Vietnam Journal of Mathematics 38:2(2010) 133-141

Vietnam Journal of MATHEMATICS © VAST 2010

Insertion of a Continuous Function Between Two Comparable α -Continuous (C-Continuous) Functions *

Majid Mirmiran

Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran.

> Received June 20, 2009 Revised October 17, 2009

Abstract. A necessary and sufficient conditions in terms of lower cut sets are given for the insertion of a continuous function between two comparable real-valued functions.

2000 Mathematics Subject Classification: Primary 54C08, 54C10, 54C50; Secondary 26A15, 54C30.

Key words: Insertion, strong binary relation, C-open set, semi-preopen set, α -open set, lower cut set.

1. Introduction

The concept of a C-open set in a topological space was introduced by Hatir, Noiri and Yksel in [5]. The authors define a set S to be a C-open set if $S = U \cap A$, where U is open and A is semi-preclosed. A set S is a C-closed set if its complement (denoted by S^c) is a C-open set or equivalently if $S = U \cup A$, where U is closed and A is semi-preopen. The authors show that a subset of a topological space is open if and only if it is an α -open set and a C-open set. This enables them to provide the following decomposition of continuity: a function is continuous if and only if it is α -continuous and C-continuous.

 $^{^\}star$ This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).

Recall that a subset A of a topological space (X, τ) is called α -open if A is the difference of an open and a nowhere dense subset of X. A set A is called α -closed, if its complement is α -open or equivalently, if A is the union of a closed and a nowhere dense set. Sets which are dense in some regular closed subspace are called *semi-preopen* or β -open. A set is *semi-preclosed* or β -closed if its complement is semi-preopen or β -open.

In [3] it was shown that a set A is β -open if and only if $A \subseteq Cl(Int(Cl(A)))$.

Recall that a real-valued function f defined on a topological space X is called A-continuous [10] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [2, 4].

Hence, a real-valued function f defined on a topological space X is called C-continuous (resp. α -continuous) if the preimage of every open subset of \mathbb{R} is a C-open (resp. α -open) subset of X.

Results of Katětov [6, 7] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [1], are used in order to give necessary and sufficient conditions for the strong insertion of a continuous function between two comparable real-valued functions.

If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X.

The following definitions are modifications of conditions considered in [8].

A property P defined relative to a real-valued function on a topological space is a c-property provided that any constant function has property P and provided that the sum of a function with property P and any continuous function also has property P. If P_1 and P_2 are c-properties, the following terminology is used: (i) A space X has the weak c-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f$, g has property P_1 and f has property P_2 , then there exists a continuous function h such that $g \leq h \leq f$. (ii) A space X has the c-insertion property for (P_1, P_2) if and only if for any functions gand f on X such that g < f, g has property P_1 and f has property P_2 , then there exists a continuous function h such that g < h < f. (iii) A space X has the weakly c-insertion property for (P_1, P_2) if and only if for any functions gand f on X such that g < f, g has property P_1 and f has property P_2 , then there exists a continuous function h such that g < h < f. (iii) A space X has the weakly c-insertion property for (P_1, P_2) if and only if for any functions gand f on X such that g < f, g has property P_1 , f has property P_2 and f - ghas property P_2 , then there exists a continuous function h such that g < h < f.

In this paper, a sufficient condition for the weak c-insertion property is given. Also for a space with the weak c-insertion property, we give a necessary and sufficient condition for the space to have the c-insertion property. Several insertion theorems are obtained as corollaries of these results.

2. The Main Result

Before giving a sufficient condition for insertability of a continuous function, the necessary definitions and terminology are stated.

Let (X, τ) be a topological space, the family of all α -open, α -closed, C-open and C-closed will be denoted by $\alpha O(X, \tau)$, $\alpha C(X, \tau)$, $CO(X, \tau)$ and $CC(X, \tau)$, respectively.

