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1. Introduction

In science and practical applications there are numerous problems such as
the problem of description of dynamic systems, electric circuit or problems in
cybernetics etc ... requiring investigation of solutions of differential equations of
the type

A(t)x′(t) + B(t)x(t) = f(t), t ∈ J := [t0, T ], (1)

where A, B ∈ C(J, Rn.n), f ∈ C(J, Rn) and the matrix A(t) is singular for every
t ∈ J ; such equations are called differential algebraic equations (DAE). Without
lost of generality, we assume t0 = 0. Investigation of DAE was carried out
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intensively by many researchers around the world (see [4,5,7] and the references
therein).

Recently, there has been some incipient work (see [2, 8]) on stochastic differ-
ential algebraic equations (SDAE)

Adxt = f(t, xt)dt + G(t, xt)dWt, t ∈ J, (2)

where A is a constant matrix and det A = 0. Here xt is an R
n-valued stochastic

process defined on J , and W denotes an m-dimensional Wiener process given on
a probability space (Ω, F , P ) with a filtration (Ft)t∈J . This kind of equation
can be considered as a generalization of (1) to include possible random influence
of the environment on the system.

Since the focus in [2] and [8] is on numerical computation of solutions and
the particular applications (only the case of constant A is considered), some
interesting basic theoretical questions (definition of solutions etc.) have been left
aside in these papers. As far as we know, up-to-now the most basic notion—
formal definition of solution for (2), is still unavailable.

A natural tool in investigation of (2) is Ito stochastic calculus. However, due
to the singularity of A, like the case of DAE, one should take care of choosing
appropriate definition of solution as well as definition of various classes of SDAE.

In this paper we investigate SDAE (2) with nonautonomous A. We will give a
rigorous definition of solution. In an analogue with the DAE case we will define
the class of index 1 SDAE and prove a theorem on existence and uniqueness of
solution for this class.

In the sequel, we will use the following notations:
The superscript > stands for transposition,
|x| stands for the norm of x ∈ R

n defined by |x|2 =
∑n

i=1 x2
i = x>x,

|A| stands for the norm of a matrix A defined by |A|2 =
∑n

i,j=1 a2
ij = trAA>,

‖f‖∞ = maxt∈[0,T ] |f(t)| with the continuous function f ∈ C([0, T ], R).

2. Preliminaries on DAE and SDE

In this section we briefly introduce two topics: differential algebraic equation
(DAE) of index-1 and stochastic differential equation (SDE). An expanded in-
troduction on the first topic can be found in [4, 5], while the basic theory of
stochastic differential equation can be found in [1, 3, 6].

2.1. Differential algebraic equations of index-1

In this subsection, we consider DAE

A(t)x′(t) + B(t)x(t) = f(t), t ∈ J := [t0, T ], (3)

where A, B are assumed to belong to C(J, L(Rn)), A(t) is singular with nullspace
kerA(t), t ∈ J which is supposed to depend smoothly on t, i.e., there is a pro-
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jector function Q ∈ C1(J, L(Rn)) such that Q(t)2 = Q(t), imQ(t) = ker A(t).
Set P := I − Q. From the obvious relations

AQ ≡ 0, AP ≡ A

it follows that
Ax′ = APx′ = A{(Px)′ − P ′x}.

Therefore, for (3) it is not necessary to require differentiability of x: differentia-
bility of Px suffices for determination of the terms in (3). Thus, we introduce
the following function space which will serve as domain of definition of solutions
of (3)

C1
A(J) := {x ∈ C(J, Rn) : Px ∈ C1(J, Rn)}.

Note that C1
A does not depend on the choice the C1-smooth projector Q on

kerA.

Definition 2.1. Assume that kerA(t) is C1-smooth with Q being a C1-smooth
projector on ker A. A functions x ∈ C1

A(J, Rn) is said to be a solution of (3) on
J if the identity

A[(Px)′ − P ′x] + Bx + f(t) = 0

hold for all t ∈ J.

Definition 2.2. DAE (3) is called tractable with index-1 (or, for short, of index
1) if A1 := A + B0Q is nonsingular on J , where B0 := B − AP ′.

