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Abstract. A Cayley graph Γ = Cay(G, S) is called normal for G, if GR, the right

regular representation of G, is a normal subgroup of the full automorphism group

Aut(Γ ) of Γ . In this paper we determine the normality of connected and undirected

Cayley graphs of valency three for dihedral groups.
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1. Introduction

Let G be a finite group, and S a subset of G such that 1G �∈ S. The Cayley
digraph Γ = Cay(G, S) of G with respect to S is defined to have vertex set
V (Γ ) = G and arc set E(Γ ) = {(g, sg)|g ∈ G, s ∈ S}. From the definition the
following obvious facts are basic for Cayley digraphs:

(1) The automorphism group Aut(Γ ) of Γ contains GR, the right regular
representation of G, as a subgroup;
(2) Γ is connected if and only if S generates the group G;
(3) Γ is undirected if and only if S = S−1. A Cayley graph Γ = Cay(G, S) is
called normal if the right regular representation of G is a normal subgroup of
the automorphism group of Γ .
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The study of the normality of Cayley graphs is important in many cases, for
example for CI-subsets (see [10]). For abelian groups, Baik et al. [2, 3] classified
the Cayley graphs of valency 3, 4 and 5, which are not normal, and Fang et al.
[7] proved that, for most finite simple groups G, connected cubic Cayley graphs
of G are all normal. Also Wang et al. [9] proved that every finite group G has
a normal Cayley graph unless G ∼= Z4 × Z2 or G ∼= Q8 × Zr

2 (r ≥ 0) and that
every finite group has a normal Cayley digraph. In general, it is known to be
difficult to determine the normality of Cayley graphs. The only groups for which
the complete information about the normality of Cayley graphs is available, are
the cyclic groups of prime order [1] and the groups of order twice a prime [4].
For notation and terminology on permutation groups we refer the reader to [8].

Throughout this paper, we suppose that D2n = 〈a, b|an = b2 = 1, bab−1 =
a−1〉 is a dihedral group, and Γ = Cay(D2n, S) is connected and undirected
cubic Cayley graph. The main result of this paper is the following theorem:

Theorem 1.1. Let G be the dihedral group D2n, and let Γ = Cay(G, S) be a
connected and undirected cubic Cayley graph. Then Γ is normal except one of
the following cases happens:

(1) n = 4, S = {b, ab, a2b}, Γ ∼= K4,4 − 4K2;
(2) n = 8, S = {b, ab, a3b}, Γ ∼= P (8, 3), the generalized Petersen graph;
(3) n = 3, S = {b, ab, a2b}, Γ ∼= K3,3;
(4) n = 7, S = {b, ab, a3b}, Γ ∼= S(7), the Heawood’s graph.

2. Preliminaries

In this section we give some basic facts on Cayley graphs, which will be useful
for our purpose. Now we have the first lemma from [10].

Lemma 2.1. [10, Proposition 1.5] Let Γ = Cay(G, S), and A = Aut(Γ ). Then
Γ is normal if and only if A1 = AutG, S), where A1 is the stabilizer of 1 in A.

Lemma 2.2. [6, Lemma 4.4] All 1-regular cubic Cayley graphs on the dihedral
group D2n are normal.

Lemma 2.3. [5, Lemma 3.2] Let Γ be a connected cubic graph on dihedral group
D2n, and let B1 and B2 be two orbits of C = 〈a〉. Also let G∗ be the subgroup
of G fixing setwise B1 and B2, respectively. If G∗ acts unfaithfully on one of B1

and B2, then Γ ∼= K3,3.

Let CG be the core of C = 〈a〉 in G = D2n. By assuming the hypothesis in
the above lemma we have the following results:

Lemma 2.4. [5, Lemma 3.5] If CG is a proper subgroup of C, then Γ is isomor-
phic to Cay(D14, {b, ab, a3b}) or Cay(D16, {b, ab, a3b}).
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Lemma 2.5. [5, Lemma 3.6] If CG = C, then Γ is isomorphic to Cay(D2n,
{b, ab, akb}), where k2 − k + 1 = 0 (mod n), and n ≥ 13.

