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Abstract. Let R be a ring and (S,≤) a strictly totally ordered monoid which is also

artinian and finitely generated. Then we show that M is an artinian quasi-duality left

R-module if and only if the module [MS,≤] consisting of generalized inverse polynomials

over M is a quasi-duality left [[RS,≤]]-module.
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1. Introduction and Preliminary

This paper is motivated by [2] in which it was proved that M is an artinian quasi-
duality left R-module if and only if the Macaulay-Northcott module M [x−1] over
R[[x]] is quasi-duality, and by a series of works about generalized Macaulay-
Northcott modules, developed by Zhongkui Liu in [3-6]. We will show that,
under some additional conditions, the module [MS,≤] consisting of generalized
inverse polynomials over M is a quasi-duality left [[RS,≤]]-module if and only if
M is an artinian quasi-duality left R-module. Our result will give more examples
of quasi-duality modules.

All rings considered here are associative with identity. Any concept and notion
not defined here can be found in [3-6, 11-13].
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Let (S,≤) be an ordered set. Recall that (S,≤) is artinian if every strictly
decreasing sequence of elements of S is finite, and that (S,≤) is narrow if ev-
ery subset of pairwise order-incomparable elements of S is finite. Let S be a
commutative monoid. Unless stated otherwise, the operation of S shall be de-
noted additively, and the neutral element by 0. The following definition is due
to [11-13].

Let (S,≤) be a strictly ordered monoid (that is, (S,≤) is an ordered monoid
satisfying the condition that, if s, s′, t ∈ S and s < s′, then s + t < s′ + t), and
R a ring. Let [[RS,≤]] be the set of all maps f : S → R such that supp(f) =
{s ∈ S | f(s) 6= 0} is artinian and narrow. With pointwise addition, [[RS,≤]] is
an abelian additive group. For every s ∈ S and f, g ∈ [[RS,≤]], let Xs(f, g) =
{(u, v) ∈ S × S | u + v = s, f(u) 6= 0, g(v) 6= 0}. It follows from [11, 4.1] that
Xs(f, g) is finite. This fact allows to define the operation of convolution:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v).

Clearly supp(fg) ⊆ supp(f) + supp(g), thus by [11, 3.4] supp(fg) is artinian
and narrow, hence fg ∈ [[RS,≤]]. With this operation, and pointwise addition,
[[RS,≤]] becomes a ring, which is called the ring of generalized power series. The
elements of [[RS,≤]] are called generalized power series with coefficients in R and
exponents in S.

For example, if S = N ∪ {0} and ≤ is the usual order, then [[RN∪{0},≤]] ∼=
R[[x]], the usual ring of power series. If S is a commutative monoid and ≤ is
the trivial order, then [[RS,≤]] ∼= R[S], the monoid ring of S over R. Further
examples are given in [11].

Let (S,≤) be a strictly totally ordered monoid which is also artinian. If M
is a left R-module, we let [MS,≤] be the set of all maps φ : S → M such that
the set supp(φ) = {s ∈ S | φ(s) 6= 0} is finite. Now [MS,≤] can be turned into
a left [[RS,≤]]-module. The addition in [MS,≤] is componentwise and the scalar
multiplication is defined as follows:

(fφ)(s) =
∑

t∈S

f(t)φ(s + t), for every s ∈ S,

where f ∈ [[RS,≤]] and φ ∈ [MS,≤]. It was proved in [3] that fφ belongs to [MS,≤]
and [MS,≤] is a left [[RS,≤]]-module, which we call the generalized Macaulay-
Northcott module. The elements of [MS,≤] are called generalized inverse poly-
nomials with coefficients in M and exponents in S. Similarly, if M is a right
R-module, then [MS,≤] is a right [[RS,≤]]-module.

For example, if S = N ∪ {0} and ≤ is the usual order, then [MN∪{0},≤] ∼=
M [x−1], the usual left R[[x]]-module introduced in [7, 8], which is called the
Macaulay-Northcott module in [9, 10]. If S is the multiplicative monoid (N, ·),
endowed with the usual order ≤, then [[R(N,·),≤]] is the ring of arithmetical
functions with values in R, endowed with the Dirichlet convolution:
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(fg)(n) =
∑

d|n

f(d)g(n/d), for each n ≥ 1.