In case (3) is of index-1, we decouple it into the system

{
(Px)′ = (P ′ − PA−1

1 B)Px + PA−1
1 f(t),

Qx = −QA−1
1 BPx + QA−1

1 f(t).
(4)

System (4) shows how to state an initial condition, namely

P (0)x(0) = P (0)x0, x0 ∈ R
n, (5)

i.e., the initial condition should fix the free integration constants of the inherent
in (3) regular ODE for the component u := Px

u′ = (P ′ − PA−1
1 B)u + PA−1

1 f(t). (6)

The subspace imP (t) is easily checked to be invariant for the regular ODE (6),
that is, u(0) ∈ imP (0) implies Q(t)u(t) ≡ 0.

We introduce notations Qcan := QA−1
1 B, Pcan := I − Qcan. Then Qcan rep-

resents again projector onto kerA along S := {x ∈ R
n : B0x ∈ imA}; Qcan is

called the canonical projector of (3) when (3) is of index 1. Note that, in general,
Qcan is only continuous but not C1-smooth as we require for the projector Q.
However, the solutions of (3) with the initial condition (5) can be represented
by
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x = Px + Qx

= u − QA−1
1 Bu + QA−1

1 f(t)

= (I − QA−1
1 B)u + QA−1

1 f(t)

= Pcanu + QA−1
1 f(t),

where u ∈ C1 solves the inherent regular ODE (6) with the initial condition (5).
Obviously, the consistent initial value is

x0 := x(0) = Pcan(0)x0 + Q(0)A−1
1 (0)f(0).

We have P (0)x0 = P (0)x0, but not x0 = x0, in general.

2.2. Stochastic differential equations

Let Wt denote an m-dimensional Wiener process with independent compo-
nents given on a probability space (Ω, F , P). Denote by (Ft)t∈J the natural
filtration of Wt.

Definition 2.3 ([1,3,6]). A stochastic differential equation is an equation of the
form

dxt = f(t, x)dt + G(t, x)dWt, t ∈ J, (7)

or, in integral form

xt − x0 =

∫ t

0

f(s, (x(s))ds +

∫ t

0

G(s, x(s))dWs, t ∈ J, (8)

where x0 is R
n-valued random variables independent of Wt. A solution of (7) (or

(8)) on J is a process x(·) = (x(t))t∈J with continuous sample paths that fulfils
the following conditions:
(i) x(·) is adapted to the filtration (Ft)t∈J ,
(ii) With probability 1, we have

∫ T

0

|f(s, x(s))|ds < ∞ and

∫ T

0

|G(s, x(s))|2ds < ∞,

(iii) (8) holds for every t ∈ J with probability 1.

Theorem 2.4 ( [6]). Suppose that the SDE (7) satisfies the conditions: there
exists a constant K > 0 such that
(i) (Lipschitz condition) for all t ∈ J , x, y ∈ R

n,

|f(t, x) − f(t, y)| + |G(t, x)− G(t, y)| ≤ K|x− y|;

(ii) (Restriction on growth) For all t ∈ J and x ∈ R
n,

|f(t, x)|2 + |G(t, x)|2 ≤ K2(1 + |x|2).
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Then, with every random variable x0 which is independent of Wt, the equation
(7) has on J a unique solution x(t), which is continuous with probability 1, that
satisfies the initial condition x0, that is, if x(t) and y(t) are continuous solutions
of (7) with the same initial value x0, then

P[sup
t∈J

|x(t)− y(t)| > 0] = 0.

If, additionally, E|x0|2n < ∞, where n is a positive integer, then

E|x(t)|2n ≤ (1 + E|x0|2n)eCt

and
E|x(t) − x0|2n ≤ D(1 + E|x0|2n)tneCt,

where C = 2n(2n + 1)K2 and D is a positive constant depending only on n, K
and T .

Definition 2.5 ([1]). An Ito process is a stochastic process {xt, t ∈ J} which
has Ito stochastic differential

dxt = A
(1)
t dt + A

(2)
t dWt, t ∈ J, (9)

or equivalently, xt satisfies the stochastic integral equation

xt − xt0 =

∫ t

t0

A(1)
s ds +

∫ t

t0

A(2)
s dWs, t ∈ J, (10)

where A
(1)
t and A

(2)
t are stochastic process of appropriate dimension, adapted

to the filtration (Ft)t∈J and such that the integrals in (10) are well defined
Lebesgue and Ito integrals.

