Vietnam Journal of MATHEMATICS © VAST 2008

Hadamard Gap Theorem and Overconvergence for Faber-Erokhin Expansions

Patrice Lassère and Nguyen Thanh Van

Institut de Mathématiques, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France

Received September 11, 2007

Abstract. We extend the Hadamard-Fabry gap theorem for power series to Faber-Erokhin ones.

1991 Mathematics Subject Classification: 30B50, 30B40.

Key words: Expansions, Faber-Erokhin basis, Hadamard Theorem, Overconvergence, Schauder basis, Change of sign, Gap.

1. A Short Survey on Faber-Erokhin Basis

Let $\Omega \subset \mathbb{C}$ be a simply connected domain, $K \subset \Omega$ a compact set such that $\Omega \setminus K$ is doubly connected. Under these hypothesis, we know that (up to a rotation) there exists a biholomorphic mapping

$$\Phi: \Omega \setminus K \longrightarrow C(0; 1, R) = \{z \in \mathbb{C}: 1 < |z| < R\},\$$

where R > 1 is the modulus of the condensor $\mathcal{C} = (\Omega, K)$. Let

$$h_{\Omega,K}(z) := \sup\{u(z): u \in SH(\Omega): u < 1, u_{/K} < 0\}$$

be the relative extremal function and let $\Omega_{\alpha} = \{z \in \Omega : h_{\alpha,K}(z) < \alpha\}$ be its level sets $(0 < \alpha < 1)$; we have

$$\Omega_{\alpha} = \Phi^{-1}(D(0, R^{\alpha})) = \{z \in \mathbb{C} : |z| < R^{\alpha}\}, \forall \alpha \in]0, 1[.$$

• Let $f \in \mathcal{O}(\Omega)$, then $f \circ \Phi^{-1}$ is holomorphic on the annulus C(0; 1, R), we have by the Laurent expansion

$$f \circ \Phi^{-1}(\xi) = \sum_{-\infty}^{+\infty} c_n \xi^n, \ 1 < |\xi| < R,$$
 (1)

where

$$c_n = \frac{1}{2i\pi} \int_{|\zeta| = \rho} \frac{f \circ \Phi^{-1}(\zeta)}{\zeta^{n+1}} d\zeta, \ 1 < \rho < R, \ n \in \mathbb{Z},$$
 (2)

and the series converges normally on compact sets of the annulus. Changing $\xi \in C(0; 1, R)$ by $\Phi(z) \in \Omega \setminus K$, the formula (1) becomes

$$f(z) = \sum_{-\infty}^{+\infty} c_n \Phi(z)^n, \quad z \in \Omega \setminus K$$

with normal convergence on compact sets of $\Omega \setminus K$.

But now, unlike $f \circ \Phi$, the function f is holomorphic on the whole Ω and by Cauchy formula we have for all $\alpha \in]0,1[$ and $z \in \Omega_{\alpha}$

$$f(z) = \frac{1}{2i\pi} \int_{\partial \Omega_{\alpha}} \frac{f(t)}{t - z} dt = \sum_{-\infty}^{+\infty} c_n \cdot \frac{1}{2i\pi} \int_{\partial \Omega_{\alpha}} \frac{\Phi(t)^n}{t - z} dt.$$

So

$$f(z) = \sum_{-\infty}^{+\infty} c_n E_n(z), \quad \forall z \in \Omega$$
 (3)

and

$$E_n(z) = \frac{1}{2i\pi} \int_{\partial \Omega_{\alpha}} \frac{\Phi(t)^n}{t - z} dt, \tag{4}$$

where $\alpha \in]0,1[$ and $z \in \Omega_{\alpha}$.

- In the exceptional case where Φ extends to a conformal mapping of $\overline{\mathbb{C}} \setminus K$ with $\Phi(\infty) = \infty$, then $E_n = 0$, $\forall n < 0$. With (4) it is easy to see that E_n , $(n \geq 0)$ is a polynomial of degree n, they are the classical Faber polynomials [5]. The Faber polynomial sequence $(E_n)_0^\infty$ is a basis of $\mathcal{O}(U)$ for all open level set U of the Green function $G_K = G(\cdot, \overline{\mathbb{C}} \setminus K, \infty)$ associated to K.
- ullet The pioneer work of Erokhin [2, 5] extends the notion of Faber polynomial to a regular condensor (Ω,K) , where $\Omega\setminus K$ is a doubly connected domain. His work is built on a "fundamental lemma" about the decomposition of a conformal map onto an annulus:

Erokhin's Fundamental Lemma 1 Every conformal map Φ from a doubly connected domain $\Omega \setminus K$ onto an annulus $C(0,1,R) = \{ w \in \mathbb{C} : 1 < |w| < R \}$ can be decomposed into $\Phi = F_2 \circ F_1$ where F_1 and F_2 are conformal maps between simply connected domains, precisely:

1. F_1 maps conformly the simply connected domain $\overline{\mathbb{C}} \setminus K$ onto a simply connected domain $\overline{\mathbb{C}} \setminus L$ where L is compact in \mathbb{C} . The image by F_1 of the boundary of $\Omega : F_1(\partial\Omega)$ defines a simply connected domain Ω_1 which contains L.

