Vietnam Journal of Mathematics 38:2(2010) 189-201

Vietnam Journal of MATHEMATICS © VAST 2010

On a Class of Lifting Modules

Hatice Inankil¹, Sait Halicioğlu², and Abdullah Harmanci³

^{1,2}Department of Mathematics, Ankara University, 06100 Ankara, Turkey

³Department of Mathematics, Hacettepe University, 06550 Ankara, Turkey

Received November 03, 2009 Revised January 04, 2010

Abstract. In this paper, we introduce principally δ -lifting modules which are analogous to δ -lifting modules and principally δ -semiperfect modules as a generalization of δ -semiperfect modules and investigate their properties.

2000 Mathematics Subject Classification: 16U80.

Key words: Lifting modules, δ -lifting modules, semiperfect modules, δ -semiperfect modules.

1. Introduction

Throughout this paper all rings have an identity, all modules considered are unital right modules. Let M be a module and N, P be submodules of M. We call P a supplement of N in M if M = P + N and $P \cap N$ is small in P. A module M is called supplemented if every submodule of M has a supplement in M. A module M is called lifting if, for all $N \leq M$, there exists a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B$ is small in M. Supplemented and lifting modules have been discussed by several authors (see [2, 5, 3, 6]) and these modules are useful in characterizing semiperfect and right perfect rings (see [5, 8]).

In this note, we study and investigate principally δ -lifting modules and principally δ -semiperfect modules. A module M is called *principally* δ -*lifting* if for each cyclic submodule has the δ -*lifting property*, i.e., for each $m \in M$, M has a decomposition $M = A \oplus B$ with $A \leq mR$ and $mR \cap B$ is δ -small in B, where B is called

a δ -supplement of mR. A module M is called principally δ -semiperfect if, for each $m \in M$, M/mR has a projective δ -cover. We prove that if M_1 is semisimple, M_2 is principally δ -lifting, M_1 and M_2 are relatively projective, then $M = M_1 \oplus M_2$ is a principally δ -lifting module. Among others we also prove that for a principally δ -semiperfect module M, M is principally δ -supplemented, each factor module of M is principally δ -semiperfect, hence any homomorphic image and any direct summand of M is principally δ -semiperfect. As an application, for a projective module M, it is shown that M is principally δ -semiperfect if and only if it is principally δ -lifting, and therefore a ring R is principally δ -semiperfect if and only if it is principally δ -lifting.

In Sec. 2, we give some properties of δ -small submodules that we use in the paper, and in Sec. 3, principally δ -lifting modules are introduced and various properties of principally δ -lifting and δ -supplemented modules are obtained. In Sec. 4, principally δ -semiperfect modules are defined and characterized in terms of principally δ -lifting modules.

In what follows, by \mathbb{Z} , \mathbb{Q} , \mathbb{Z}_n and $\mathbb{Z}/\mathbb{Z}n$ we denote, respectively, integers, rational numbers, the ring of integers and the \mathbb{Z} -module of integers modulo n. For unexplained concepts and notations, we refer the reader to [1, 5].

2. δ -Small Submodules

Following Zhou [10], a submodule N of a module M is called a δ -small submodule if, whenever M = N + X with M/X singular, we have M = X. We begin by stating the next lemma which is contained in [10, Lemmas 1.2 and 1.3].

Lemma 2.1. Let M be a module. Then we have the following.

(1) If N is δ -small in M and M = X + N, then $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \leq N$.

(2) If K is δ -small in M and $f: M \to N$ is a homomorphism, then f(K) is δ -small in N. In particular, if K is δ -small in $M \leq N$, then K is δ -small in N.

(3) Let $K_1 \leq M_1 \leq M$, $K_2 \leq M_2 \leq M$ and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2$ is δ -small in $M_1 \oplus M_2$ if and only if K_1 is δ -small in M_1 and K_2 is δ -small in M_2 .

(4) Let N, K be submodules of M with K is δ -small in M and $N \leq K$. Then N is also δ -small in M.

Lemma 2.2. Let M be a module and $m \in M$. Then the following are equivalent.

(1) mR is not δ -small in M.

(2) There is a maximal submodule N of M such that $m \notin N$ and M/N singular.

Proof. (1) \Rightarrow (2) Let $\Gamma := \{B \leq M \mid B \neq M, mR + B = M, M/B \text{ singular}\}$. Since mR is not δ -small in M, there exists a proper submodule B of M such that mR + B = M and M/B is singular. So Γ is non empty. Let Λ be a nonempty totally ordered subset of Γ and $B_0 := \bigcup_{B \in \Lambda} B$. If m is in B_0 then there is a $B \in \Lambda$ with $m \in B$. Then B = mR + B = M which is a contradiction. So we have $m \notin B_0$ and $B_0 \neq M$. Since $mR + B_0 = M$ and M/B_0 is singular, B_0 is an upper bound in Γ . By Zorn's Lemma, Γ has a maximal element, say N. If N is a maximal submodule of M there is nothing to do. Assume that there exists a submodule K containing N properly. Since N is maximal in Γ , K is not in Γ . Since M = mR + N and $N \leq K$, so M = mR + K. M/K is singular as a homomorphic image of the singular module M/N. Hence K must belong to the Γ . This is the required contradiction.