Let G = D2n. Then the elements of G are ai and aib, where i = 0, 1, ..., n− 1.
All aib are involutions, and ai is an involution if and only if n is even and i = n

2 .
Finally in this section we obtain a preliminary result restricting S for a cubic
Cayley graphs of Cay(D2n, S). We can easily prove the following lemma:

Lemma 2.6. Let Γ = Cay(G, S) be a Cayley graphs of G = D2n. Then Γ is
cubic, connected and undirected if and only if one of the following conditions
holds:

(1) When n is odd, we have:

So1 = {aib, ajb, akb}, 0 ≤ i < j < k < n,

So2 = {ai, a−i, ajb}, 0 < i <
n

2
, 0 ≤ j < n;

(2) When n is even, we have:

Se1 = {aib, ajb, akb}, 0 ≤ i < j < k < n,

Se2 = {ai, a−i, ajb}, 0 < i <
n

2
, 0 ≤ j < n,

Se3 = {an/2, ai, a−i}, 0 < i <
n

2
,

Se4 = {an/2, aib, ajb}, 0 ≤ i < j < n.

Let X and Y be two graphs. The direct product X × Y is defined as the
graph with vertex set V (X × Y ) = V (X)× V (Y ) such that for any two vertices
u = [x1, y1] and v = [x2, y2] in V (X × Y ), [u, v] is an edge in X × Y whenever
x1 = x2 and [y1, y2] ∈ E(Y ) or y1 = y2 and [x1, x2] ∈ E(X). Two graphs are
called relatively prime if they have no nontrivial common direct factor. The
lexicographic product X [Y ] is defined as the graph with vertex set V (X [Y ]) =
V (X) × V (Y ) such that for any two vertices u = [x1, y1] and v = [x2, y2] in
V (X [Y ]), [u, v] is an edge in X [Y ] whenever [x1, x2] ∈ E(X) or x1 = x2 and
[y1, y2] ∈ E(Y ). Let V (Y ) = {y1, y2, ..., yn}. Then there is a natural embedding
nX in X [Y ], where for 1 ≤ i ≤ n, the ith copy of X is the subgraph induced on
the vertex subset {(x, yi)|x ∈ V (X)} in X [Y ]. The deleted lexicographic product
X [Y ] − nX is the graph obtained by deleting all the edges of (this natural
embedding of) nX from X [Y ].

3. Proof of Theorem 1.1

In order to prove Theorem 1.1, we must determine all non-normal connected
undirected cubic Cayley graphs for dihedral group D2n. If n = 2, then dihedral
group D4 is isomorphic to Z2 × Z2, and so it is easy to show that the cubic
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Cayley graph Cay(D4, S) is normal. So from now we assume that n ≥ 3. Also,
since Cay(D2n, S) when S = Se3 is disconnected, thus we do not consider this
case for the proof of the main theorem. Moreover Γ2(1) is the subgraph of Γ
with vertex set 1∪S ∪S2 and edge set {[1, s], [s, ts]|s, t ∈ S}. First we prove the
following lemma which will be used in the proof of Theorem 1.1:

Lemma 3.1. Let G be the dihedral group D2n with n ≥ 3 and Γ = Cay(G, S)
be a cubic Cayley graph. Then

(a) If S is Se4 and Γ is connected, then S ∩ (S2 − {1}) = ∅ holds;
(b) If S is So2 or Se2 and Γ is connected, then S∩(S2−{1}) = ∅ if n > 3. For
n = 3 and S is So2 or Se2 , we have S ∩ (S2 − {1}) �= ∅ and Γ = Cay(D6, S)
is connected and normal;
(c) If S is So1 or Se1 , then S ∩ (S2 − {1}) = ∅ always holds.

