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Abstract. In this paper we give a survey on recent study of semilinear elliptic degen-

erate differential equations. Here we will discuss the critical exponents phenomenon

for boundary value problems and interior regularities of solutions of various classes of

such equations. Similar problems for nonlinear elliptic equations were studied in [2, 3,

10, 12, 13, 19, 24, 25, 28, 30-32, 44].
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1. Critical Exponents of a Boundary Value Problem for some
Classes of Semilinear Elliptic Degenerate Differential Equations

Boundary value problems for nonlinear elliptic degenerate differential equations
were treated in [21] and then subsequently in [7, 11, 22]. In [39, 40] the critical
exponents phenomenon was observed for a model of the Grushin type operators.
In [37] the result was extended for the following boundary value problem

Lα,βu + g(u) := Δxu + |x|2αΔyu + |x|2βΔzu + g(u) = 0 in Ω, (1)
u = 0 on ∂Ω, (2)

where g(0) = 0, g(u) �≡ 0, g(u) ∈ C(R), α, β ≥ 0, α + β > 0 and
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Δx =
n1∑
i=1

∂2

∂x2
i

, Δy =
n2∑

j=1

∂2

∂y2
j

, Δz =
n3∑
l=1

∂2

∂z2
l

, |x| =

(
n1∑
i=1

x2
i

) 1
2

.

Here (x1, ..., xn1 , y1, ..., yn2 , z1, ..., zn3) = (x, y, z) ∈ Rn1+n2+n3 =: RN and Ω is
a bounded domain with a smooth boundary in RN containing the origin. Let
us put G(u) =

∫ u

0
g(s) ds and ν = (νx1 , ..., νxn1

, νy1 , ..., νyn2
, νz1 , ..., νzn3

) be the
unit outward normal on ∂Ω. Put Ñ = n1 + n2(α + 1) + n3(β + 1).

Lemma 1.1. Let u (x, y, z) be a solution of the boundary value problem (1)-
(2), which belongs to the class H2(Ω). Then the function u (x, y, z) satisfies the
identity

∫
Ω

[
Ñ

n1
G (u) − Ñ − 2

2n1
g (u)u

]
dxdydz =

1
2n1

∫
∂Ω

ν̃α,β ν̃α,β

(
∂u

∂ν

)2

dS,

where

dx = dx1...dxn1 , dy = dy1...dyn2 , dz = dz1...dzn3 ,

ν̃α,β = |νx|2 + |x|2α.|νy|2 + |x|2β .|νz|2,
ν̃α,β = (x, νx) + (α + 1) (y, νy) + (β + 1)(z, νz),

(x, νx) =
n1∑
i=1

xiνxi , (y, νy) =
n2∑

j=1

yjνyj , (z, νz) =
n3∑
l=1

zlνzl
,

|νx|2 =
n1∑
i=1

|νxi |2, |νy|2 =
n2∑

j=1

|νyj |2, |νz |2 =
n3∑
l=1

|νzl
|2.

Theorem 1.2. Let Ω be a Lα,β-star-shaped domain with respect to the point
{0} (i.e. the inequality ν̃α,β > 0 holds almost everywhere on ∂Ω) and g(u) =
λu + |u|γu with λ ≤ 0, γ ≥ 4

Ñ−2
. Then the problem (1)-(2) has no nontrivial

solution u ∈ H2(Ω).

Remark 1.3. If {0} /∈ Ω Theorem 1.2 may not be true. In the case when Ω ∩
{0 ≤ |x| < ε} = {∅} one can prove an existence theorem for any function g(u)
with growth order less than N+2

N−2 (note that Ñ+2
Ñ−2

< N+2
N−2 ) by applying the

classical Sobolev imbedding theorem.

The situation changes drastically if the growth rate of g(u) is less than Ñ+2
Ñ−2

as we shall show in the rest of the paragraph. In order to formulate an existence
theorem for BVP (1)-(2) we need some auxiliary results.