2. F_2 is the biholomorphic map F_2 : $\Omega_1 \to D(0,R)$ such that $F_2(\partial L) = C(0,1)$.

So we are in the following situation:

• The Faber-Erokhin basis: With this decomposition, the Faber-Erokhin basis is defined by analogy with the Faber one by formula (4) with $n \in \mathbb{N}$ only

$$E_n(z) = \frac{1}{2i\pi} \int_{\partial \Omega} \frac{\Phi(t)^n}{t-z} dt, \quad \forall \alpha \in]0,1[\text{ and } z \in \Omega_{\alpha}.$$

Erokhin shows that the sequence $(E_n)_{n\geq 0}$ is a common basis for the spaces $\mathcal{O}(\Omega)$, $\mathcal{O}(\Omega_{\alpha})$, $(0 < \alpha < 1)$ but generally $E_n \not\equiv 0$ when n < 0. The trivial expansion (3) is then transformed in

$$f(z) = \sum_{n=0}^{+\infty} a_n E_n(z), \quad z \in \Omega,$$

where the a_n are in general new coefficients given by an integral formula usually more complicated than (2). Precisely, we have for all $f \in \mathcal{O}(\Omega_{\alpha})$, $0 < \rho < \alpha < 1$:

$$a_n = \frac{1}{2i\pi} \int_{|\zeta|=\rho} \frac{\varphi_f(\zeta)}{\zeta^{n+1}} d\zeta$$

with for all $|\zeta| < R^{\rho}$

$$\varphi_f(\zeta) = \sum_{n=0}^{+\infty} a_n \zeta^n = \frac{1}{2i\pi} \int_{|\tau| = R^\rho} \frac{f(\Phi^{-1}(\tau))(F_2^{-1})'(\tau)}{F_2^{-1}(\tau) - F_2^{-1}(\zeta)} d\tau.$$
 (5)

2. Hadamard Type Results for Faber-Erokhin Expansions

Let f be a holomorphic function on the level set Ω_{α} such that $f \notin \mathcal{O}(\Omega_{\gamma})$, for all $\alpha < \gamma < 1$. Let $f = \sum_{n \geq 0} a_n E_n$ be its expansion in the Faber-Erokhin basis, so the power series

$$\varphi_f(\zeta) := \sum_{n=0}^{\infty} a_n \zeta^n$$

has R^{α} as radius of convergence. Moreover, (5) implies that for all $0 < \beta < \alpha$ and $|\zeta| < R^{\beta}$:

$$\varphi_f(\zeta) = \sum_{n=0}^{+\infty} a_n \zeta^n = \frac{1}{2i\pi} \int_{|\tau| = R^{\beta}} \frac{f(\Phi^{-1}(\tau))(F_2^{-1})'(\tau)}{F_2^{-1}(\tau) - F_2^{-1}(\zeta)} d\tau.$$
 (6)

Theorem 2.1. f extends holomorphically across a point $z_0 \in \partial \Omega_{\alpha}$ if and only if φ_f extends holomorphically across the point $\zeta_0 := \Phi(z_0) \in C(0, R^{\alpha})$.

Proof. • Necessary condition. Suppose that there exists a neighborhood $V_{z_0} \subset \Omega \setminus K$ of z_0 such that f extends holomorphically on $\Omega_\alpha \cup V_{z_0}$. Let r > 0 be such that

$$D(\zeta_0, r) \subset\subset \Phi(V_{z_0}) \subset C(0; 1, R),$$

and choose $0 < \beta < \alpha$ sufficiently close to α so that

$$D(\zeta_0, r) \cap D(0, R^{\beta}) \neq \emptyset.$$

Now, consider the oriented path γ_{z_0} below

Then the function defined by the formula

$$\psi(\zeta) = \frac{1}{2i\pi} \int_{\gamma_{z_0}} \frac{f(\Phi^{-1}(\tau))(F_2^{-1})'(\tau)}{F_2^{-1}(\tau) - F_2^{-1}(\zeta)} d\tau, \quad \zeta \in D(\zeta_0, r) \cup D(0, R^{\beta}). \tag{7}$$

is clearly holomorphic on $D(\zeta_0, r) \cup D(0, R^{\beta})$.