Definition 2.1. Let A be a subset of a topological space (X, τ) . Respectively, we define the α -closure, α -interior, C-closure and C-interior of a set A, denoted by $\alpha Cl(A), \alpha Int(A), CCl(A)$ and CInt(A) as follows:

 $\begin{aligned} \alpha \mathrm{Cl}(A) &= \cap \{F : F \supseteq A, F \in \alpha C(X, \tau)\},\\ \alpha \mathrm{Int}(A) &= \cup \{O : O \subseteq A, O \in \alpha O(X, \tau)\},\\ C \mathrm{Cl}(A) &= \cap \{F : F \supseteq A, F \in CC(X, \tau)\} \text{ and }\\ C \mathrm{Int}(A) &= \cup \{O : O \subseteq A, O \in CO(X, \tau)\}. \end{aligned}$

Respectively, we have $\alpha Cl(A), CCl(A)$ are α -closed, semi-preclosed and $\alpha Int(A), CInt(A)$ are α -open, semi-preopen.

The following first two definitions are modifications of conditions considered in [6, 7].

Definition 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) in case ρ satisfies each of the following conditions:

1) If $A_i \ \rho \ B_j$ for any $i \in \{1, \ldots, m\}$ and for any $j \in \{1, \ldots, n\}$, then there exists a set C in P(X) such that $A_i \ \rho \ C$ and $C \ \rho \ B_j$ for any $i \in \{1, \ldots, m\}$ and any $j \in \{1, \ldots, n\}$.

- 2) If $A \subseteq B$, then $A \bar{\rho} B$.
- 3) If $A \ \rho \ B$, then $\operatorname{Cl}(A) \subseteq B$ and $A \subseteq \operatorname{Int}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [1] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < \ell\} \subseteq A(f, \ell) \subseteq \{x \in X : f(x) \le \ell\}$ for a real number ℓ , then $A(f, \ell)$ is called a *lower indefinite cut set* in the domain of f at the level ℓ .

We now give the following main result:

Theorem 2.5. Let g and f be real-valued functions on a topological space X with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$, then there exists a continuous function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by F(t) = A(f,t) and G(t) = A(g,t). If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then $F(t_1) \ \bar{\rho} \ F(t_2), G(t_1) \ \bar{\rho} \ G(t_2)$, and $F(t_1) \ \rho \ G(t_2)$. By Lemmas 1 and 2 of [7] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \ \rho \ H(t_2), H(t_1) \ \rho \ H(t_2)$ and $H(t_1) \ \rho \ G(t_2)$.

For any x in X, let $h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}.$

We first verify that $g \leq h \leq f$: If x is in H(t) then x is in G(t') for any t' > t; since x is in G(t') = A(g, t') implies that $g(x) \leq t'$, it follows that $g(x) \leq t$. Hence $g \leq h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f, t') implies that f(x) > t', it follows that $f(x) \geq t$. Hence $h \leq f$.

Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = \text{Int}(H(t_2)) \setminus \text{Cl}(H(t_1))$. Hence $h^{-1}(t_1, t_2)$ is an open subset of X, i.e., h is a continuous function on X.

The above proof used the technique of proof of Theorem 1 of [6].

Theorem 2.6. Let P_1 and P_2 be c-properties and X be a space that satisfies the weak c-insertion property for (P_1, P_2) . Also assume that g and f are functions on X such that g < f, g has property P_1 and f has property P_2 . The space X has the c-insertion property for (P_1, P_2) if and only if there exist lower cut sets $A(f - g, 3^{-n+1})$ and there exists a decreasing sequence $\{D_n\}$ of subsets of X with empty intersection and such that for each $n, X \setminus D_n$ and $A(f - g, 3^{-n+1})$ are completely separated by continuous functions.

Proof. Theorem 2.1 of [9].

3. Applications

The abbreviations αc and Cc are used for α -continuous and C-continuous, respectively.

Corollary 3.1. If for each pair of disjoint α -closed (resp. C-closed) sets F_1, F_2 of X, there exist open sets G_1 and G_2 of X such that $F_1 \subseteq G_1, F_2 \subseteq G_2$ and Insertion of a Continuous Function...