If M is a left R-module, then the left [[R(N,·),≤]]-module [M (N,·),≤] is the set
{

∑n
i=1 mix

−i | mi ∈ M, i = 1, 2, . . . , n, n ∈ N
}

with scalar multiplication as
below:

(

∑

i≥1

rix
i
)(

∑

j≥1

mjx
−j

)

=
∑

j≥1

(

∑

i≥1

rimi·j

)

x−j,

where
∑

i≥1 rix
i ∈ [[R(N,·),≤]] and

∑

j≥1 mjx
−j ∈ [M (N,·),≤]. Note that in par-

ticular,

(rxi)(mx−j) =

{

rmx−j/i, i | j,
0, i - j.

2. Main Results

We shall henceforth assume that (S,≤) is a strictly totally ordered monoid which
is also artinian in this section. Then, by [5], for any s ∈ S, we have 0 ≤ s. This
result will be often used throughout the rest of this paper.

Let M be a left R-module. A family {mi, Mi}i∈I (where mi ∈ M and Mi ≤
M, i ∈ I) is called solvable if there exists an m ∈ M such that m − mi ∈ Mi

for all i ∈ I; it is called finitely solvable if {mi, Mi}i∈F is solvable for any finite
subset F ⊆ I, and the module M is called linearly compact in the case where
any finitely solvable family of M is solvable. Let s1, . . . , sn ∈ S, we denote by
〈s1, . . . , sn〉 the set of all elements

∑n
i=1 kisi (with ki integer, ki ≥ 0). A monoid

S is called finitely generated if there exists a finite subset {s1, . . . , sn} such that
S = 〈s1, . . . , sn〉.

Lemma 2.1. Let R be a ring, M a left R-module and S a finitely generated

monoid. Then the following conditions are equivalent:

(1) M is an artinian left R-module.

(2) [MS,≤] is an artinian left [[RS,≤]]-module.

(3) [MS,≤] is a linearly compact left [[RS,≤]]-module.

Proof. (1)=⇒(2) follows from [14, Corollary 5].
(2)=⇒(3). Each artinian module is linearly compact.
(3) =⇒ (1). See [6, Proposition 2.5]

Before stating the next result we explain the notions involved.

Let m ∈ M . Define a mapping φ0,m ∈ [MS,≤] via:

φ0,m(0) = m, φ0,m(s) = 0, 0 6= s ∈ S.
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Let T be a ring with identity. For any s ∈ S, r ∈ T , define ds
r ∈ [[TS,≤]] as

follows:
ds

r(s) = r, ds
r(x) = 0, ∀s 6= x ∈ S.

Denote cr = d0
r, es = ds

1.

For every 0 6= φ ∈ [MS,≤], we denote by σ(φ) the maximal element in supp(φ).

Lemma 2.2. Let T be a ring with identity and M a right T -module. Then

Soc([MS,≤][[T S,≤]]) = {φ0,m | m ∈ Soc(MT )}.

Proof. Let 0 6= ϕ ∈ Soc([MS,≤][[T S,≤]]) be such that ϕ[[TS,≤]] is a simple right

[[TS,≤]]-module. Assume that σ(ϕ) = s. If s > 0, then

(ϕes)(0) =
∑

x∈S

ϕ(x)es(x) = ϕ(s) 6= 0.

Thus 0 6= ϕes ∈ ϕ[[TS,≤]], and so ϕ[[TS,≤]] = ϕes[[T
S,≤]]. Hence ϕ = ϕesf for

some f ∈ [[TS,≤]]. Then

ϕ(s) = (ϕesf)(s) =
∑

x∈S

ϕ(x + s)(esf)(x) = ϕ(s)es(0)f(0) = 0,

a contradiction. Therefore, s = 0, and so ϕ = φ0,m for some m ∈ M . For any
f ∈ [[TS,≤]], φ0,mf = φ0,mf(0) = φ0,mf(0), so ϕ[[TS,≤]] = φ0,m[[TS,≤]] = φ0,mT .
Thus φ0,mT is a simple right T -module. Since φ0,mT ∼= mT , it follows that mT
is a simple right T -module. Hence, m ∈ Soc(MT ), and so ϕ ∈ {φ0,m | m ∈
Soc(MT )}, which implies that Soc([MS,≤][[T S,≤]]) ⊆ {φ0,m | m ∈ Soc(MT )}.
The other inclusion is directly verified.