(2) \Rightarrow (1) Let N be a maximal submodule with $m \in M \setminus N$ and M/N singular. We have M = mR + N. Then mR is not δ -small in M.

Let A and B be submodules of M with $A \leq B$. A is called a δ -cosmall submodule of B in M if B/A is δ -small in M/A. Let A be a submodule of M. A is called a δ -coclosed submodule in M if A has no proper δ -cosmall submodules in M. A submodule A is called δ -coclosure of B in M if A is δ -coclosed submodule of M and it is δ -cosmall submodule of B. Equivalently, for any submodule $C \leq A$ with $A/C \delta$ -small in M/C implies C = A and B/A is δ -small in M/A. Note that δ -coclosed submodules need not always exist.

Lemma 2.3. Let A and B be submodules of M with $A \leq B$. Then we have:

(1) A is δ -cosmall submodule of B in M if and only if M = A + L for any submodule L of M with M = B + L and M/L singular.

(2) If A is δ -small and B is δ -coclosed in M, then A is δ -small in B.

Proof. (1) Necessity: Let M = B + L and M/L be singular. We have M/A = B/A + (L + A)/A and M/(L + A) is singular as homomorphic image of the singular module M/L. Since B/A is δ -small, M/A = (L + A)/A or M = L + A. Sufficiency: Let M/A = B/A + K/A and M/K be singular. Then M = B + K. By hypothesis, M = A + K and so M = K. Hence A is a δ -cosmall submodule of B in M.

(2) Assume that A is a δ -small submodule of M and B is δ -coclosed in M. Let B = A + K with B/K singular. Since B is δ -coclosed in M, to complete the proof, by part (1) it suffices to show that K is a δ -small submodule of B in M. Let M = B + L with M/L singular. By assumption, M = A + K + L = K + L since M/(K + L) is singular. By (1), K is a δ -small submodule of B in M.

Lemma 2.4. Let A, B and C be submodules of M with M = A + C and $A \leq B$. If $B \cap C$ is a δ -small submodule of M, then A is a δ -cosmall submodule of B in M.

Proof. Let M/A = B/A + L/A with M/L singular. We have M = B + L and $B = A + (B \cap C)$. Then $M = A + (B \cap C) + L = (B \cap C) + L$. Hence M = L since $B \cap K$ is δ -small in M and M/L is singular. Hence B/A is δ -small in M/A. Thus A is a δ -cosmall submodule of B in M.

3. Principally δ -Lifting Modules

In this section, we study and investigate some properties of principally δ -lifting modules. The following definition is motivated by [10, Lemma 3.4] and Lemma 3.4.

Definition 3.1. A module M is called *finitely* δ -*lifting* if for any finitely generated submodule A of M has the δ -*lifting property*, that is, there is a decomposition $M = N \oplus S$ with $N \leq A$ and $A \cap S$ is δ -small in S. In this case $A \cap S$ is δ -small in S if and only if $A \cap S$ is δ -small in M. A module M is called *principally* δ -*lifting* if for each cyclic submodule has the *principally* δ -*lifting property*, i.e., for each $m \in M$, M has a decomposition $M = A \oplus B$ with $A \leq mR$ and $mR \cap B$ is δ -small in B.

Example 3.2. Every submodule of any semisimple module satisfies principally δ -lifting property.

Example 3.3. Let p be a prime integer and n any positive integer. Then the \mathbb{Z} -module $M = \mathbb{Z}/\mathbb{Z}p^n$ is a principally δ -lifting module.

Lemma 3.4. The following are equivalent for a module M:

- (1) M is finitely δ -lifting.
- (2) M is principally δ -lifting.

Proof. See [8] and [10].

Let M be a module and N a submodule of M. A submodule L is called a δ -supplement of N in M if M = N + L and $N \cap L$ is δ -small in L (therefore in M).

Proposition 3.5. Let M be a principally δ -lifting module. Then we have:

(1) Every direct summand of M is a principally δ -lifting module.

(2) Every cyclic submodule C of M has a δ -supplement S which is a direct summand, and C contains a complementary summand of S in M.

Proof. (1) Let K be a direct summand of M and $k \in K$. Then M has a decomposition $M = N \oplus S$ with $N \leq kR$ and $kR \cap S$ is δ -small in M. It follows that $K = N \oplus (K \cap S)$, and $kR \cap (K \cap S) \leq kR \cap S$ is δ -small in M and so $kR \cap (K \cap S)$ is δ -small in K. Therefore K is a principally δ -lifting module.

(2) Assume that M is a principally δ -lifting module and C is a cyclic submodule of M. Then we have $M = N \oplus S$, where $N \leq C$ and $C \cap S$ is δ -small in M. Hence $M = N + S \leq C + S \leq M$, we have M = C + S. Since S is a direct summand and $C \cap S$ is δ -small in $M, C \cap S$ is δ -small in S. Therefore S is a δ -supplement of C in M.

On a Class of Lifting Modules

Theorem 3.6. The following are equivalent for a module M:

(1) M is a principally δ -lifting module.