Note that in the conditions of Theorem 2.4 the solution of (7) is an Ito process.

3. Stochastic Differential-algebraic Equations of Index 1

Let us consider the linear stochastic differential-algebraic equations (SDAE)

A(t)dx + (B(t)x + f(t))dt + G(t, x)dWt = 0, t ∈ J, (11)

where A, B : J → L(Rn, Rn) are continuous n×n-matrix functions, rank A(t) =
r, r is a fixed integer, r < n, f : J → R

n, G : J × R
n → R

n×m are continuous
functions. For simplicity of notation we set J = [0, T ]. In this section we present
our main results, namely we give a rigorous definition of solutions of (11) and
discuss its correctness. We also give definition of index 1 of SDAE, and a theorem
on existence and uniqueness of solution of (11) in case of index 1.
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First, let us have a look at a simple two-dimensional example, which shows
that an appropriate approach is needed for definition of solution of (11).

Example 3.1.

(
1 0
0 0

)
d

(
x
y

)
=

((
1 0
0 1

)(
x
y

)
+

(
f1(t)
f2(t)

))
dt +

(
1
a

)
dWt, (12)

where a ∈ R, f1(t), f2(t) are continuous on J . The integral form of (12) is

(
1 0
0 0

)(
x(t) − x(0)
y(t) − y(0)

)
=

∫ t

0

(

(
1 0
0 1

)(
x
y

)
+

(
f1

f2

)
)ds +

∫ t

0

(
1
a

)
dWs.

We write this two-dimensional integral equation in a system of two scalar equa-
tions {

x(t) − x(0) =
∫ t

0
(x(s) + f1(s))ds +

∫ t

0
dWs,

0 =
∫ t

0
(y(s) + f2(s))ds +

∫ t

0
adWs,

or, equivalently

{
x(t) = x(0) +

∫ t

0
(x(s) + f1(s))ds +

∫ t

0
dWs,∫ t

0
(y(s) + f2(s))ds = −aWt.

If we consider a solution of this system as an usual continuous stochastic process
that satisfies this equation then a has to be equal to zero and now y(t) = −f2(t)
a.s. Therefore, if f2(t) /∈ C1(J) then y(t) is not an Ito process (clearly x(t)
is an Ito process). This example shows that in the case of SDAE not all the
coordinates of the solutions can be required to be Ito processes.

Recall from Sec. 2.1 that the solution space C1
A(J) of a deterministic DAE

is a space on continuous functions with differentiable part of coordinates. By
considering Ito differential as a stochastic analogue of ordinary differential we
shall naturally look for solutions of (11) from the space

C1
N(J, Ω) := {x : J × Ω 7→ R

n is a continuous stochastic process,

Px is an Ito process}.

We will show that this is an appropriate choice of solution space for (11). Let
us denote by N(t) := kerA(t). We assume N(t) ∈ C1. Let Q(t) be a C1-projector
onto N(t), P (t) := I − Q(t). For simplicity of notation, we omit the argument t
here and in the following if no confusion can arise. We call equation

A(t)dxt + (B(t)xt + f(t))dt = 0, t ∈ J, (13)

the deterministic part of (11).

Lemma 3.2. The space C1
N(J, Ω) does not depend on the choice of the projector

P .
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Proof. Let Q̃ be any C1-projector onto ker A and P̃ := I − Q̃. It is easily seen
that P̃P = P̃ . Let x ∈ C1

N (J, Ω) be arbitrary, i.e. x is continuous and Px is an

Ito process. Since P̃ is C1-smooth, by Ito formula P̃ (Px) is also an Ito process.

Therefore, P̃x = P̃ (Px) is also an Ito process. Consequently, whether x belongs
to C1

N(J, Ω) does not depend on the choice of the projector P .