Lemma 2.3. Let T be a ring and W = {f ∈ [[TS,≤]] | f(0) = 0}. Then W is an

ideal of [[TS,≤]], and W ⊆ J([[TS,≤]]).

Proof. Let f ∈ W , g ∈ [[TS,≤]]. Then

(gf)(0) =
∑

(u,v)∈X0(g,f)

g(u)f(v) = g(0)f(0) = 0.

This means that gf ∈ W . Similarly, fg ∈ W . Now it is easy to see that W is an
ideal of [[TS,≤]].

Let f ∈ W . Then (c1 − f)(0) = 1. Thus by [12, 2.3], (c1 − f) ∈ U([[TS,≤]]).
Hence f ∈ J([[TS,≤]]), which implies that W ⊆ J([[TS,≤]]).

Let T be a ring with identity and M a right T -module. If S is a finitely
generated monoid and T is a right noetherian ring, in [5, Theorem 6], it was
proved that [MS,≤] is an injective right [[TS,≤]]-module if and only if M is an
injective right T -module. Using this fact, we can prove
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Lemma 2.4. Let S be a finitely generated monoid and T a right noetherian ring.

Then MT is an injective cogenerator if and only if [MS,≤][[T S,≤]] is an injective

cogenerator.

Proof. =⇒) By [5, Theorem 6], [MS,≤] is an injective right [[TS,≤]]-module.
Let N be a simple right [[TS,≤]]-module, by [1, Proposition 18.15], it suffices to
prove that Hom[[T S,≤]](N, [MS,≤]) 6= 0. Since N is a simple right [[TS,≤]]-module,

NJ([[TS,≤]]) = 0. For any f ∈ [[TS,≤]], if f(0) = 0, then f ∈ J([[TS,≤]]) by
Lemma 2.3. Thus Nf = 0. Hence Nf = Ncf(0) , Nf(0). This means that N as a
right [[TS,≤]]-module coincides with N as a right T -module. Hence N is a simple
right T -module. Since MT is an injective cogenerator, there exists a nonzero
right T -homomorphism N −→ M . Let f ∈ [[TS,≤]], define Mf = Mf(0). Then
M is a right [[TS,≤]]-module. Thus N −→ M is also a nonzero right [[TS,≤]]-
homomorphism. Since M ⊆ [MS,≤](m 7−→ φ0,m), there exists a nonzero right
[[TS,≤]]-homomorphism N −→ [MS,≤].

⇐=) By [5, Theorem 6], M is an injective right T -module. Suppose that
N is a simple right T -module. Let G = {φ0,n | n ∈ N}. Then G is a simple
right [[TS,≤]]-module. Hence, by [1, Proposition 18.15], there exists a 0 6= α ∈
Hom[[T S,≤]](G, [MS,≤]). Define β : N −→ M : n 7−→ α(φ0,n)(0), ∀ n ∈ N . Then
it is easy to see that β is a right T -homomorphism. Since α 6= 0, there exists
an n ∈ N such that α(φ0,n) 6= 0. By [4, Lemma 2.1], σ(α(φ0,n)) ≤ σ(φ0,n) = 0.
Thus σ(α(φ0,n)) = 0. Hence β(n) = α(φ0,n)(0) 6= 0. Thus β 6= 0. Hence, by [1,
Proposition 18.15], MT is an injective cogenerator.

According to [2], a module RM is called quasi-duality if RM is quasi-injective,
finitely cogenerated, linearly compact and cogenerated all its factor modules.
Also, by [2], if RM is a quasi-duality module, then A = End(RM) is right
linearly compact and MA is an injective cogenerator with Soc(RM) = Soc(MA)
essential in MA. Moreover, R operates densely in B(= End(MA)) on M , and

BM is also a quasi-duality module. The following result appeared in [2, Theorem
2.1].

Lemma 2.5. Let A be a right linearly compact ring and MA an injective cogen-

erator with Soc(MA) essential in MA. Then

(1) BM is a quasi-duality module, where B = End(MA); and

(2) If R operates densely in B on M , then RM is a quasi-duality module.

Lemma 2.6. ([2, Lemma 4.1]) Let RM be a quasi-duality module with A =
End(RM). If I is an ideal of R with End(R/IrM (I)) ∼= A/rA(rM(I)), then rM (I)
is a quasi-duality module over R/I.