Definition 1.4. By Sp
1 (Ω), 1 ≤ p < ∞, we will denote the set of all functions

u ∈ Lp(Ω) such that

∂u

∂xi
, |x|α ∂u

∂yj
, |x|β ∂u

∂zl
∈ Lp(Ω)
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for all i = 1, . . . , n1, j = 1, . . . , n2, l = 1, . . . , n3. For the norm in Sp
1 (Ω) we take

‖u‖p
Sp

1(Ω)
=
∫
Ω

⎛
⎝|u|p +

n1∑
i=1

∣∣∣∣ ∂u

∂xi

∣∣∣∣
p

+
n2∑

j=1

∣∣∣∣|x|α ∂u

∂yj

∣∣∣∣
p

+
n3∑
l=1

∣∣∣∣|x|β ∂u

∂zl

∣∣∣∣
p
⎞
⎠dxdydz.

If p = 2 we can also define the scalar product in S2
1(Ω) as follows

(u, v)S2
1(Ω) = (u, v)L2(Ω) +

n1∑
i=1

(
∂u

∂xi
,

∂v

∂xi

)
L2(Ω)

+
n2∑

j=1

(
|x|α ∂u

∂yj
, |x|α ∂v

∂yj

)
L2(Ω)

+
n3∑
l=1

(
|x|β ∂u

∂zl
, |x|β ∂v

∂zl

)
L2(Ω)

.

The space Sp
1,0(Ω) is defined as the closure of C1

0 (Ω) in the space Sp
1 (Ω).

Proposition 1.5. Assume that 1 ≤ p < Ñ . Then Sp
1,0(Ω) ⊂ L

Ñp

Ñ−p
−τ (Ω) for

every positive small τ .

Now set k = max{[α], [β]} + 1, where [·] stands for the integral part of the
argument. The following proposition is due to Rothschild and Stein [34].

Proposition 1.6. Assume that 1 ≤ p < ∞. Then Sp
1,0(Ω) ⊂ Lp

1
k+1

(Ω).

By Propositions 1.5, 1.6 we can easily obtain the following two propositions:

Proposition 1.7. Assume that 1 ≤ p < Ñ . Then the imbedding map Sp
1,0(Ω)

into L
Ñp

Ñ−p
−τ (Ω) is compact for every positive small τ .

Proposition 1.8. Assume that p > Ñ . Then Sp
1,0(Ω) ⊂ C0(Ω̄).

Definition 1.9. A function u ∈ S2
1,0(Ω) is called a weak solution of the problem

(1)-(2) if the identity

n1∑
i=1

∫
Ω

∂u

∂xi
· ∂ϕ

∂xi
dxdydz +

n2∑
j=1

∫
Ω

|x|2α ∂u

∂yj
· ∂ϕ

∂yj
dxdydz

+
n3∑
l=1

∫
Ω

|x|2β ∂u

∂zl
· ∂ϕ

∂zl
dxdydz −

∫
Ω

g(u)ϕdxdydz

= 0

holds for every ϕ ∈ C∞
0 (Ω).

Now we can state our existence theorem.
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Theorem 1.10. Assume that g(u) satisfies the following conditions

• g ∈ C0,γ
loc (R), γ ∈ (0, 1],

• |g(u)| ≤ C(1 + |u|m) with 1 < m < Ñ+2
Ñ−2

,

• g(u) = ¯̄o(u) as u −→ 0,
• There exists a constant A such that for |u| ≥ A, G(u) ≤ μg(u)u where μ ∈

[0, 1
2 ).

Then the problem (1)-(2) always has a weak nontrivial solution.