Now, in an analogue with the deterministic DAE, we note that from the
obvious equalities AQ = 0, AP = A it follows that

Adx = APdx = A(dPx− P ′xdt). (14)

Here, we use the equality dPx = Pdx + P ′xdt which holds identically if x is
an Ito process. Using the arguments similar to that of deterministic DAE we
shall use (14) for definition of the term Adx in the SDAE (11). Thus in order to
determine Adx we need to require x only to belong to C1

N(J, Ω) to enable us to
compute dPx. We will prove that this is actually an appropriate approach to the
SDAE. First, we show in the following lemma that the use of (14) for definition
of the term Adx is correct in the sense that it is independent of the choice of the
projector P .

Lemma 3.3. If x ∈ C1
N(J, Ω) then A(dPx − P ′xdt) does not depend on the

choice of the C1-smooth projector Q = I − P onto kerA.

Proof. Let Q = I − P and Q̃ = I − P̃ be two C1-smooth projectors onto ker A.
Since P = P P̃ , by Ito formula, we have

d(Px) = dP P̃x = P ′P̃xdt + Pd(P̃x).

Using the identity P ′ = (P P̃ )′ = P ′P̃ + P P̃ ′, we obtain

A(dPx− P ′xdt) = A(P ′P̃xdt + PdP̃x − P ′xdt)

= A(P ′xdt− P P̃ ′xdt + PdP̃x − P ′xdt)

= A(PdP̃x − P P̃ ′xdt)

= AP (dP̃x − P̃ ′xdt)

= A(dP̃x − P̃ ′xdt).

To summarize, we shall understand (11) as

AdPx + ((B − AP ′)x + f)dt + G(t, x)dWt = 0, t ∈ J. (15)

Like the deterministic case of DAE, we use the notation B0 := B − AP ′. Now
we come to our definition of solution of SDAE (11).

Definition 3.4. A stochastic process x ∈ C1
N(J, Ω) is said to be a solution of

the SDAE (11) if with probability 1 we have
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∫ t

t0

A(s)dPx +

∫ t

t0

(B0x(s) + f(s))ds +

∫ t

t0

G(s, x(s))dWs = 0, t ∈ J. (16)

Proposition 3.5. Definition 3.4 does not depend on the choice of the C1-smooth
projector Q = I − P onto kerA.

Proof. The proposition follows immediately from Lemma 3.3.

Remark 3.6. Like the case of deterministic DAE, the Definition 3.4 can be
generalized to nonlinear SDAE as well.

Theorem 3.7. Suppose that x(t) ∈ C1
N(J, Ω) and Px has Ito differential pre-

sented in the form
dPx = a(t)dt + b(t)dWt, (17)

where a and b are stochastic processes adapted to the natural filtration of Wt.
Then x is a solution of (11) if and only if

{
A(t)a(t, ω) + B0x(t) + f(t) = 0 a.s. for almost all t ∈ J,

A(t)b(t, ω) + G(x, t) = 0 a.s. for almost all t ∈ J.
(18)

Proof. Suppose that x(t) is a solution of (11) with Px having Ito differential
presented in (17). By Definition 3.4, we have

∫ t

t0

(A(s)a(s) + B0x(s) + f(s))ds +

∫ t

t0

(A(s)b(s) + G(x(s), s))dWs = 0, t ∈ J.

(19)
From the theory of stochastic Ito integral (see [1]) it is known that (18) is
equivalent to (19). The theorem is proved.

As we have seen in Example 3.1 above, in general a solution of a SDAE can not
be an usual continuous stochastic process. Hence we need to impose a restriction
on the system in order to be able to solve it in the class of usual continuous
stochastic processes. A natural restriction is the so-called condition that the
noise sources do not appear in the constraints, or equivalently a requirement
that the solution process is not directly affected by white noise (see Chein and
Denk [2] and Winkler [8]). We will see below that when the deterministic part
(13) of (11) is tractable with index-1 DAE, the noise sources appear in constraints
via the term QA−1

1 G(t, x), hence the requirement that the noise sources do not
appear in constraints means that QA−1

1 G(t, x) ≡ 0, i.e, imG(t, x) ⊂ imA(t) for
all (t, x) ∈ J × R

n. Let us look back at Example 3.1, we see that the condition
a = 0 is needed to ensure solution being usual continuous stochastic process.
Note that, condition a = 0 is equivalent to above condition imG(t, x) ⊂ im A(t).
With these reasonings we arrive at the following definition of index 1 for SDAEs.