Proof. (a) Suppose first that S = Se4 = {an/2, aib, ajb}. Then

S2 − {1} = {an/2+ib, an/2+jb, ai−j , aj−i}.

We show that S∩(S2−{1}) = ∅. Suppose to the contrary that S∩(S2−{1}) �= ∅.
We may suppose that ai−j = aj−i = an/2. Now we have Γ = nK1[Y ], where
Y = K4. Hence Γ is not connected, which is a contradiction.

(b) Now suppose that S = So2 or S = Se2 , that is, S = {ai, a−i, ajb}.
For n > 3, we have S2 − {1} = {a2i, a−2i, ai+jb, aj−ib}. We claim that
S ∩ (S2 − {1}) = ∅. Suppose to the contrary that S ∩ (S2 − {1}) �= ∅. We
may suppose that a2i = a−i. Then Γ = mK1[Y ], where Y =Cay(S, 〈S〉) and
|D2n : 〈S〉| = m. So Γ is not connected, which is a contradiction. Now let
n = 3. Then S = {a, a−1, b}, {a, a−1, ab}, or {a, a−1, a2b}, respectively. There-
fore S2 − 1 = {a2, ab, a2b, a}, {a2, a2b, a, b}, or {a2, b, a, ab}, respectively. Ob-
viously Γ is connected, and G ∼= D6. Also we have S ∩ (S2 − {1}) �= ∅, and
Cay(D6, {a, a−1, b}) ∼= Cay(D6, {a, a−1, ab}) ∼= Cay(D6, {a, a−1, a2b}). Let σ
be an automorphism of Γ = Cay(D6, {a, a−1, b}), which fixes 1 and all elements
of S. Since aσ = a, and (a2)σ = a2, we have {1, a2, a2b}σ = {1, a2, a2b} and
{1, a, ab}σ = {1, a, ab}. Therefore (ab)σ = ab, and (a2b)σ = a2b, and hence σ
fixes all elements of S2. Thus σ = 1, and A1 acts faithfully on S. So we may
view A1 as a permutation group on S. Now let α be an arbitrary element of
A1. Since 1α = 1, we have {a, a2, b}α = {a, a2, b}. If bα = a or bα = a2, then
{1, ab, a2b}α = {1, a2b, a2} or {1, ab, a2b}α = {1, ab, a}, which is a contradiction.
Thus bα = b, and A1 is generated by the permutation (a, a2). So |A1| = 2.
On the other hand, β : atbl → a2tbl is an element of Aut(G, S). Therefore
|A1| = |Aut(G, S)| = 2, and hence by Lemma 2.1, Γ is normal.

(c) Finally, suppose that S = So1 or S = Se1 , that is, S = {aib, ajb, akb}.
Then S2 −{1} = {ai−j, aj−i, ai−k, ak−i, aj−k, ak−j}. Clearly S ∩ (S2 −{1}) = ∅.
The results now follow.

Now we complete the proof of Theorem 1.1. First assume that S = Se4 . Since
Γ is connected, by Lemma 3.1 (a), S ∩ (S2 − {1}) = ∅. Now consider the graph



The Normality of Cubic Cayley Graphs for Dihedral Groups 47

Γ2(1), and let σ be an automorphism of Γ = Cay(D2n, {an/2, aib, ajb}), which
fixes 1 and all elements of S. Since (an/2)σ = an/2, (aib)σ = aib, and (ajb)σ =
ajb, we have {1, an/2+ib, an/2+jb}σ = {1, an/2+ib, an/2+jb}, {1, an/2+ib, aj−i}σ =
{1, an/2+ib, aj−i}, and {1, an/2+jb, ai−j}σ = {1, an/2+jb, ai−j}, respectively. The-
refore (an/2+ib)σ = an/2+ib, (an/2+jb)σ = an/2+jb, (aj−i)σ = aj−i, and
(ai−j)σ = ai−j , and hence σ fixes all elements of S2. Because of the connectivity
of Γ , this automorphism is the identity in Aut(Γ ). Therefore A1 acts faithfully
on S. So we may view A1 as a permutation group on S. Now let α be an arbi-
trary element of A1. Since 1α = 1, we have {an/2, aib, ajb}α = {an/2, aib, ajb}. If
(an/2)α = aib, or (an/2)α = ajb, then {1, an/2+ib, an/2+jb}α = {1, an/2+ib, aj−i},
or {1, an/2+ib, an/2+jb}α = {1, an/2+jb, ai−j}, respectively. Now again we con-
sider Γ2(1). In this subgraph an/2+ib, and an/2+jb have valency 2, and ai−j , aj−i

