \frac{h(\frac{1}{k}a)}{\|h(\frac{1}{k}a)\|} \right\| &= \frac{\|h(\gamma(t_k)) - h(\frac{1}{k}a)\|}{\|h(\frac{1}{k}a)\|} \\ &\leq \frac{k}{l}L\|\gamma(t_k) - \frac{1}{k}a\| \leq \frac{L}{l}\|k\gamma(t_k) - a\|. \end{aligned}$$

Since $k\gamma(t_k) = k \|\gamma(t_k)\| \frac{\gamma(t_k)}{\|\gamma(t_k)\|} \to a$, when $k \to \infty$, we have

$$\lim_{t \to 0^+} \frac{h(\gamma(t))}{\|h(\gamma(t))\|} = \lim_{t \to 0^+} \frac{h(ta)}{\|h(ta)\|} = \bar{h}(a).$$

(ii) It is easy to check that \bar{h} is definable and bijective with $(\bar{h})^{-1} = \overline{h^{-1}}$. It remains to prove that \bar{h} is Lipschitzian. Let $a, b \in S^{n-1}$, then for t > 0, we have

$$\begin{aligned} \left| \frac{h(ta))}{\|h(ta)\|} - \frac{h(tb)}{\|h(tb)\|} \right\| &\leq \frac{\|h(ta) - h(tb)\|}{\min(\|h(ta)\|, \|h(tb)\|)} \\ &\leq \frac{L\|ta - tb\|}{\min(l\|ta\|, l\|tb\|)} \leq \frac{L}{l} \|a - b\| \end{aligned}$$

Letting $t \to 0^+$, we get $\|\bar{h}(a) - \bar{h}(b)\| \le \frac{L}{l} \|a - b\|$.

Note. If *h* is a definable bi-Lipschitz homeomorphism at 0, then, by Monotonicity, the directional derivative of *h* at 0 corresponding to the direction $a \in S^{n-1}$, $D_ah(0) = \lim_{t \to 0^+} \frac{h(ta)}{t}$ exists. Therefore, $\bar{h}(a) = \frac{D_ah(0)}{\|Dh_a(0)\|}$ is the direction of the directional derivative $D_ah(0)$. The bi-Lipschitz homeomorphisms *h* given in Examples 1.1 and 1.2 are not definable in any structure and \bar{h} are not defined.

Proposition 2.2. If A is a germ at 0 in \mathbb{R}^n , then $D(A) = D(\overline{A})$ is a closed subset of S^{n-1} .

Proof. Let $a \in D(\overline{A})$. Then there exists a sequence (x_k) in \overline{A} , such that $\frac{x_k}{\|x_k\|} \to a$ when $k \to \infty$. Choose $a_k \in A$ such that $\|a_k - x_k\| \ll \|x_k\|$. We have

$$\left\|\frac{a_k}{\|a_k\|} - \frac{x_k}{\|x_k\|}\right\| \le \frac{\|a_k - x_k\|}{\min(\|a_k\|, \|x_k\|)} \to 0$$

when $k \to \infty$. Hence

$$a = \lim_{k \to \infty} \frac{a_k}{\|a_k\|} \in D(A)$$

Similarly, to prove $D(A) = \overline{D(A)}$, let $a \in \overline{D(A)}$. Then there exists a sequence (a_k) in D(A), such that $a_k \to a$ when $k \to \infty$. For each k, there exists a sequence $(b_{k,m})$ in $A \setminus \{0\}$ such that $b_{k,m} \to 0$ and $\frac{b_{k,m}}{\|b_{k,m}\|} \to a_k$, when $m \to \infty$. We can choose a subsequence (m_k) of (m) such that $\left\|\frac{b_{k,m_k}}{\|b_{k,m_k}\|} - a_k\right\| < \frac{1}{k}$. We have

284

An Observation on Definable Bi-Lipschitz Homeomorphism

 $c_k = b_{k,m_k} \in A \setminus \{0\}, \ \frac{c_k}{\|c_k\|} \to a$, and hence $a \in D(A)$. So D(A) is a closed set.

Note. When A is a definable set, using the interpretation of the logical symbols in terms of operations on sets, one can check that D(A) is a definable set. Moreover, by Curve selection, $a \in D(A)$ if and only if there exists a definable curve $\gamma: (0,1) \to \mathbb{R}^n$ with $\lim_{t \to 0^+} \gamma(t) = 0$ and $\lim_{t \to 0^+} \frac{\gamma(t)}{\|\gamma(t)\|} = a$. From this we get

Corollary 2.3. Let A, B be definable set-germs at 0 in \mathbb{R}^n such that $0 \in \overline{A} \cap \overline{B}$. Let $h : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ be a definable bi-Lipschitz homeomorphism. Then $\overline{h} : (S^{n-1}, D(A)) \to (S^{n-1}, D(h(A)))$ is a bi-Lipschitz homepmorphism. In particular.

$$\dim(D(h(A)) \cap D(h(B))) = \dim(D(A) \cap D(B)).$$

Remark 2.4. Dropping the supposition of definability of h but assuming that h(A), h(B) are definable, we still have $\dim(D(h(A)) \cap D(h(B))) = \dim(D(A) \cap D(B))$. This is a generalization of the main theorem in [7] but the proof requires much more effort than that of the corollary. Note that bi-Lipschitz equivalence does not always imply definable one. In fact, Shiota constructs an example of two compact polyhedra that are bi-Lipschitz homeomorphic but not definably homeomorphic in any o-minimal structure. These results are in preparation (see [6]).

Acknowledgements. This research is partially supported by the Grant-in-Aid for Scientific Research (No. 20540075) of the Ministry of Education, Science and Culture of Japan, and HEM 21 Invitation Fellowship Programs for Research in Hyogo.

References

- 1. M. Coste, An Introduction to O-minimal Geometry, Dottorato di Ricerca in Matematica, Dip. Mat. Pisa. Instituti Editoriali e Poligrafici Internazionali, 2000.
- 2. L.van den Dries, *Tame Topology and O-minimal Structures*, LMS Lecture Notes, Cambridge University Press, 1997.
- L.van den Dries and C. Miller, Geometric categories and O-minimal structures, Duke Math. J. 84 (2) (1996), 497–540.
- J. P. Henry and A. Parusiński, Existence of moduli for bi-Lipschitz equivalece of analytic functions, *Compositio Math.* 136 (2003), 217–235.
- J. P. Henry and A. Parusiński, Invariance of bi-Lipschitz equivalence of real analytic functions, Banach Center Publications 65 (2004), 67–75.
- S. Koike, T. L. Loi, L. Paunescu, and M. Shiota, Directional properties of sets definable in o-minimal structures, J. Singularities, (to appear).
- S. Koike and L. Paunescu, The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms, Ann. Inst. Fourier. 59 (6) (2009), 2445-2469.
- T. L. Loi, Tame topology and Tarski-type systems, Vietnam J. Math. 31 (2) (2003), 127–136.

9. T. Mostowski, Lipschitz equisingularity problems, Several topics in Singularity Theory, RIMS Kokyuroku **1328** (2003), 73–113.