Definition 3.8. The SDAE (11) is called tractable with index 1 (or, for short,
of index-1) if
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(i) The deterministic part (13) of (11) is a deterministic DAE which is tractable
with index-1,
(ii) imG(t, x) ⊂ imA(t) for all (t, x) ∈ J × R

n.

Remark 3.9. (i) Like the deterministic case, tractability with index 1 remains
invariant under scaling of (11) by a matrix function E ∈ C(J, L(Rm)) and
transformations x =: Fy with F ∈ C1(J, L(Rm)), where E(t) and F (t) are
nonsingular on J .

(ii) The notion of index 1 can also be generalized to nonlinear SDAE; note that
we should use transferability of the deterministic DAE part instead of the
tractable with index-1 (see [4, 5]).

Now, we deal with the problem of existence and uniqueness of solution of (11)
in the case of index 1 in a similar way as the deterministic case. First, we make
some transformations and decomposition. Multiplying (18) by A−1

1 (recall that
A1 := A + B0Q is nonsingular since (13) is of index 1), we get

{
Pa(t) + A−1

1 BPx + Qx + A−1
1 f(t)) = 0, a.s., t ∈ J,

P b(t) + A−1
1 G(t, x) = 0, a.s., t ∈ J.

(20)

By multiplying (20) by P, Q, resp., we decouple it into the system






Pa(t) + PA−1
1 BPx + PA−1

1 f(t)) = 0,

QA−1
1 BPx + Qx + QA−1

1 f(t) = 0,

P b(t) + PA−1
1 G(t, x) = 0,

QA−1
1 G(t, x) = 0.

(21)

Since the SDAE (11) is of index 1, we have imG(t, x) ⊂ imA(t), hence

QA−1
1 G(t, x) = 0, PA−1

1 G(t, x) = A−1
1 G(t, x).

Consequently, (20) is equivalent to





Pa(t) + PA−1
1 BPx + PA−1

1 f(t) = 0,

Qx = −QA−1
1 BPx− QA−1

1 f(t),

P b(t) + A−1
1 G(t, x) = 0.

(22)

Taking into account the identity P = PP , from Ito formula it follows that

dPx = dPPx = P ′Pxdt + PdPx. (23)

This, together with (17) implies

{
a(t) = P ′Px + Pa(t),

b(t) = Pb(t).
(24)
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From (22) and (24), we obtain






a(t) = P ′Px− PA−1
1 BPx − PA−1

1 f(t),

b(t) = −A−1
1 G(t, x),

Qx = −QA−1
1 BPx − QA−1

1 f(t).

(25)

Thus,

{
dPx = ((P ′ − PA−1

1 B)Px − PA−1
1 f(t))dt − A−1

1 G(t, x)dWt,

Qx = −QA−1
1 BPx − QA−1

1 f(t).
(26)

We introduce the notations u := Px, v := Qx. Then x = u + v, and we obtain
the expression for v via u

v = −QA−1
1 Bu − QA−1

1 f, (27)

and a (classical) Ito stochastic differential equation for u

du = {(P ′ − PA−1
1 B)u − PA−1

1 f(t)}dt

−{A−1
1 G(t, (I − QA−1

1 B)u − QA−1
1 f)}dWt. (28)

Definition 3.10. Equation (28) is called an inherent regular SDE (under P ) of
the SDAE (11).

Remark 3.11. If the SDAE (11) is linear (homogeneous, homogeneous au-
tonomous, resp.), then so is the inherent equation (28).

Remark 3.12. imP (t) is an invariant subspace of the inherent regular SDE
(28) in the sense with probability one:

if u(0) ∈ imP (0) then u(t) = P (t)u(t) for all t ∈ J.

Indeed, for z(t) := Q(t)u(t) according to Ito formula, using the identities
Q′ = −P ′, QP = 0 and (28), we have

dz = Q′udt + Qdu

= Q′udt + Q{(P ′ − PA−1
1 B)u − PA−1

1 f(t))dt − PA−1
1 G(u + v, t)dWt}

= (−P ′u + QP ′u)dt

= −PP ′udt

= −P ′Qudt = −P ′zdt.