Recently in [36] a generalized Pohozaev identity for a boundary value problem
of a more complicated nonlinear elliptic degenerate differential operator was
obtained. Namely, consider the problem

Pu + g(u) : =
∂2u

∂x2
1

+
∂2u

∂x2
2

+ x2
1x

2
2

∂2u

∂x2
1

+ g(u) = 0 in Ω (3)

u = 0 on ∂Ω, (4)

Lemma 1.11. (Generalized Pohozaev’s Identity) Let u (x1, x2, x3) be a solution
of the boundary value problem (3)-(4), which belongs to the class H2(Ω). Then
the function u (x1, x2, x3) satisfies the identity∫

Ω

[
5G (u) − 3

2
g (u)u

]
dx1dx2dx3

=
1
2

∫
∂Ω

(
∂u

∂ν

)2

(ν2
1 + ν2

2 + x2
1x

2
2ν

2
3 )(x1ν1 + x2ν2 + 3x3ν3) dS.

With the help of Lemma 1.11 it is not difficult to establish:

Theorem 1.12. Let Ω be a P -star-shaped domain with respect to the point {0}
(i. e. the inequality (ν2

1 + ν2
2 + x2

1x
2
2ν

2
3 )(x1ν1 + x2ν2 + 3x3ν3) > 0 holds almost

everywhere on ∂Ω) and g(u) = λu + |u|γu with λ ≤ 0, γ ≥ 4
3 . Then the problem

(3)-(4) has no nontrivial solution u ∈ H2(Ω).

An existence theorem for the problem (3)-(4) in relevant Sobolev spaces is
expected to obtain in the near future.

Note that apart from papers cited above, many works have devoted to the
study of boundary value problems for semilinear elliptic degenerate operators
or related equations. We refer the interested readers to [1, 4-6, 8, 9, 26] and
references therein.
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2. C∞-smoothness of Solutions of Semilinear Polynomial Type
Elliptic Degenerate Differential Equations

In this section we study the C∞-regularity of solutions of the equation

k∑
j=1

X2m
j u + Φ(x, Xιu)|ι|�2m−1 = 0, (5)

where X1, . . . , Xk are real vector fields in a domain Ω ⊂ R
n. Linear polynomial

type operators were investigated in [16, 27, 33]. Regularity of solutions of linear
second order differential equations were studied in [20, 29]. In [20] the following
condition was introduced:
Condition (H)l: there is a natural number l such that commutators {Xι}|ι|�l

span the whole space R
n at every point in Ω.

Results concerning smoothness of solutions of second order semilinear elliptic
degenerate equations were obtained in [47, 46]. The approaches in [47, 46] are
quite different. The following theorem was obtained in [46]:

Theorem 2.1. Let {Xj}k
j=1 satisfy the condition (H)l in Ω and Φ(x, u, τ1, . . . , τk)

be an infinitely differentiable function. If u is a Cnl+2(Ω)-solution of the equation

k∑
j=1

X2
j u + Φ(x, u, X1u, . . . , Xku) = 0,

then u ∈ C∞(Ω).

Remark 2.2. The condition of semilinearity in Theorem 2.3 may be weakened
(see [47]) but it cannot be discarded completely. Indeed, consider in R2

X1 =
∂

∂x1
, X2 =

∂

∂x2
.

It is easy to see that

X2
1 (|x2|2m+1) + (X2

2 (|x2|2m+1))2 = (2m + 1)2(2m)2x4m−2
2 ∈ C∞(R2)

for all m ∈ Z+. However |x2|2m+1 ∈ C2m(R2)\C∞(R2).

The situation for higher order operators (m ≥ 2) becomes much more com-
plicated. We need the following condition:
Condition (K)l: for every i and any K in Ω there exists a constant C such
that

‖Xιu‖s � C

⎛
⎝ k∑

j=1

‖Xju‖s+ i−1
l

+ ‖u‖s

⎞
⎠ ,

for all |ι| = i, u ∈ C∞
0 (K).
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Theorem 2.3. Let the vector fields {Xj}k
j=1 satisfy the conditions (H)l and (K)l

in Ω. Assume that the function Φ(x, τι)|ι|�2m−1 is infinitely differentiable. If u

is a Cnl+2m(Ω)-solution of the Equation (5) then u ∈ C∞(Ω).