 $G_1 \cap G_2 = \emptyset$ then X has the weak c-insertion property for $(\alpha c, \alpha c)$ (resp. (Cc, Cc)).

Proof. Let g and f be real-valued functions defined on X, such that f and g are αc (resp. Cc), and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $\alpha \operatorname{Cl}(A) \subseteq \alpha \operatorname{Int}(B)$ (resp. $\operatorname{CCl}(A) \subseteq \operatorname{CInt}(B)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f, t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is an α -closed (resp. C-closed) set and since $\{x \in X : g(x) < t_2\}$ is an α -open (resp. C-open) set, it follows that $\alpha \operatorname{Cl}(A(f, t_1)) \subseteq \alpha \operatorname{Int}(A(g, t_2))$ (resp. $\operatorname{CCl}(A(f, t_1)) \subseteq \operatorname{CInt}(A(g, t_2))$). Hence $t_1 < t_2$ implies that $A(f, t_1) \rho A(g, t_2)$. The proof follows from Theorem 2.5.

Corollary 3.2. If for each pair of disjoint α -closed (resp. C-closed) sets F_1, F_2 , there exist open sets G_1 and G_2 such that $F_1 \subseteq G_1, F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then every α -continuous (resp. C-continuous) function is continuous.

Proof. Let f be a real-valued α -continuous (resp. C-continuous) function defined on X. Set g = f, then by Corollary 3.1, there exists a continuous function h such that g = h = f.

Corollary 3.3. If for each pair of disjoint α -closed (resp. C-closed) sets F_1, F_2 of X, there exist open sets G_1 and G_2 of X such that $F_1 \subseteq G_1, F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X has the strong c-insertion property for $(\alpha c, \alpha c)$ (resp. (Cc, Cc)).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are αc (resp. Cc), and $g \leq f$. Set h = (f + g)/2, thus $g \leq h \leq f$ and if g(x) < f(x) for any x in X, then g(x) < h(x) < f(x). Also, by Corollary 3.2, since g and f are continuous functions hence h is a continuous function.

Corollary 3.4. If for each pair of disjoint subsets F_1, F_2 of X, such that F_1 is α -closed and F_2 is C-closed, there exist open subsets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X have the weak c-insertion property for $(\alpha c, Cc)$ and $(Cc, \alpha c)$.

Proof. Let g and f be real-valued functions defined on X, such that g is αc (resp. Cc) and f is Cc (resp. αc), with $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $CCl(A) \subseteq \alpha Int(B)$ (resp. $\alpha Cl(A) \subseteq CInt(B)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f,t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2);$$

since $\{x \in X : f(x) \leq t_1\}$ is a *C*-closed (resp. α -closed) set and since $\{x \in X : g(x) < t_2\}$ is an α -open (resp. *C*-open) set, it follows that $CCl(A(f, t_1)) \subseteq \alpha Int(A(g, t_2))$ (resp. $\alpha Cl(A(f, t_1)) \subseteq CInt(A(g, t_2))$). Hence $t_1 < t_2$ implies that $A(f, t_1) \rho A(g, t_2)$. The proof follows from Theorem 2.5.

Before stating consequences of Theorem 2.6, we state and prove some necessary lemmas.

Lemma 3.5. The following conditions on the space X are equivalent:

(i) For each pair of disjoint subsets F_1, F_2 of X, such that F_1 is α -closed and F_2 is C-closed, there exist open subsets G_1, G_2 of X such that $F_1 \subseteq G_1, F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$.

(ii) If F is a C-closed (resp. α -closed) subset of X which is contained in an α -open (resp. C-open) subset G of X, then there exists an open subset H of X such that $F \subseteq H \subseteq \operatorname{Cl}(H) \subseteq G$.

Proof. (i) \Rightarrow (ii) Suppose that $F \subseteq G$, where F and G are C-closed (resp. α -closed) and α -open (resp. C-open) subsets of X, respectively. Hence, G^c is an α -closed (resp. C-closed) and $F \cap G^c = \emptyset$.