This is a homogeneous linear explicit differential equation for z(t). Since the
initial condition z(0) = Q(0)u(0) = 0 we get z(t) ≡ 0 a.s., hence u(t) = (P +
Q)u(t) = P (t)u(t) for all t ∈ J .

Furthermore, we note that the equation (27) leads to v(t) = Qv(t) for all
t ∈ J . Clearly, initial value problems for (11) may become solvable only for
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arbitrary u0 ∈ imP (0) and v0 = −Q(0)A−1
1 (0)B0(0)u0 − Q(0)A−1(0)f(0), i.e.

v0 is not arbitrary but is computable via u0. Inspired by the above decoupling
procedure, we state the consistent initial conditions for the SDAE (11) of index
1 as follows





A(0)(x(0) − x0) = 0 a.s.,

x0 is such an R
n-valued random variable that A(0)x0

is F0- measurable, independent of the Wiener process Wt.

(29)

As in the case of deterministic DAE, we have u(0) = P (0)x(0) = P (0)x0 a.s. In
general, unless Q(0)x0 = Q(0)A−1

1 B0(0)u0 + Q(0)A−1
1 f(0) a.s., the consistent

initial value x(0) will differ from the given x0. Thus, solving (28) with the initial
condition (29) and using (27), we get an expression for the solution of SDAE
(11) as follows

x(t) = (I − QA−1
1 B)u(t) − QA−1

1 f(t). (30)

Remark 3.13. If we use canonical projector Qcan then the formulas (27), (28),
(30) can be rewritten as follows

v(t, u) = −Qcanu(t) − QA−1
1 f(t), a.s., t ∈ J, (31)

du = {(P ′ − PA−1
1 B)u − PA−1

1 f(t)}dt

−{A−1
1 G(t, Pcanu − QA−1

1 f(t))}dWt, (32)

and
x(t) = Pcanu(t) − QA−1

1 f(t). (33)

Now we are able to prove our main theorem on the existence and uniqueness of
solution of SDAE of index 1.

Theorem 3.14. Suppose that (11) is an SDAE of index 1 with A, B, f, G being
continuous and G being Lipschitz-continuous with respect to x, then the initial
value problem of (11) with initial condition (29) has a solution process x(·) on
J , that is path-wise unique and is given by the formula

x(t) = (I − QA−1
1 B)u(t) − QA−1

1 f(t),

where u(t) is a solution of regular SDE (28) with initial condition u(0) = P (0)x0.
Moreover, if E|A(0)x0|2n < ∞, where n is a positive integer then the following
inequalities hold

E|x(t)|2n ≤ C0(t) + C1(1 + E|P (0)x0|2n)eCt,

E|x(t)− x(0)|2n ≤ C2(1 + E|P (0)x0|2n)tneCt + C3(t),

where C0(·), C3(·) are continuous functions, C3(0) = 0, and C, C1, C2 are positive
constants.

Proof. We shall prove that under the hypothesis of Theorem 3.14, the regular
inherent SDE (28) has on J a unique solution, which is continuous with prob-
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ability 1. To this end we show that the conditions of Theorem 2.4 are satisfied
for (28).

(i) Lipschitz condition. Put f̂(t, u) := (P ′(t)−PA−1
1 B(t))u−PA−1

1 f(t). Since

A−1
1 is continuous, so is f̂(t, u). We have

|f̂(t, u) − f̂(t, ū)| ≤ |(PA−1
1 B(t) − P ′(t))(u − ū)|

≤ ‖PA−1
1 B − P ′‖∞|u − ū|.

Since J = [0, T ] is compact ‖PA−1
1 B − P ′‖∞ = maxt∈J |PA−1

1 B(t) − P ′(t)| is

finite, hence f̂ is Lipschitz with respect to u.