(2) Every cyclic submodule C of M can be written as $C = N \oplus S$, where N is a direct summand and S is δ -small in M.

(3) For every cyclic submodule C of M, there is a direct summand A of M with $A \leq C$ and $C/A \delta$ -small in M/A.

(4) Every cyclic submodule C of M has a δ -supplement K in M such that $C \cap K$ is a direct summand in C.

(5) For every cyclic submodule C of M, there is an idempotent $e \in \text{End}(M)$ with $eM \leq C$ and $(1-e)C \delta$ -small in (1-e)M.

(6) For each $m \in M$, there exist ideals I and J of R such that $mR = mI \oplus mJ$, where mI is a direct summand of M and mJ is δ -small in M.

Proof. (1) \Rightarrow (2) Let C be a cyclic submodule of M. By hypothesis there exist N and S submodules of M such that $N \leq C, C \cap S$ is δ -small in M and $M = N \oplus S$. Then we have $C = N \oplus (C \cap S)$.

(2) \Rightarrow (3) Let *C* be a cyclic submodule of *M*. By hypothesis, $C = N \oplus S$, where *N* is a direct summand and *S* is δ -small in *M*. Let $\pi : M \to M/N$ be the natural projection. Since *S* is δ -small in *M*, we have $\pi(S)$ is δ -small in *M/N*. Since $\pi(S) \cong S \cong C/N$, C/N is δ -small in *M/N*.

 $(3) \Rightarrow (4)$ Let C be a cyclic submodule of M. By hypothesis, there is a direct summand $A \leq M$ with $A \leq C$ and C/A δ -small in M/A. Let $M = A \oplus A'$. Hence $C = A \oplus (A' \cap C)$. Let $\sigma : M/A \to A'$ denote the obvious isomorphism. Then $\sigma(C/A) = A' \cap C$ is δ -small in A'.

(4) \Rightarrow (5) Let *C* be any cyclic submodule of *M* and $K \leq M$ such that $C \cap K$ is a direct summand of *C*, M = C + K and $C \cap K$ is δ -small in *K*. So $C = (C \cap K) \oplus X$ for some $X \leq C$. Then $M = X + (C \cap K) + K = X \oplus K$. Let $e: M \to X$; e(x+k) = x and $(1-e): M \to K$; e(x+k) = k be projection maps. $e(M) \leq X \leq C$ and $(1-e)C = C \cap (1-e)M = C \cap K$ is δ -small in (1-e)M.

 $(5) \Rightarrow (6)$ Let mR be any cyclic submodule of M. By hypothesis, there exists an idempotent $e \in \operatorname{End}(M)$ such that $eM \leq mR$, $M = eM \oplus (1-e)M$ and (1-e)mR is δ -small in (1-e)M. Note that $(mR) \cap ((1-e)M) = (1-e)mR$ (for if $m = em_1 + y$, where $em_1 \in eM$, $y \in (mR) \cap ((1-e)M)$. Then $(1-e)m = em_1 + (1-e)y = y$ and so $(1-e)mR \leq (mR) \cap ((1-e)M)$. Let $mr = (1-e)m' \in (mR) \cap ((1-e)M)$. Then $mr = (1-e)mr \in (1-e)mR$. So $(mR) \cap ((1-e)M) \leq (1-e)mR$. Thus $(mR) \cap ((1-e)M) = (1-e)mR$). So $mR = eM \oplus (1-e)mR$. Let $I = \{r \in R : mr \in eM\}$ and $J = \{t \in R : mt \in (1-e)mR\}$. Then $mR = mI \oplus mJ$, mI = eM and mJ = (1-e)mR is δ -small in (1-e)M.

(6) \Rightarrow (1) Let $m \in M$. By hypothesis, there exist ideals I and J of R such that $mR = mI \oplus mJ$, where mI is a direct summand and mJ is δ -small in M. Let $M = mI \oplus K$ for some submodule K. Since $K \cap mR \cong mJ$ and mJ is δ -small in M, M is principally δ -lifting.

Note that every lifting module is principally δ -lifting. There are principally δ -lifting modules but not lifting.

Example 3.7. Let M be the \mathbb{Z} -module \mathbb{Q} and $m \in M$. It is well known that every cyclic submodule mR of M is small, therefore δ -small in M. Hence M is a principally δ -lifting \mathbb{Z} -module. If N is a nonsmall proper submodule of M, then N is neither a direct summand nor contains a direct summand of M. It follows that M is not a lifting \mathbb{Z} -module.

It is clear that every δ -lifting module is principally δ -lifting. However the converse is not true.