Let M be a left R-module, A = End(RM) and B = End(MA). Then by the
construction of [MS,≤], we obtain a bimodule [[BS,≤]][M

S,≤][[AS,≤]]. Moreover, by

[3, Lemma 3.1, Lemma 3.3], we may identify [[AS,≤]] = End([[RS,≤]][M
S,≤]) and

[[BS,≤]] = End([MS,≤][[AS,≤]]). With these facts, we can prove
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Theorem 2.7. Let S be a finitely generated monoid and M a left R-module.

Then the following conditions are equivalent:

(1) M is an artinian quasi-duality left R-module.

(2) [MS,≤] is a quasi-duality left [[RS,≤]]-module.

Proof. (1) =⇒ (2). Since M is an artinian quasi-duality left R-module, A is right
noetherian and right linearly compact, so [[AS,≤]] is right linearly compact by
[6, Proposition 2.5] and [MS,≤][[AS,≤]] is an injective cogenerator by Lemma 2.4.

Let 0 6= ϕ ∈ [MS,≤][[AS,≤]]. Assume that σ(ϕ) = s. Since Soc(MA) is essential
in MA, there exists an a ∈ A such that 0 6= ϕ(s)a ∈ Soc(MA). Thus, by Lemma
2.2, 0 6= φ0,ϕ(s)a ∈ Soc([MS,≤][[AS,≤]]). It is easy to see that φ0,ϕ(s)a = ϕds

a.

Hence 0 6= ϕds
a ∈ Soc([MS,≤][[AS,≤]]). This means that Soc([MS,≤][[AS,≤]]) is

essential in [MS,≤][[AS,≤]]. By Lemma 2.5 (1), [[BS,≤]][M
S,≤] is a quasi-duality

module. To show that [MS,≤] is a quasi-duality left [[RS,≤]]-module, by Lemma
2.5 (2), it suffices to show that [[RS,≤]] operates densely in [[BS,≤]] on [MS,≤]. Let
ϕ1, ϕ2, . . . , ϕn ∈ [MS,≤] and f ∈ [[BS,≤]]. Set X = ∪n

i=1{ϕi(s) | s ∈ supp(ϕi)}.
Then X is a finite set of M . Assume that X = {m1, . . . , mk}. For each s ∈
supp(f), since R operates densely in B on [MS,≤], we have rs ∈ R such that
rsmi = f(s)mi for all i. Define g : S −→ R as follows:

g(x) =

{

rx, x ∈ supp(f),
0, otherwise.

Then g ∈ [[RS,≤]]. For any x ∈ S and any i = 1, 2, . . . , n,

(fϕi)(x) =
∑

y∈S

f(y)ϕi(x + y) =
∑

y∈supp(f)

f(y)ϕi(x + y)

=
∑

y∈supp(f)

ryϕi(x + y)

=
∑

y∈supp(f)

g(y)ϕi(x + y) =
∑

y∈S

g(y)ϕi(x + y)

= (gϕi)(x).

This means that fϕi = gϕi for all i, and which implies that [[RS,≤]] operates
densely in [[BS,≤]] on [MS,≤]. Now the result follows.

(2) =⇒ (1). Since [MS,≤] is a quasi-duality left [[RS,≤]]-module, [MS,≤] is a
linearly compact left [[RS,≤]]-module, and so M is an artinian left R-module by
Lemma 2.1.

Let
I = {f ∈ [[RS,≤]] | f(0) = 0}.

Then by Lemma 2.3, I is an ideal of [[RS,≤]]. Define a mapping α : R −→
[[RS,≤]]/I via

α(a) = ca + I, ∀a ∈ R.



Quasi-duality Property of Generalized Macaulay-Northcott Modules 23

Then it is easy to see that α is a homomorphism of rings. For any f ∈ [[RS,≤]],
f + I = cf(0) + I = α(f(0)), which implies that α is an epimorphism. Clearly α
is a monomorphism. Thus there is an isomorphism of rings R ∼= [[RS,≤]]/I.

Let G = {φ0,m | m ∈ M}. Then it is easy to see that G ∼= M as an R-module.
For any f ∈ I, any m ∈ M and any s ∈ S,

(fφ0,m)(s) =
∑

y∈S

f(y)φ0,m(s + y) = f(0)φ0,m(s) = 0,

which implies that G ⊆ r[MS,≤](I). Conversely, for any 0 6= ϕ ∈ r[MS,≤](I), let
σ(ϕ) = s. Assume that s > 0. Then es ∈ I and so

0 = (esϕ)(0) =
∑

y∈S

es(y)ϕ(y) = ϕ(s),

a contradiction. Thus s = 0. Hence ϕ ∈ G. Therefore G = r[MS,≤](I).