Now we put Ĝ(t, u) := −A−1
1 G(t, u + v). Note that v(t, u) = −QA−1

1 B(t)u −
QA−1

1 f(t) is continuous with respect to t and Lipschitz with respect to u with
a constant Lv := ‖Qcan‖∞. Since G(t, x) is Lipschitz with respect to x with a
constant LG we have

|Ĝ(t, u)− Ĝ(t, ū)| =

= |A−1
1 (t)G(t, u + v(t, u)) − A−1

1 (t)G(t, ū + v(t, ū))|

≤ |A−1
1 (t)|LG|(u + v(t, u)) − (ū + v(t, ū))|

≤ ‖A−1
1 ‖∞LG|(u − ū) + (v(t, u) − v(t, ū))|

≤ ‖A−1
1 ‖∞LG{|u − ū| + Lv|u − ū|} = ‖A−1

1 ‖∞LG(1 + Lv)|u− ū|.

Hence, Ĝ(t, u) is Lipschitz with respect to u.

(ii) Restriction on growth. We note that, for a continuous function g(t, x) on
compact time-intervals J , the Lipschitz condition with respect to x implies the
usual growth condition, indeed, for all (t, x) ∈ J × R

n we have

|g(t, x)| ≤ (|g(t, x) − g(t, 0)|+ |g(t, 0)|) ≤ max(‖g(·, 0)‖∞, Lg)(1 + |x|),

where Lg denotes the Lipschitz constant of g with respect to the variable x.

(iii) Initial condition. We have P (0)x0 = A−1
1 (0)A(0)x0 so that u(0) :=

P (0)x0 is F0 - measurable and independent of the Wiener process Wt.

Now Theorem 2.4 is applicable to the inherent regular SDE (28) and en-
tails: the inherent regular SDE (28) has a path-wise unique continuous so-
lution process u(t) with the initial condition u(0) = P (0)x0. Consequently,
x = (I − QA−1

1 B)u(t) − QA−1
1 f(t) = Pcan(t)u(t) − QA−1

1 f(t) is a solution of
(11).
Next, we will prove that it is also the unique solution of (11). Indeed, suppose
that x̃ = Pcanũ(t) − Q̃Ã−1

1 f(t) is a solution of (11), where ũ is the unique so-
lution of the inherent regular SDE under P̃ of the SDAE (11) with the initial
condition ũ(0) = P̃ (0)x0.

It is easy to check that z(t) := P̃u(t) is a solution of the inherent regular SDE
under P̃ of the SDAE (11) satisfying the initial condition
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z(0) = P̃ (0)u(0) = P̃ (0)P (0)x0 = P̃ (0)x0.

From the uniqueness of solutions of the inherent regular SDE under P̃ of the
SDAE (11) it follows that z(t) ≡ ũ(t), hence P̃ u(t) ≡ ũ(t). Consequently,
Pcanu(t) ≡ Pcanũ(t).

Notice that, QA−1
1 f does not depend on the choice of the projector Q onto

kerA. This implies that

x(t) = Pcanu(t) − QA−1
1 f = Pcanũ(t) − Q̃Ã−1

1 f = x̃(t).

The uniqueness of solutions of (11) is proved.

Now, if E|A(0)x0|2n < ∞ then

E|u(0)|2n = E|A−1
1 (0)A(0)x0|2n ≤ |A−1

1 (0)|2n
E|A(0)x0|2n < ∞.

In this case Theorem 2.4 asserts that

E(|u(t)|2n) ≤ D(1 + E(|u(0)|2n)eCt,

E(|u(t) − u(0)|2n) ≤ D(1 + E(|u(0)|2n)tneCt,

where t ∈ J , C := 2n(2n+1)K2 and D is a positive constant depending only on
n, K, T . Since x(t) = u(t)+v(t, u), applying the elementary inequality (a+b)n ≤
2n(an + bn) we get

|x(t)|2n ≤ 22n(‖Pcan‖
2n
∞ |u(t)|2n + |QA−1

1 f(t)|2n).

Consequently,

E|x(t)|2n ≤ 22n{‖Pcan‖
2n
∞E|u(t)|2n + |QA−1

1 f(t)|2n}

≤ 22n‖Pcan‖
2n
∞ (1 + E|u(0)|2n)eCt + 22n|QA−1

1 f(t)|2n

= C0(t) + C1(1 + E|u(0)|2n)eCt,

where
C0(t) := 22n|QA−1

1 f(t)|2n, C1 := 22n‖Pcan‖
2n
∞ .