Example 3.8. Let R and T denote the rings in [10, Example 4.1], where

$$R = \sum_{i=1}^{\infty} \bigoplus \mathbb{Z}_2 + \mathbb{Z}_2.1 = \left\{ (f_1, f_2, \dots, f_n, f, f, \dots) \in \prod_{i=1}^{\infty} \mathbb{Z}_2 \right\}$$

and

$$T = \left\{ \begin{bmatrix} x & y \\ 0 & x \end{bmatrix} : x \in R, y \in \operatorname{Soc}(R) \right\}.$$

Then $\operatorname{Rad}_{\delta}(T) = \begin{bmatrix} 0 & \operatorname{Soc}(R) \\ 0 & 0 \end{bmatrix}$ and $T/\operatorname{Rad}_{\delta}(T)$ is not semisimple as isomorphic

to R. So T is not δ -semiperfect by [10, Theorem 3.6]. Hence T is not a δ -lifting module over T. It is easy to show that $T/\operatorname{Rad}_{\delta}(T)$ lifts to idempotents of T, so T is a semiregular ring. Since T is a δ -semiregular ring, every finitely generated right ideal H of T can be written as $H = aT \oplus S$, where $a^2 = a \in T$ and $S \leq \operatorname{Rad}_{\delta}(T)$ by [10, Theorem 3.5]. Hence T is a principally δ -lifting module.

Proposition 3.9. Let M be a principally δ -lifting module. If $M = M_1 + M_2$ such that $M_1 \cap M_2$ is cyclic, then M_2 contains a δ -supplement of M_1 in M.

Proof. Assume that $M = M_1 + M_2$ and $M_1 \cap M_2$ is cyclic. Then we have $M_1 \cap M_2 = N \oplus S$, where N is a direct summand of M and S is δ -small in M. Let $M = N \oplus N'$ and $M_2 = N \oplus (M_2 \cap N')$. It follows that $M_1 \cap M_2 = N \oplus (M_1 \cap M_2 \cap N') = N \oplus S$. Let $\pi : M_2 = N \oplus (M_2 \cap N') \to N'$ be the natural projection. It follows that $\pi(M_1 \cap M_2 \cap N') = M_1 \cap M_2 \cap N' = \pi(S)$. Since S is δ -small in M, it is δ -small in N' by Lemma 2.1. Hence $M = M_1 + (M_2 \cap N')$, $M_2 \cap N' \leq M_2$ and $M_1 \cap (M_2 \cap N')$ is δ -small in $M_2 \cap N' \leq M_2$ and $M_1 \cap (M_2 \cap N')$ is δ -small in $M_2 \cap N' = \pi(S)$.

Let M be a module. A submodule N is called *fully invariant* if for each endomorphism f of M, $f(N) \leq N$. Let $S = \text{End}(M_R)$, the ring of R-endomorphisms of M. Then M is a left S-, right R-bimodule and a principal submodule N of the right R-module M is fully invariant if and only if N is a sub-bimodule of M. Clearly 0 and M are fully invariant submodules of M. The right R-module M is called a *duo module* provided every submodule of M is fully invariant. For the readers' convenience we state and prove Lemma 3.10 which is proved in [7].

On a Class of Lifting Modules

Lemma 3.10. Let a module $M = \bigoplus_{i \in I} M_i$ be a direct sum of submodules M_i $(i \in I)$ and let N be a fully invariant submodule of M. Then $N = \bigoplus_{i \in I} (N \cap M_i)$.

Proof. For each $j \in I$, let $p_j : M \to M_j$ denote the canonical projection and let $i_j : M_j \to M$ denote inclusion. Then $i_j p_j$ is an endomorphism of M and hence $i_j p_j(N) \subseteq N$ for each $j \in I$. It follows that $N \subseteq \bigoplus_{j \in I} i_j p_j(N) \subseteq \bigoplus_{j \in I} (N \cap M_j) \subseteq N$, so that $N = \bigoplus_{j \in I} (N \cap M_j)$.

One may suspect that if M_1 and M_2 are principally δ -lifting modules, then $M_1 \oplus M_2$ is also principally δ -lifting. But this is not the case.

Example 3.11. Consider the \mathbb{Z} -modules $M_1 = \mathbb{Z}/\mathbb{Z}^2$ and $M_2 = \mathbb{Z}/\mathbb{Z}^8$. It is clear that M_1 and M_2 are principally δ -lifting. Let $M = M_1 \oplus M_2$. Then M is not a principally δ -lifting \mathbb{Z} -module. Let $N_1 = (\overline{1}, \overline{2})\mathbb{Z}$ and $N_2 = (\overline{1}, \overline{1})\mathbb{Z}$. Then $M = N_1 + N_2$, N_1 is not a direct summand of M and does not contain any nonzero direct summand of M. For any proper submodule N of M, M/N is a singular \mathbb{Z} -module. Hence the principal submodule does not satisfy δ -lifting property. It follows that M is not a principally δ -lifting \mathbb{Z} -module. By the same reasoning, for any prime integer p, the \mathbb{Z} -module $M = (\mathbb{Z}/\mathbb{Z}p) \oplus (\mathbb{Z}/\mathbb{Z}p^3)$ is not principally δ -lifting.

We have already observed by the preceding example that the direct sum of principally δ -lifting modules need not be principally δ -lifting. Note the following fact.

Proposition 3.12. Let $M = M_1 \oplus M_2$ be a decomposition of M with M_1 and M_2 principally δ -lifting modules. If M is a duo module, then M is principally δ -lifting.