In practice it may not be easy to verify the conditions (K)l. Here we give some
examples of systems that satisfy this condition. The following two systems

a) Complete system of vector fields degenerate on a submanifold:

X1 =
∂

∂x1
, . . . , Xn1 =

∂

∂xn1

, X1,1 = xl
1

∂

∂y1
, . . . , X1,n2 = xl

1

∂

∂yn2

, . . . ,

Xn1,1 = xl
n1

∂

∂y1
, . . . , Xn1,n2 = xl

n1

∂

∂yn2

.

b) Noncomplete system of vector fields degenerate on a submanifold:

X1 =
∂

∂x1
, . . . , Xn1 =

∂

∂xn1

, X1,1 = xl
1

∂

∂y1
, . . . , X1,n2 = xl

1

∂

∂yn2

, . . . ,

Xn1,1 = xl
n1

∂

∂y1
, . . . , Xn1,n2 = xl

n1

∂

∂yn2

, Z1 =
∂

∂z1
, . . . , Zn3 =

∂

∂zn3

.

both satisfy the (H)l and (K)l conditions.

Example 2.4. Assume that u ∈ C3k+2m(R3) and

∂2mu

∂x2m
+ x2mk

(∂2mu

∂y2m
+

∂2mu

∂z2m

)
+ cos

(
x(2m−1)k ∂2m−1u

∂y2m−1

)
e

∂2m−1u

∂x2m−1 ∈ C∞(R3).

Then u ∈ C∞(R3).

Example 2.5. Assume that u ∈ C3k+2m(R3) and

∂2mu

∂x2m
+ x2mk ∂2mu

∂y2m
+

∂2mu

∂z2m
+
(∂2m−1u

∂x2m−1

)5(
xk ∂u

∂y

)2

∈ C∞(R3).

Then u ∈ C∞(R3).

When m = 2 and l = 3 the condition (K)l is not necessary as shown in the
following theorem.

Theorem 2.6. Let {Xj}k
j=1 satisfy the condition (H)3 in Ω. Assume that

Φ(x, τι)|ι|�3 is infinitely differentiable. If u is a C3n+4(Ω)-solution of the equa-
tion

k∑
j=1

X4
j u + Φ(x, Xιu)|ι|�3 = 0,

then u ∈ C∞(Ω).
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Example 2.7. Assume that u ∈ C13(R3) and

∂4u

∂x4
+

∂4u

∂y4
+ x4y4 ∂4u

∂z4
+ e

x2y2
∂2u

∂z2 ∂u

∂x
∈ C∞(R3).

Then u ∈ C∞(R3).

Note that other related aspects of semilinear differential equations are also
investigated in many other works (see for example the papers [14, 48] and the
references therein).

3. Analyticity and Gevrey Regularity of Solutions of Semilinear
Elliptic Degenerate Differential Equations

A) Semilinear Grushin’s type differential equations. Analyticity and Gevrey reg-
ularity of solutions of nonlinear perturbations of powers of the Mizohata oper-
ator, a model of the Grushin type operators, the Gilioli-Treves operator were
investigated in [17, 18, 41-43]. Recently, a result concerning analyticity of so-
lutions of general semilinear Grushin type operators was obtained in [23]. Here
we will give main statements and sketches of proofs from [23]. The details will
appear elsewhere. Let z = (x, y) ∈ RN , x ∈ Rn, y ∈ Rk, k + n = N ; and let there
be given an integer m > 0 and a rational positive number δ such that mδ is an
integer. For every non-negative integer t we set

Mt = {(α, β, γ) ∈ Z̄
n
+ × Z̄

k
+ × R̄

n
+ : |α| + |β| ≤ t;

mδ ≥ |γ| ≥ |α| + (1 + δ)|β| − t},
M̃t = {(α, β, γ) ∈ Mt : γ ∈ Z̄

n
+},

M̃0
t = {(α, β, γ) ∈ M̃t : |γ| = |α| + (1 + δ)|β| − t},

M̃00
t = {(α, β, γ) ∈ M̃0

t : |α| + |β| = t}.