Note that

End([[RS,≤]]/Ir[MS,≤](I)) ∼= End(RG) ∼= End(RM)

= A ∼= [[AS,≤]]/{f ∈ [[AS,≤]] | f(0) = 0}

= [[AS,≤]]/r[[AS,≤]]

(

r[MS,≤](W )
)

.

Hence, by Lemma 2.6, r[MS,≤](I) is a quasi-duality left R-module. Thus M is a
quasi-duality left R-module.

Corollary 2.8. Let S be a finitely generated torsion-free and cancellative monoid,

and (S,≤) be artinian and narrow. Then M is an artinian quasi-duality left R-

module if and only if [MS,≤] is a quasi-duality left [[RS,≤]]-module.

Proof. If S is torsion-free and cancellative, then by [11, 3.3], there exists a com-
patible strict total order ≤

′

on S, which is finer than ≤, that is, for any s, t ∈ S,
s ≤ t implies that s ≤

′

t. Since (S,≤) is artinian and narrow, by [11, 2.5] it

follows that (S,≤
′

) is artinian and narrow. Thus by Theorem 2.7, [MS,≤
′

] is a

quasi-duality left [[RS,≤
′

]]-module if and only if M is an artinian quasi-duality
left R-module.

On the other hand, since (S,≤) is narrow, by [11, 4.4], [[RS,≤]] = [[RS,≤
′

]].

Clearly [MS,≤] = [MS,≤
′

]. Now the result follows.

The following corollaries will give more examples of quasi-duality modules.

Any submonoid of the additive monoid N∪{0} is called a numerical monoid.
It is well-known that any numerical monoid is finitely generated [11, 1.3]. Thus,
we have

Corollary 2.9. Let S be a numerical monoid and ≤ the usual natural order of

N∪{0}. Then M is an artinian quasi-duality left R-module if and only if [MS,≤]
is a quasi-duality left [[RS,≤]]-module.
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Corollary 2.10. Let (S1 ,≤1), . . . , (Sn,≤n) be strictly totally ordered monoids

which are also artinian and finitely generated. Denote by (lex ≤) and (revlex ≤)
the lexicographic order and the reverse lexicographic order, respectively, on the

monoid S1 × · · · × Sn. Then the following conditions are equivalent:

(1) M is an artinian quasi-duality left R-module.

(2) [MS1×···×Sn,(lex ≤)] is a quasi-duality left [[RS1×···×Sn,(lex ≤)]]-module.

(3) [MS1×···×Sn,(revlex ≤)] is a quasi-duality left [[RS1×···×Sn,(revlex ≤)]]-module.

Proof. It is easy to see that (S1 × · · · × Sn, (lex ≤)) is a strictly totally ordered
monoid which is also artinian and finitely generated. Thus, by Theorem 2.7,
[MS1×···×Sn,(lex ≤)] is a quasi-duality left [[RS1×···×Sn,(lex ≤)]]-module if and only
if M is an artinian quasi-duality left R-module.

The proof of (1)⇐⇒(3) is similar.

Corollary 2.11. Let x1, . . . , xn be n commuting indeterminates over R and M
a left R-module. Then the following conditions are equivalent:

(1) M is an artinian quasi-duality left R-module.

(2) M [x−1
1 , . . . , x−1

n ] is a quasi-duality left R[[x1, . . . , xn]]-module.

Proof. Take S1 = · · · = Sn = N with ≤i, i = 1, . . . , n, to be the usual order of N
in Corollary 2.10. Then the result follows from [11, Example 3].

Let p1, p2, . . . , pn be prime numbers. Set

N(p1, p2, . . . , pn) = {pm1

1 pm2

2 . . . pmn

n | m1, m2, . . . , mn ∈ N ∪ {0}}.

Then N(p1, p2, . . . , pn) is a submonid of (N, ·). Let ≤ be the usual natural order.
Then by Theorem 2.7, we have

Corollary 2.12. Let M be a left R-module. Then M is an artinian quasi-

duality left R-module if and only if [MN(p1,p2,...,pn),≤] is a quasi-duality left

[[RN(p1,p2,...,pn),≤]]-module.
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