Proof. Let $M = M_1 \oplus M_2$ be a duo module and mR be a submodule of M. By Lemma 3.10, $mR = ((mR) \cap M_1) \oplus ((mR) \cap M_2)$. Since $(mR) \cap M_1$ and $(mR) \cap M_2$ are principal submodules of M_1 and M_2 respectively, there exist $A_1, B_1 \leq M_1$ such that $A_1 \leq (mR) \cap M_1 \leq M_1 = A_1 \oplus B_1, B_1 \cap ((mR) \cap M_1) = B_1 \cap (mR)$ is δ -small in B_1 , and $A_2, B_2 \leq M_2$ such that $A_2 \leq (mR) \cap M_2 \leq M_2 = A_2 \oplus B_2$, $B_2 \cap ((mR) \cap M_2) = B_2 \cap (mR)$ is δ -small in B_2 . Then $M = A_1 \oplus A_2 \oplus B_1 \oplus B_2$, $A_1 \oplus A_2 \leq N$ and $(mR) \cap (B_1 \oplus B_2) = ((mR) \cap B_1) \oplus ((mR) \cap B_2)$ is δ -small in $M_1 \oplus M_2$.

Lemma 3.13. The following are equivalent for a module $M = M' \oplus M''$.

(1) M' is M''-projective.

(2) For each submodule N of M with M = N + M'', there exists a submodule $N' \leq N$ such that $M = N' \oplus M''$.

Proof. See [8, 41.14]

Theorem 3.14. Let M_1 be a semisimple module and M_2 a principally δ -lifting module. Assume that M_1 and M_2 are relatively projective. Then $M = M_1 \oplus M_2$ is principally δ -lifting.

Proof. Let $0 \neq m \in M$ and let $K = M_1 \cap ((mR) + M_2)$. We divide the proof into two cases:

Case (i): $K \neq 0$. Then $M_1 = K \oplus K_1$ for some submodule K_1 of M_1 and so $M = K \oplus K_1 \oplus M_2 = (mR) + (M_2 \oplus K_1)$. Hence K is $M_2 \oplus K_1$ -projective. By Lemma 3.13, there exists a submodule N of mR such that $M = N \oplus (M_2 \oplus K_1)$. We may assume $(mR) \cap (M_2 \oplus K_1) \neq 0$. Note that for any submodule L of M_2 , we have $(mR) \cap (L+K_1) = L \cap ((mR)+K_1)$. In particular $(mR) \cap (M_2+K_1) = M_2 \cap (mR+K_1)$. Then $mR = N \oplus (mR) \cap (K_1 \oplus M_2)$. There exist $n \in N$ and $m' \in (mR) \cap (K_1 \oplus M_2)$ such that m = n + m'. Then nR = N and $m'R = (mR) \cap (K_1 \oplus M_2)$. Since $(mR) \cap (M_2 + K_1) = M_2 \cap ((mR) + K_1)$, $M_2 \cap ((mR) + K_1)$ is a principal submodule of M_2 and M_2 is principally δ -lifting, there exists a submodule X of $M_2 \cap ((mR) + K_1) = (mR) \cap (M_2 \oplus K_1)$ such that $M_2 = X \oplus Y$ and $Y \cap M_2 \cap ((mR) + K_1) = Y \cap ((mR) + K_1)$ is δ -small in $M_2 \cap ((mR) + K_1) = Y \cap ((mR) + K_1) = Y \cap ((mR) + K_1)$ is δ -small in $M_2 \cap (Y \oplus K_1) = Y \cap ((mR) + K_1)$, $(mR) \cap (Y \oplus K_1) = Y \cap ((mR) + K_1)$ is δ -small in $Y \oplus K_1$. So M is δ -lifting.

Case (ii): K = 0. Then $mR \leq M_2$. Since M_2 is δ -lifting, there exists a submodule X of mR such that $M_2 = X \oplus Y$ and $(mR) \cap Y$ is δ -small in Y for some submodule Y of M_2 . Hence $M = X \oplus (M_1 \oplus Y)$. Since $(mR) \cap (M_1 \oplus Y) = (mR) \cap Y$ and $(mR) \cap (M_1 \oplus Y) = (mR) \cap Y$ is δ -small in Y. By Lemma 2.1 (3), $(mR) \cap (M_1 \oplus Y)$ is δ -small in $M_1 \oplus Y$. It follows that M is δ -lifting.

A module M is said to be a principally semisimple if every cyclic submodule is a direct summand of M. Tuganbayev calls a principally semisimple module as a regular module in [4]. Every semisimple module is principally semisimple. Every principally semisimple module is principally δ -lifting. For a module M, we write $\operatorname{Rad}_{\delta}(M) = \sum \{L \mid L \text{ is a } \delta\text{-small submodule of } M\}$.

Lemma 3.15. Let M be a principally δ -lifting module. Then $M/\operatorname{Rad}_{\delta}(M)$ is a principally semisimple module.

Proof. Let $m \in M$. There exists $M_1 \leq mR$ such that $M = M_1 \oplus M_2$ and $(mR) \cap M_2$ is δ -small in M_2 . So $(mR) \cap M_2$ is δ -small in M. Then

 $M/\operatorname{Rad}_{\delta}(M) = [(mR + \operatorname{Rad}_{\delta}(M))/\operatorname{Rad}_{\delta}(M)] \oplus [(M_2 + \operatorname{Rad}_{\delta}(M))/\operatorname{Rad}_{\delta}(M)]$

because $(mR + \operatorname{Rad}_{\delta}(M)) \cap (M_2 + \operatorname{Rad}_{\delta}(M)) = \operatorname{Rad}_{\delta}(M)$. Hence every principal submodule of $M/\operatorname{Rad}_{\delta}(M)$ is a direct summand.

