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Abstract. This short note gives an observation on the directional derivatives of bi-

Lipschitz homeomorphisms that are definable in o-minimal structures and, as a conse-

quence, it implies that the dimension of directional sets of definable sets is invariant

under definable bi-Lipschitz homeomorphisms.
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1. Introduction

Let A ⊂ R
n be such that 0 ∈ A. Let Sn−1 denote the unit sphere centered at 0

in R
n. The directional set of A at 0 is defined by

D(A) =

{

a ∈ Sn−1 : ∃(xk) ⊂ A \ {0}, xk → 0,
xk

‖xk‖
→ a, when k → ∞

}

.

Let h : (Rn, 0) → (Rn, 0) be a homeomorphism or a bi-Lipschitz homeomor-
phism. We consider the relation between D(A) and D(h(A)).

First let us examine some examples (c.f. [7]).

Example 1.1. Let h : R
3 → R

3, h(x, y, z) = (x, y, z3), and A = {(x, y, z) ∈
R

3 : x2 + y2 − z6 = 0}. Then h is a polynomial homeomorphism, A and h(A) =
{(x, y, z) ∈ R

3 : x2 + y2 − z2 = 0} are algebraic sets. It is easy to see that
dimD(A) = 0, dimD(h(A)) = 1.
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Example 1.2 (Oscillation). Let h : (R2, 0) → (R2, 0), h(x, y) = (x, y + f(x)),
where f(x) = x sin(ln |x|), and A = R × 0. Then h is a bi-Lipschitz home-
omorphism and h(A) is the graph of f . In this case we have dimD(A) =
0, dim(D(h(A)) = 1.

1

0

dimD(A)=0 dimD(h(A))=1

Example 1.3 (Spiral). Let h : (R2, 0) → (R2, 0) be the map defined by

h1(x, y) = x cos(ln
√

x2 + y2) + y sin(ln
√

x2 + y2),

h2(x, y) = −x sin(ln
√

x2 + y2) + y cos(ln
√

x2 + y2),

in other words, h(r, θ) = (r, θ − ln r) in the polar coordinates. Then h is a bi-
Lipschitz homeomorphism. Let A, B be two different segments with an end point
at 0 ∈ R

2. Then we have D(A) ∩ D(B) = ∅, and hence dim(D(A) ∩ D(B)) =
−1. But h(A), h(B) are the spirals, so D(h(A)) = D(h(B)) = S1 and hence
dim(D(h(A) ∩ D(h(B)) = 1.

dimD(A)=0 dimD(h(A))=1

The preceding examples show that the dimension of directional sets is not
a homeomorphic nor a bi-Lipschitzian invariant. In this short note we give an
observation on the directional derivatives of bi-Lipschitz homeomorphisms that
are definable in o-minimal structures and, as a consequence, it implies that the



An Observation on Definable Bi-Lipschitz Homeomorphism 283

dimension of directional sets of definable sets is invariant under definable bi-
Lipschitz homeomorphisms. This result is motivated in [7] and relates to the
invariants of bi-Lipschitz equivalence (see [9, 4, 5]).

2. o-minimal structures

An o-minimal structure on R is a sequence D = (Dn)n∈N where each Dn is a
Boolean algebra of subsets of R

n that contains all algebraic sets and such that
A × B ∈ Dn+m if A ∈ Dn, B ∈ Dm, and π(A) ∈ Dn if π : R

n+1 → R
n is the

projection on the first n coordinates and A ∈ Dn+1, and elements in D1 are
precisely the finite unions of intervals and points. A set belonging to D is said to
be definable (in that structure). Definable maps in structure D are maps whose
graphs are definable sets in D.

We refer the reader to [2, 3, 1, 8] for the basic properties of o-minimal struc-
tures used in this note. In particular, the class of semi-algebraic sets and the
class of global sub-analytic sets are examples of such structures. We note that
the dimension of definable sets is well defined. Moreover, we will use Motonicity
[2, Chapter 3 (1.2)] and Curve selection [2, Chapter 6 (1.5)] in our arguments.
In this note we fix an o-minimal structure on R. “Definable” means definable in
this structure.

Theorem 2.1. Let h : (Rn, 0) → (Rn, 0) be a definable bi-Lipschitz homeomor-

phisc germ. Define h̄ : Sn−1 → Sn−1, by h̄(a) = lim
t→0+

h(ta)

‖h(ta)‖
. Then

(i) h̄ is well-defined and depends only on the direction of curves in the sense

that if γ : (0, 1) → R
n is a definable curve with lim

t→0+
γ(t) = 0 and lim

t→0+

γ(t)

‖γ(t)‖
=

a, then lim
t→0+

h(γ(t))

‖h(γ(t))‖
= h̄(a).

(ii) h̄ is a definable bi-Lipschitz homeomorphism.

Proof. Let r > 0 and l, L > 0 be such that

l||x− x′‖ ≤ ‖h(x) − h(x′)‖ ≤ L‖x − x′‖,

when ‖x‖ ≤ r, ‖x′‖ ≤ r.