By (i) there exist two disjoint open subsets G_1, G_2 of X such that $F \subseteq G_1$ and $G^c \subseteq G_2$. But

$$G^c \subseteq G_2 \Rightarrow G_2^c \subseteq G,$$

and

$$G_1 \cap G_2 = \varnothing \Rightarrow G_1 \subseteq G_2^c$$

hence

$$F \subseteq G_1 \subseteq G_2^c \subseteq G$$

and since G_2^c is a closed set containing G_1 we conclude that $\operatorname{Cl}(G_1) \subseteq G_2^c$, i.e.,

$$F \subseteq G_1 \subseteq \operatorname{Cl}(G_1) \subseteq G.$$

By setting $H = G_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that F_1, F_2 are two disjoint subsets of X, such that F_1 is α -closed and F_2 is C-closed.

This implies that $F_2 \subseteq F_1^c$ and F_1^c is an α -open subset of X. Hence by (ii) there exists an open set H such that $F_2 \subseteq H \subseteq \operatorname{Cl}(H) \subseteq F_1^c$. But

$$H \subseteq \operatorname{Cl}(H) \Rightarrow H \cap (\operatorname{Cl}(H))^c = \emptyset$$

and

$$\operatorname{Cl}(H) \subseteq F_1^c \Rightarrow F_1 \subseteq (\operatorname{Cl}(H))^c.$$

Furthermore, $(\operatorname{Cl}(H))^c$ is an open set of X. Hence $F_2 \subseteq H$, $F_1 \subseteq (\operatorname{Cl}(H))^c$ and $H \cap (\operatorname{Cl}(H))^c = \emptyset$. This means that condition (i) holds.

Lemma 3.6. Suppose that X is a topological space. If each pair of disjoint subsets F_1, F_2 of X, where F_1 is α -closed and F_2 is C-closed, can be separated by

138

Insertion of a Continuous Function...

open subsets of X then there exists a continuous function $h: X \to [0,1]$ such that $h(F_1) = \{0\}$ and $h(F_2) = \{1\}$.

Proof. Suppose F_1 and F_2 are two disjoint subsets of X, where F_1 is α -closed and F_2 is C-closed. Since $F_1 \cap F_2 = \emptyset$, hence $F_2 \subseteq F_1^c$. In particular, since F_1^c is an α -open subset of X containing the C-closed subset F_2 of X, by Lemma 3.5, there exists an open subset $H_{1/2}$ of X such that

$$F_2 \subseteq H_{1/2} \subseteq \operatorname{Cl}(H_{1/2}) \subseteq F_1^c.$$

Note that $H_{1/2}$ is also an α -open subset of X and contains F_2 , and F_1^c is an α -open subset of X and contains the C-closed subset $\operatorname{Cl}(H_{1/2})$ of X. Hence, by Lemma 3.5, there exists open subsets $H_{1/4}$ and $H_{3/4}$ such that

$$F_2 \subseteq H_{1/4} \subseteq \operatorname{Cl}(H_{1/4}) \subseteq H_{1/2} \subseteq \operatorname{Cl}(H_{1/2}) \subseteq H_{3/4} \subseteq \operatorname{Cl}(H_{3/4}) \subseteq F_1^c.$$

By continuing this method for every $t \in D$, where $D \subseteq [0, 1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain open subsets H_t of X with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function h on X by $h(x) = \inf\{t : x \in H_t\}$ for $x \notin F_1$ and h(x) = 1 for $x \in F_1$.