Now, we have

|x(t) − x(0)| = |Pcan(t)u(t) − QA−1
1 f(t)) − (Pcan(0)u(0) − QA−1

1 f(0)|

≤ |Pcan(t)||(u(t)− u(0)|+ |Pcan(t) − Pcan(0)||u(0)|+

+ |QA−1
1 f(t) − QA−1

1 f(0)|.

Applying the elementary inequality (a + b + c)2n ≤ 32n−1(a2n + b2n + c2n), we
get
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E|x(t) − x(0)|2n ≤

≤ 32n−1
E{|Pcan(t)|2n|u(t) − u(0)|2n + |Pcan(t) − Pcan(0)|2n|u(0)|2n+

+ |QA−1
1 f(t) − QA−1

1 f(0)|2n}

≤ 32n−1{‖Pcan‖
2n
∞E|u(t)− u(0)|2n + |Pcan(t) − Pcan(0)|2n

E|u(0)|2n+

+ |QA−1
1 f(t) − QA−1

1 f(0)|2n}

≤ 32n−1{‖Pcan‖
2n
∞D(1 + E|u(0)|2n)tneCt

+ |Pcan(t) − Pcan(0)|2n
E|u(0)|2n + |QA−1

1 f(t) − QA−1
1 f(0)|2n}

= C2(1 + E|u(0)|2n)tneCt + C3(t),

where

C2 = 32n−1D‖Pcan‖
2n
∞ ,

C3(t) = 32n−1{|Pcan(t) − Pcan(0)|2n
E|u(0)|2n + |QA−1

1 f(t) − QA−1
1 f(0)|2n}.

Clearly, C0(·) and C3(·) are continuous, and C3(0) = 0. The theorem is proved.

Remark 3.15. (i) If A(t) is nonsingular for all t ∈ J then, by multiplying
with A−1, (11) becomes a (classical) Ito SDE dx + A−1(B(t)x + f(t))dt +
A−1G(t, x)dWt = 0, t ∈ J and our results reduce to the well known results
for Ito SDE.
(ii) If G(x, t) ≡ 0 then (11) becomes a deterministic DAE. In this case, our
results reduce to the well known results for deterministic DAE (see [4, 5]).

Now we give an example to illustrate our results above.

Example 3.16. Let us consider a SDAE on R
+

(
1 −1
−1 1

)
dx + (

(
1 −1
−1 2

)
x +

(
0
f2

)
)dt +

(
−e−t

e−t

)
dWt = 0, (34)

where f2 is continuous but nondifferentiable function.

For this SDAE we have ker A(t) = {(x, y) ∈ R
2 : x = y}. Choose

Q =

(
0 1
0 1

)
, P =

(
1 −1
0 0

)
,

then A1 =

(
1 −1
−1 2

)
. Clearly, the matrix A1 is nonsingular and imG(t, x) ⊂

imA(t) for all t ≥ 0, hence, the SDAE (34) is of index 1. Furthermore, we have

A−1
1 =

(
2 1
1 1

)
, Qcan = QA−1

1 B =

(
0 1
0 1

)
= Q, and the inherent SDE is

du =

(
−1 1
0 0

)
udt +

(
e−t

0

)
dWt.
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We can solve the inherent SDE for u with the initial condition

u(0) = P (0)x0 =

(
x0

1 − x0
2

0

)
,

where x0 is a random variable that A(0)x0 is independent of the Wiener process
Wt, and we get the solution

u =

(
e−t(x0

1 − x0
2 + Wt)

0

)
.

Obviously, u = Px is an Ito process as it must be since it is a solution of an Ito
SDE. Now, having solved the inherent SDAE we can easily obtain solution of
the SDAE (34), namely,

x = Pcanu − QA−1
1 f =

(
e−t(x0

1 − x0
2 + Wt) − f2

−f2

)
.

In this Example, we have Qx = −QA−1
1 f =

(
−f2

−f2

)
. Clearly, Qx is not an Ito

process since f2 is not differentiable.
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