Proposition 3.16. Let M be a principally δ -lifting module. Then $M = M_1 \oplus M_2$, where M_1 is a principally semisimple module and M_2 is a module with $\operatorname{Rad}_{\delta}(M)$ essential in M_2 .

Proof. Let M_1 be a submodule of M such that $\operatorname{Rad}_{\delta}(M) \oplus M_1$ is essential in Mand $m \in M_1$. Since M is principally δ -lifting, there exists a direct summand M_2 of M such that $M_2 \leq mR$, $M = M_2 \oplus M'_2$ and $mR \cap M'_2$ is δ -small in M. Hence $mR \cap M'_2$ is a submodule of $\operatorname{Rad}_{\delta}(M)$ and so $mR \cap M'_2 = 0$. Then $m \in M_2$ and $mR = M_2$. Since $M_2 \cap \operatorname{Rad}_{\delta}(M) = 0$, M_2 is isomorphic to a submodule of $M/\operatorname{Rad}_{\delta}(M)$. By Lemma 3.15, $M/\operatorname{Rad}_{\delta}(M)$ is principally semisimple, M_2 is principally semisimple. On the other hand, $\operatorname{Rad}_{\delta}(M) = \operatorname{Rad}_{\delta}(M'_2)$ is essential in M_2 that it is clear from the construction of M'_2 .

A nonzero module M is called δ -hollow if every proper submodule is δ -small in M, and M is *principally* δ -hollow if every proper cyclic submodule is δ -small in M, and M is *finitely* δ -hollow if every proper finitely generated submodule is δ -small in M. Since finite direct sum of δ -small submodules is δ -small, M is principally δ -hollow if and only if it is finitely δ -hollow.

Lemma 3.17. The following are equivalent for an indecomposable module M.

- (1) M is a principally δ -lifting module.
- (2) M is a principally δ -hollow module.

Proof. (1) \Rightarrow (2) Let $m \in M$. Since M is a principally δ -lifting module, there exist N and S submodules of M such that $N \leq mR$, $mR \cap S$ is δ -small in M and $M = N \oplus S$. By hypothesis, N = 0 and S = M. So that $mR \cap S = mR$ is δ -small in M.

 $(2) \Rightarrow (1)$ Let $m \in M$. Then $mR = (mR) \oplus (0)$. By (2) mR is δ -small and (0) is a direct summand in M. Hence M is a principally δ -lifting module.

Lemma 3.18. Let M be a module, then we have

(1) If M is principally δ -hollow, then every factor module is principally δ -hollow.

(2) If K is a δ -small submodule of M and M/K is principally δ -hollow, then M is principally δ -hollow.

(3) M is principally δ -hollow if and only if M is local or $\operatorname{Rad}_{\delta}(M) = M$.

Proof. (1) Assume that M is principally δ -hollow and N a submodule of M. Let $m + N \in M/N$ and (mR + N)/N + K/N = M/N. Suppose that M/K is singular. We have mR + K = M. Since M/K is singular and M is principally δ -hollow, M = K.

(2) Let $m \in M$. Assume that mR + N = M for some submodule N with M/N singular. Then (m+K)R = (mR+K)/K is a cyclic submodule of M/K and (mR+K)/K + (N+K)/K = M/K and M/(N+K) is singular as a homomorphic image of M/N. Hence (N+K)/K = M/K or N+K = M. By hypothesis N = M.

(3) Suppose that M is principally δ -hollow and it is not local. Let N and K be two distinct maximal submodules of M and $k \in K \setminus N$. Then M = kR + N and M/N is a simple module, and so M/N is a singular or projective module.

If M/N is singular, then M = N since kR is δ -small. But this is not possible since N is maximal. So M/N is projective. Hence N is a direct summand. So $M = N \oplus N'$ for some nonzero submodule N' of M, that is, N and kR are proper submodules of M. Since every proper submodule of M is contained in $\operatorname{Rad}_{\delta}(M), M = \operatorname{Rad}_{\delta}(M)$. The converse is clear.

Proposition 3.19. Let M be a module. Then the following are equivalent.

- (1) M is principally δ -hollow.
- (2) If N is submodule with M/N cyclic, then N is a δ -small submodule of M.

Proof. (1) \Rightarrow (2) Assume that N is a submodule with M/N cyclic. Lemma 2.1 implies that M/N is principally δ -hollow since being δ -small is preserved under homomorphisms. Since M/N has maximal submodules, and by Lemma 3.18, M/N is local. There exists a unique maximal submodule N_1 containing N. Hence N is small, therefore it is δ -small.