Note that for every $x \in X$, $0 \leq h(x) \leq 1$, i.e., h maps X into [0, 1]. Also, we note that for any $t \in D, F_2 \subseteq H_t$; hence $h(F_2) = \{0\}$. Furthermore, by definition, $h(F_1) = \{1\}$. It remains only to prove that h is a continuous function on X. For every $\beta \in \mathbb{R}$, we have if $\beta \leq 0$ then $\{x \in X : h(x) < \beta\} = \emptyset$ and if $0 < \beta$ then $\{x \in X : h(x) < \beta\} = \cup\{H_t : t < \beta\}$, hence, they are open subsets of X. Similarly, if $\beta < 0$ then $\{x \in X : h(x) > \beta\} = \cup\{(\operatorname{Cl}(H_t))^c : t > \beta\}$ hence, each of them is an open subset of X. Consequently h is a continuous function.

Lemma 3.7. Suppose that X is a topological space such that every two disjoint C-closed and α -closed subsets of X can be separated by open subsets of X. The following conditions are equivalent:

(i) Every countable covering of C-open (resp. α -open) subsets of X has a refinement consisting of α -open (resp. C-open) subsets of X such that for every $x \in X$, there exists an open subset of X containing x such that it intersects only finitely many members of the refinement.

(ii) Corresponding to every decreasing sequence $\{F_n\}$ of C-closed (resp. α -closed) subsets of X with empty intersection there exists a decreasing sequence $\{G_n\}$ of α -open (resp. C-open) subsets of X such that $\bigcap_{n=1}^{\infty} G_n = \emptyset$ and for every $n \in \mathbb{N}, F_n \subseteq G_n$.

Proof. (i) \Rightarrow (ii) Suppose that $\{F_n\}$ is a decreasing sequence of C-closed (resp. α -closed) subsets of X with empty intersection. Then $\{F_n^c : n \in \mathbb{N}\}$ is a countable covering of C-open (resp. α -open) subsets of X. By hypothesis (i) and Lemma 3.5, this covering has a refinement $\{V_n : n \in \mathbb{N}\}$ such that every V_n is

an open subset of X and $\operatorname{Cl}(V_n) \subseteq F_n^c$. By setting $G_n = (\operatorname{Cl}(V_n))^c$, we obtain a decreasing sequence of open subsets of X with the required properties.

(ii) \Rightarrow (i) Now if $\{H_n : n \in \mathbb{N}\}\$ is a countable covering of C-open (resp. α -open) subsets of X, we set for $n \in \mathbb{N}$, $F_n = (\bigcup_{i=1}^n H_i)^c$. Then $\{F_n\}$ is a decreasing sequence of C-closed (resp. α -closed) subsets of X with empty intersection. By (ii) there exists a decreasing sequence $\{G_n\}$ consisting of α -open (resp. C-open) subsets of X such that $\bigcap_{n=1}^{\infty} G_n = \emptyset$ and for every $n \in \mathbb{N}, F_n \subseteq G_n$. Now we define the subsets W_n of X in the following manner:

 W_1 is an open subset of X such that $G_1^c \subseteq W_1$ and $\operatorname{Cl}(W_1) \cap F_1 = \emptyset$.

 W_2 is an open subset of X such that $\operatorname{Cl}(W_1) \cup G_2^c \subseteq W_2$ and $\operatorname{Cl}(W_2) \cap F_2 = \emptyset$, and so on. (By Lemma 3.5, W_n exists).

Then since $\{G_n^c : n \in \mathbb{N}\}$ is a covering for X, hence $\{W_n : n \in \mathbb{N}\}$ is a covering for X consisting of open subsets of X. Moreover, we have

- (i) $\operatorname{Cl}(W_n) \subseteq W_{n+1}$
- (ii) $G_n^c \subseteq W_n$
- (iii) $W_n \subseteq \bigcup_{i=1}^n H_i$.
- Now set $S_1 = W_1$ and for $n \ge 2$, we set $S_n = W_{n+1} \setminus \operatorname{Cl}(W_{n-1})$.