We will consider the following equation

Pu + Ψ(z, xγ∂α
x ∂β

y u)(α,β,γ)∈M̃m−1
= 0 in Ω, (6)

where
Pu =

∑
(α,β,γ)∈M̃0

m

aαβγxγ∂α
x ∂β

y u,

aαβγ are complex constants and Ω is a bounded domain containing the origin
in RN with smooth boundary. We consider the following conditions (see [15]):

Condition 1:

P (x, ξ, η) =
∑

(α,β,γ)∈M̃00
m

aαβγxγξαηβ �= 0, ∀(ξ, η) ∈ R
N\{0}, ∀ x �= 0.
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Condition 2: For every |η| = 1 the equation

L(x, ∂x, η)v(x) =
∑

(α,β,γ)∈M̃0
m

aαβγxγ(iη)β∂α
x v(x) = 0

has no nontrivial solution in S(Rn).
The main theorem in [23] is

Theorem 3.1. Assume that t ≥ (N + 2)(1 + δ) + m + 3, Conditions 1, 2 hold.
Suppose that u is a Ct(Ω)-solution of Equation (6) and Ψ is an analytic function
of its arguments. Then u is analytic, too.

The proof of Theorem 3.1 consists of the following two theorems:

Theorem 3.2. Assume that Conditions 1, 2 hold, Ψ is a C∞−function of its
arguments and t ≥ (N +2)(1+δ)+m+3. If u ∈ Ct(Ω) is a solution of Equation
(6) then u ∈ C∞(Ω).

Theorem 3.3. Assume that Conditions 1, 2 hold and Ψ is an analytic function.
If u is a C∞ solution of Equation (6) then u is analytic.

B) Semilinear Kohn-Laplacian operator on the Heisenberg group. The Heisen-
berg group

H
n := (z, t) = (z1, . . . , zn, t) = (x, y, t) = (x1, . . . , xn, y1, . . . , yn, t)

is equipped with the multiplication:

(x, y, t) ◦ (x′, y′, t′) = (x + x′, y + y′, t + t′ + 2(yx′ − xy′)).

On Hn there are left invariant complex vector fields

Zj =
1
2
(Xj − iYj) =

∂

∂zj
+ iz̄j

∂

∂t
, Z̄j =

1
2
(Xj + iYj) =

∂

∂z̄j
− izj

∂

∂t
,

where

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, T =

∂

∂t
; j = 1, . . . , n.

T1,0 of CTHn spanned by Z1, . . . , Zn defines a CR structure on Hn. De-
fine the ∂̄b−complex: ∂̄b : C∞(Λp,q) → C∞(Λp,q+1) and its formal adjoint
ϑb : C∞(Λp,q) → C∞(Λp,q−1), where Λp,q = (ΛpT ∗

1,0) ⊗ (ΛqT̄ ∗
1,0). The Kohn-

Laplacian is defined as

�b = ∂̄bϑb + ϑb∂̄b : C∞(Λp,q) → C∞(Λp,q).

In a specific basis �b can be diagonalized with elements Ln,λ on the diagonal
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Ln,λ = −1
2

n∑
j=1

(Zj Z̄j + Z̄jZj) + iλT = −1
4

n∑
j=1

(X2
j + Y

2
j) + iλT ; λ ∈ C.

In [45] we proved:

Theorem 3.4. Let s ≥ 2, l ≥ 2n + 4 and ±λ �= n, n + 2, n + 4, .... Assume that
Ψ(x, y, t, u, τ1, . . . , τ2n) ∈ Gs and u is a Cl(Ω)-solution of the equation

Ln,λu + Ψ(x, y, t, u, X1u, ..., Xnu, Y1u, ..., Ynu) = 0.

Then u ∈ Gs(Ω).

The condition s ≥ 2 in Theorem 3.4 seems to be redundant comparing with
the results on analyticity of solutions of the linear Kohn-Laplacian on the Heisen-
berg group in [38, 35]. This condition is imposed due to some technical difficulties
arisen in the nonlinear problem. One should expect some improvements in the
near future.
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