 $(2) \Rightarrow (1)$ We prove that every cyclic submodule is δ -small in M. So let $m \in M$ and M = mR + N with M/N singular. Then M/N is cyclic. By hypothesis, N is a δ -small submodule of M. By Lemma 2.1, there exists a projective semisimple submodule Y of N such that $M = (mR) \oplus Y$. Let $Y = \bigoplus_{i \in I} N_i$ where each N_i is simple. Now we write $(mR) \oplus (\bigoplus_{i \neq j} N_j)$. Then $M/((mR) \oplus (\bigoplus_{i \neq j} N_j))$ is a cyclic module as it is isomorphic to simple module N_i . By hypothesis, $((mR) \oplus (\bigoplus_{i \neq j} N_j))$ is δ -small in M. Again by Lemma 2.1, there exists a projective semisimple submodule Z of $((mR) \oplus (\bigoplus_{i \neq j} N_j))$ such that $M = Z \oplus N_i$. Hence M is a projective semisimple module. So $M = N \oplus N'$ for some submodule N'. Then N' is projective. M/N is projective as it is isomorphic to N'. Hence M/N is a both singular and projective module. Thus M = N.

4. Applications

In this section, we introduce and study some properties of principally δ semiperfect modules. By [10], a projective module P is called a projective δ -cover of a module M if there exists an epimorphism $f: P \longrightarrow M$ with Ker f δ -small in P, and a ring is called δ -perfect (or δ -semiperfect) if every R-module (or every simple R-module) has a projective δ -cover. For more detailed discussion on δ small submodules, δ -perfect and δ -semiperfect rings, we refer to [10]. A module M is called principally δ -semiperfect if every factor module of M by a cyclic submodule has a projective δ -cover. A ring R is called principally δ -semiperfect in case the right R-module R is principally δ -semiperfect. Every δ -semiperfect module is principally δ -semiperfect. In [10], a ring R is called δ -semiregular if every cyclically presented R-module has a projective δ -cover.

Theorem 4.1. Let M be a projective module. Then the following are equivalent.

On a Class of Lifting Modules

- (1) M is principally δ -semiperfect.
- (2) M is principally δ -lifting.

Proof. (1) \Rightarrow (2) Let $m \in M$ and $P \xrightarrow{f} M/mR$ be a projective δ -cover and $M \xrightarrow{\pi} M/mR$ the natural epimorphism.

Then there exists a map $M \xrightarrow{g} P$ such that $fg = \pi$. Then P = g(M) + Ker(f). Since Ker(f) is δ -small, by Lemma 2.1, there exists a projective semisimple submodule Y of Ker(f) such that $P = g(M) \oplus Y$. So g(M) is projective. Hence $M = K \oplus \text{Ker}(g)$ for some submodule K of M. It is easy to see that $g(K \cap mR) =$ $g(K) \cap \text{Ker}(f)$ and $\text{Ker}(g) \leq mR$. Hence M = K + mR. Next we prove $K \cap (mR)$ is δ -small in K. Since Ker(f) is δ -small in P, $g(K) \cap \text{Ker}(f) = g(K \cap mR)$ is δ -small in P by Lemma 2.1 (4). Hence $K \cap (mR)$ is δ -small in K since g^{-1} is an isomorphism from g(M) onto K.

 $(2) \Rightarrow (1)$ Assume that M is a principally δ -lifting module. Let $m \in M$. There exist direct summands N and K of M such that $M = N \oplus K$, $N \leq mR$ and $mR \cap K$ is δ -small in K. Let $K \xrightarrow{\pi} M/mR$ denote the natural epimorphism defined by $\pi(k) = k + mR$ where $k \in K$, $k + mR \in M/mR$. It is obvious that $\operatorname{Ker}(\pi) = mR \cap K$. It follows that K is a projective δ -cover of M/mR. So M is principally δ -semiperfect.

Corollary 4.2. Let R be a ring. Then the following are equivalent.

- (1) R is principally δ -semiperfect.
- (2) R is principally δ -lifting.
- (3) R is δ -semiregular.

Proof. (1) \Leftrightarrow (2) Clear by Theorem 4.1.

(2) \Leftrightarrow (3) By Theorem 3.6 (2), R is principally δ -lifting if and only if for every principal right ideal I of R can be written as $I = N \oplus S$, where N is a direct summand and S is δ -small in R. This is equivalent to being R δ -semiregular since for any ring R, $\operatorname{Rad}_{\delta}(R)$ is δ -small in R and each submodule of a δ -small submodule is δ -small.

The module M is called *principally* δ -supplemented if every cyclic submodule of M has a δ -supplement in M. Clearly, every δ -supplemented module is principally δ -supplemented. Every principally δ -lifting module is principally δ -supplemented. In a subsequent paper we investigate principally δ -supplemented modules in detail. Now we prove:

Theorem 4.3. Let M be a principally δ -semiperfect module. Then

(1) M is principally δ -supplemented.

(2) Each factor module of M is principally δ -semiperfect, hence any homomorphic image and any direct summand of M is principally δ -semiperfect.

Proof. (1) Let $m \in M$. Then M/mR has a projective δ -cover $P \xrightarrow{\beta} M/mR$. There exists $P \xrightarrow{\alpha} M$ such that the following diagram is commutative, $\beta = \pi \alpha$, where $M \xrightarrow{\pi} M/mR$ is the natural epimorphism.