Then since $\operatorname{Cl}(W_{n-1}) \subseteq W_n$ and $S_n \supseteq W_{n+1} \setminus W_n$, it follows that $\{S_n : n \in \mathbb{N}\}$ consists of open subsets of X and covers X. Furthermore, $S_i \cap S_j \neq \emptyset$ if and only if $|i-j| \leq 1$. Finally, consider the following sets:

These sets are open subsets of X, cover X and refine $\{H_n : n \in \mathbb{N}\}$. In addition, $S_i \cap H_j$ can intersect at most the sets in its row, and in the immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_n \cap H_m$, then $S_n \cap H_m$ is an open subset of X containing x that intersects at most finitely many of sets $S_i \cap H_j$. Consequently, $\{S_i \cap H_j : i \in \mathbb{N}, j = 1, \ldots, i+1\}$ refines $\{H_n : n \in \mathbb{N}\}$ such that its elements are open subsets of X, and for every point in X we can find an open subset of X containing the point that intersects only finitely many elements of that refinement.

Corollary 3.8. If every two disjoint C-closed and α -closed subsets of X can be separated by open subsets of X, and in addition, every countable covering of C-open (resp. α -open) subsets of X has a refinement that consists of α -open (resp. C-open) subsets of X such that for every point of X we can find an open subset containing that point such that it intersects only a finite number of refining members then X has the weakly c-insertion property for $(\alpha c, Cc)$ (resp. $(Cc, \alpha c)$).

Proof. Since every two disjoint C-closed and α -closed sets can be separated by open subsets of X, therefore by Corollary 3.4, X has the weak c-insertion property for $(\alpha c, Cc)$ and $(Cc, \alpha c)$. Now suppose that f and g are real-valued functions on X with g < f, such that g is αc (resp. Cc), f is Cc (resp. αc) and f - g is Cc (resp. αc). For every $n \in \mathbb{N}$, set

$$A(f - g, 3^{-n+1}) = \{x \in X : (f - g)(x) \le 3^{-n+1}\}.$$

Since f - g is Cc (resp. αc), hence $A(f - g, 3^{-n+1})$ is a C-closed (resp. α -closed) subset of X. Consequently, $\{A(f - g, 3^{-n+1})\}$ is a decreasing sequence of C-closed (resp. α -closed) subsets of X and furthermore since 0 < f - g, it follows that $\bigcap_{n=1}^{\infty} A(f - g, 3^{-n+1}) = \emptyset$. Now by Lemma 3.7, there exists a decreasing sequence $\{D_n\}$ of α -open (resp. C-open) subsets of X such that $A(f - g, 3^{-n+1}) \subseteq D_n$ and $\bigcap_{n=1}^{\infty} D_n = \emptyset$. But by Lemma 3.6, the pair $A(f - g, 3^{-n+1})$ and $X \setminus D_n$ of C-closed (resp. α -closed) and α -closed (resp. C-closed) subsets of X can be completely separated by continuous functions. Hence by Theorem 2.6, there exists a continuous function h defined on X such that g < h < f, i.e., X has the weakly c-insertion property for $(\alpha c, Cc)$ (resp. $(Cc, \alpha c)$).

References

- F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly 78 (1971), 1007-1010.
- 2. J. Dontchev, The characterization of some peculiar topological space via α and β -sets, Acta Math. Hungar. **69** (1-2) (1995), 67-71.
- 3. J. Dontchev, Between α and β -sets, Math. Balkanica (N.S) **12** (3-4) (1998), 295-302.
- M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar. 56 (3-4) (1990), 299-301.
- E. Hatir, T. Noiri, and S. Yksel, A decomposition of continuity, Acta Math. Hungar. 70 (1-2) (1996), 145-150.
- M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85-91.
- M. Katětov, Correction to, On real-valued functions in topological spaces, Fund. Math. 40 (1953), 203-205.
- 8. E. Lane, Insertion of a continuous function, Pacific J. Math. 66 (1976), 181-190.
- M. Mirmiran, Insertion of a function belonging to a certain subclass of ℝ^X, Bull. Iran. Math. Soc. 28 (2) (2002), 19-27.
- M. Przemski, A decomposition of continuity and α-continuity, Acta Math. Hungar. 61 (1-2) (1993), 93-98.