have valency 1. This implies a contradiction. Thus (an/2)α = an/2, and A1 is gen-
erated by the permutation (aib, ajb). So |A1| = 2. On the other hand, β : atbl −→
a−t(ai+jb)l is an element of Aut(G, S). Therefore |A1| = |Aut(G, S)| = 2, and
hence by Lemma 2.1, Γ is normal.

Now assume that S = Se2 = {ai, a−i, ajb}, or S = So2 = {ai, a−i, ajb}. If
n = 3, then by Lemma 3.1 (b), Γ = Cay(D6, S), and Γ is normal. Now if
n > 3, then again by Lemma 3.1 (b), S ∩ (S2 − {1}) = ∅. Considering the
graph Γ2(1), with the same reason as before if an automorphism of Γ fixes
1 and all elements of S, then it also fixes all elements of S2. Because of the
connectivity of Γ , this automorphism is the identity in Aut(Γ ). Therefore A1

acts faithfully on S. So we may view A1 as a permutation group on S. We can
easily see that A1 is generated by the permutation (ai, a−i). So |A1| = 2. On
the other hand, σ : atbl −→ a−t(a2jb)l is an element of Aut(G, S). Therefore
|A1| = |Aut(G, S)| = 2, and hence by Lemma 2.1, Γ is normal.

Finally assume that S = Se1 = {aib, ajb, akb}, or S = So1 = {aib, ajb, akb}.
Up to graph isomorphism S = {b, ajb, akb}, where < j, k >= Z∗

n. In this case,
Γ is a bipartite graph with the partition B = B1 ∪ B2, where B1 and B2 are
just two orbits of C = 〈a〉 and we assume the block B1 contains 1. Let G∗ be
the subgroup of G fixing setwise B1 and B2, respectively. If G∗ acts unfaithfully
on one of B1 and B2, then by Lemma 2.3, Γ ∼= K3,3, and σ = (b, ab) is not in
Aut(G, S) but in A1 and so Γ is not normal. Let G∗ acts faithfully on B1 and B2.
Then n �= 3. If n = 4, then Γ is isomorphic to K4,4−4K2, and σ = (b, ab)(a2, a3)
is not in Aut(G, S) but in A1 and so Γ is not normal. From now on we assume
n ≥ 5. Now suppose that CG, the core of C in G, is a proper subgroup of C.
Then by Lemma 2.4, Γ ∼= Cay(D14, {b, ab, a3b}) or Γ ∼= Cay(D16, {b, ab, a3b}).
For the first case σ = (a, a2, a3, a6)(a4, a5)(a2b, a6b, a5b, a4b)(ab, b) is not in
Aut(G, S) but in A1 and so Γ is not normal. For the second case σ =
(a, a7, a6)(a2, a5, a3)(b, ab, a3b)(a4b, a5b, a7b) is not in Aut(G, S) but in A1 and
so Γ is not normal. Finally we suppose that CG = C. Then by Lemma 2.5, Γ
is isomorphic to the Cay(D2n, {b, ab, akb}), where k2 − k + 1 ≡ 0( mod n) and
n ≥ 13. The Cayley graph Γ is 1-regular and by Lemma 2.2, Γ is normal. The
result now follows.
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