Then $M = \alpha(P) + mR$, and $\alpha(P) \cap mR$ is δ -small in $\alpha(P)$, by Lemma 2.1 (1). Hence M is principally δ -supplemented.

(2) Let $M \xrightarrow{f} N$ be an epimorphism and nR a cyclic submodule of N. Let $m \in f^{-1}(nR)$ and $P \xrightarrow{g} M/(mR)$ be a projective δ -cover. Define $M/(mR) \xrightarrow{h} N/nR$ by h(m'+mR) = f(m') + nR, where $m'+mR \in M/(mR)$. Then $\operatorname{Ker}(g)$ is contained in $\operatorname{Ker}(hg)$. By projectivity of P, there is a map α from P to N such that $hg = \pi \alpha$.

It is routine to check that $(nR) \cap \alpha(P) = \alpha(\operatorname{Ker}(g))$. By Lemma 2.1 (2), $\alpha(\operatorname{Ker}(g))$ is δ -small in N since $\operatorname{Ker}(g)$ is δ -small. Let $x \in \operatorname{Ker}(\pi\alpha)$. Then $hg(x) = (\pi\alpha)(x) = 0$ or $\alpha(x) \in (nR) \cap \alpha(P)$. So $\operatorname{Ker}(\pi\alpha)$ is δ -small. Hence P is a projective δ -cover for N/(nR).

Theorem 4.4. Let P be a projective module with $\operatorname{Rad}_{\delta}(P)$ δ -small in P. Then the following are equivalent.

(1) P is principally δ -lifting.

(2) $P/\operatorname{Rad}_{\delta}(P)$ is principally semisimple and, for any cyclic submodule $\overline{x}R$ of $P/\operatorname{Rad}_{\delta}(P)$ that is a direct summand of $P/\operatorname{Rad}_{\delta}(P)$, there exists a cyclic direct summand A of P such that $\overline{x}R = \overline{A}$.

Proof. (1) \Rightarrow (2) Since *P* is a principally δ -lifting module, $P/\operatorname{Rad}_{\delta}(P)$ is principally semisimple by Lemma 3.15. Let $\overline{x}R$ be any cyclic submodule of $P/\operatorname{Rad}_{\delta}(P)$. By Theorem 3.6, there exists a direct summand *A* of *P* and a δ -

small submodule B such that $xR = A \oplus B$. Since B is contained in $\operatorname{Rad}_{\delta}(R)$, $xR + \operatorname{Rad}_{\delta}(R) = A + \operatorname{Rad}_{\delta}(R)$. Hence $\overline{x}R = \overline{A}$.

 $(2) \Rightarrow (1)$ Let xR be any cyclic submodule of P. Then we have $P/\operatorname{Rad}_{\delta}(P) = [(xR+\operatorname{Rad}_{\delta}(P))/\operatorname{Rad}_{\delta}(P)] \oplus [U/\operatorname{Rad}_{\delta}(P)]$ for some $U \leq P$. By (2), there exists a direct summand A of P such that $P = A \oplus B$ and $U = B + \operatorname{Rad}_{\delta}(P)$. Then $P = A \oplus B = A + U + \operatorname{Rad}_{\delta}(P)$. Since $\operatorname{Rad}_{\delta}(P)$ is δ -small in P, there exists a projective and semisimple submodule Y of P such that $P = A \oplus B = (A+U) \oplus Y$. Since P is projective, A + B is also projective and so by Lemma 3.13, we have $A + B = V \oplus B$ for some $V \leq A$. Hence $P = V \oplus B \oplus Y$. On the other hand $(xR) \cap (B \oplus Y) = (xR) \cap B \leq (xR) \cap U \leq \operatorname{Rad}_{\delta}(R)$. Since $\operatorname{Rad}_{\delta}(R)$ is δ -small in P, it is δ -small in $B \oplus Y$ by Lemma 2.1 (3). Thus P is principally δ -lifting.

References

- F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York, 1974.
- J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, *Lifting Modules*, Brikhauser-Basel, 2006.
- 3. D. Keskin, On lifting modules, Comm. Algebra 28 (7) (2000), 3427–3440.
- 4. C. Lomp, Regular and biregular module algebras, Arab. J. Sci. Eng. **33** (2008), 351–363.
- 5. S. Mohamed and B. J. Müller, *Continuous and Discrete Modules*, Cambridge University Press, 1990.
- K. Oshiro, Semiperfect modules and quasi-semiperfect modules, Osaka J. Math. 20 (1983), 337–372.
- A. C. Ozcan, A. Harmanci, and P. F. Smith, Duo modules, *Glasgow Math. J.* 48 (3) (2006), 533–545.
- 8. R. Wisbauer, *Foundations of Module and Ring Theory*, Gordon and Breach, Reading, 1991.
- 9. M. F. Yousif and Y. Zhou, Semiregular, semiperfect and perfect rings relative to an ideal, *Rocky Mountain J. Math.* **32** (4)(2002), 1651–1671.
- Y. Zhou, Generalizations of perfect, semiperfect and semiregular rings, Algebra Colloq. 7 (3) (2000), 305–318.