(i) Let a ∈ Sn−1. Let γ : (0, 1) → R
n be a definable curve with lim

t→0+
γ(t) = 0

and lim
t→0+

γ(t)

‖γ(t)‖
= a. First, note that, by Monotonicity, lim

t→0+

h(γ(t))

‖h(γ(t))‖
exists

and hence h̄ is well-defined. For k ∈ N, k � 1, take tk ∈ (0, 1) such that ‖γ(tk)‖ =
1

k
. Then tk → 0, when k → ∞, and



284 Ta Le Loi

∥

∥

∥

∥

h(γ(tk))

‖h(γ(tk))‖
−

h( 1

k
a)

‖h( 1

k
a)‖

∥

∥

∥

∥

=
‖h(γ(tk)) − h( 1

k
a)‖

‖h( 1

k
a)‖

≤
k

l
L‖γ(tk) − 1

k
a‖ ≤

L

l
‖kγ(tk) − a‖.

Since kγ(tk) = k‖γ(tk)‖
γ(tk)

‖γ(tk)‖
→ a, when k → ∞, we have

lim
t→0+

h(γ(t))

‖h(γ(t))‖
= lim

t→0+

h(ta)

‖h(ta)‖
= h̄(a).

(ii) It is easy to check that h̄ is definable and bijective with (h̄)−1 = h−1. It
remains to prove that h̄ is Lipschitzian. Let a, b ∈ Sn−1, then for t > 0, we have

∥

∥

∥

∥

h(ta))

‖h(ta)‖
−

h(tb)

‖h(tb)‖

∥

∥

∥

∥

≤
‖h(ta) − h(tb)‖

min(‖h(ta)‖, ‖h(tb)‖)

≤
L‖ta − tb‖

min(l‖ta‖, l‖tb‖)
≤

L

l
‖a − b‖.

Letting t → 0+, we get ‖h̄(a) − h̄(b)‖ ≤
L

l
‖a − b‖.

Note. If h is a definable bi-Lipschitz homeomorphism at 0, then, by Monotonic-
ity, the directional derivative of h at 0 corresponding to the direction a ∈ Sn−1,

Dah(0) = lim
t→0+

h(ta)

t
exists. Therefore, h̄(a) =

Dah(0)

‖Dha(0)‖
is the direction of

the directional derivative Dah(0). The bi-Lipschitz homeomorphisms h given in
Examples 1.1 and 1.2 are not definable in any structure and h̄ are not defined.

Proposition 2.2. If A is a germ at 0 in R
n, then D(A) = D(A) is a closed

subset of Sn−1.

Proof. Let a ∈ D(A). Then there exists a sequence (xk) in A, such that
xk

‖xk‖
→ a

when k → ∞. Choose ak ∈ A such that ‖ak − xk‖ � ‖xk‖. We have

∥

∥

∥

∥

ak

‖ak‖
−

xk

‖xk‖

∥

∥

∥

∥

≤
‖ak − xk‖

min(‖ak‖, ‖xk‖)
→ 0

when k → ∞. Hence
a = lim

k→∞

ak

‖ak‖
∈ D(A).

Similarly, to prove D(A) = D(A), let a ∈ D(A). Then there exists a sequence
(ak) in D(A), such that ak → a when k → ∞. For each k, there exists a sequence

(bk,m) in A \ {0} such that bk,m → 0 and
bk,m

‖bk,m‖
→ ak, when m → ∞. We can

choose a subsequence (mk) of (m) such that

∥

∥

∥

∥

bk,mk

‖bk,mk
‖
− ak

∥

∥

∥

∥

<
1

k
. We have
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ck = bk,mk
∈ A \ {0},

ck

‖ck‖
→ a, and hence a ∈ D(A). So D(A) is a closed

set.

Note. When A is a definable set, using the interpretation of the logical symbols
in terms of operations on sets, one can check that D(A) is a definable set.
Moreover, by Curve selection, a ∈ D(A) if and only if there exists a definable

curve γ : (0, 1) → R
n with lim

t→0+
γ(t) = 0 and lim

t→0+

γ(t)

‖γ(t)‖
= a. From this we get

Corollary 2.3. Let A, B be definable set-germs at 0 in R
n such that 0 ∈ A∩B.

Let h : (Rn, 0) → (Rn, 0) be a definable bi-Lipschitz homeomorphism. Then

h̄ : (Sn−1 , D(A)) → (Sn−1, D(h(A))) is a bi-Lipschitz homepmorphism. In par-

ticular,

dim(D(h(A)) ∩ D(h(B))) = dim(D(A) ∩D(B)).

Remark 2.4. Dropping the supposition of definability of h but assuming that
h(A), h(B) are definable, we still have dim(D(h(A))∩D(h(B))) = dim(D(A) ∩
D(B)). This is a generalization of the main theorem in [7] but the proof requires
much more effort than that of the corollary. Note that bi-Lipschitz equivalence
does not always imply definable one. In fact, Shiota constructs an example of
two compact polyhedra that are bi-Lipschitz homeomorphic but not definably
homeomorphic in any o-minimal structure. These results are in preparation (see
[6]).
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