On the other hand by the Cauchy formula

$$\frac{1}{2i\pi} \int_{C(\zeta_0,r)^+} \frac{f(\Phi^{-1}(\tau))(F_2^{-1})'(\tau)}{F_2^{-1}(\tau) - F_2^{-1}(\zeta)} d\tau = 0, \quad \forall \, \zeta \in D(\zeta_0,r).$$
 (8)

Formula (8) combined with (6) and (7) assures that

$$\psi = \varphi_f$$
 on $D(0, R^{\beta}) \cap D(\zeta_0, r) \neq \emptyset$,

so we succed to extends holomorphically φ_f across ζ_0 .

• Sufficient condition. The proof is the same; it is built on the dual formula of (5)

(5')
$$f(z) = \sum_{n=0}^{+\infty} a_n E_n(z) = \frac{1}{2i\pi} \int_{\partial \Omega_{\beta}} \frac{\varphi_f(\Phi(t))}{t - z} dt, \quad \forall z \in \Omega_{\beta}.$$

Applications. By contradiction, we have the following property: $f \in \mathcal{O}(\Omega_{\alpha})$ has Ω_{α} as domain of holomorphy if and only if φ_f has the disc $D(0, R^{\alpha})$ as domain of holomorphy.

So we are able to extend for expansions following the Faber-Erokhin basis some theorems on the boundary behaviour of a power series. For example, we have

• (Hadamard): Let $f(z) = \sum_{0}^{+\infty} a_{n_k} E_{n_k}(z) \in \mathcal{O}(D_{\alpha})$ be such that $f \notin \mathcal{O}(D_{\beta})$, $\forall \beta > \alpha$. If there exists a constant c > 0 such that $n_{k+1} - n_k > c \cdot n_k$, $\forall k \in \mathbb{N}$, then D_{α} is the domain of holomorphy of f.

Or in a stronger form, we have

• (Fabry-Pólya): Let $f(z) = \sum_{0}^{+\infty} n_k E_{n_k}(z) \in \mathcal{O}(D_{\alpha})$ be such that $f \notin \mathcal{O}(D_{\beta})$, $\forall \beta > \alpha$. If $\lim_k \frac{n_k}{k} = \infty$ then Ω_{α} is the domain of holomorphy of f. Conversely (Pólya), every increasing sequence of integers $n_0 < n_1 < \ldots$ such that every series $\sum_{0}^{+\infty} a_{n_k} E_{n_k}$ has Ω_{α} as domain of holomorphy, satisfies $\lim_k \frac{n_k}{k} = \infty$.

For example, the function $f(z) = \sum_{0}^{+\infty} R^{-2^{n}\alpha} E_{2^{n}}(z)$ (Hadamard) or $g(z) = \sum_{0}^{+\infty} R^{-n^{2}\alpha} E_{n^{2}}(z)$ (Fabry) admits Ω_{α} as domain of holomorphy but this is not the cases for $h(z) = \sum_{0}^{+\infty} R^{-n\alpha} E_{n}(z)$ which presents a unique singular point (which of course is $\Phi^{-1}(1)$) on the boundary $\partial \Omega_{\alpha}$.

3. The Case of an Arbitrary Common Basis.

With the same hypothesis on the pair (K, Ω) let us consider now an arbitrary common basis $(\varphi_n)_n$ for the spaces $\mathcal{O}(K)$, $\mathcal{O}(\Omega)$. It extends as a common basis of the intermediate spaces $\mathcal{O}(\Omega_{\alpha})$, $(0 < \alpha < 1)$. This is not difficult to see that the preceding results are no longer true for any common basis $(\varphi_n)_n$: consider

the simple example where $K = \overline{D(0, 1/2)} \subset \Omega = D(0, 2)$. This condensor admits as level sets the discs $\Omega_{\alpha} = D(0, 2^{\frac{3\alpha}{2} + \frac{1}{2}})$. Consider the common basis

$$\varphi_n(z) = z^{\pi(n)}, \quad n \in \mathbb{N}$$

where $\pi: \mathbb{N} \to \mathbb{N}$ is a bijection such that $\pi(2^n) = 2n$. Then the function $f(z) = \sum_{n=0}^{+\infty} \varphi_{2n}(z)$ satisfies the Hadamard lacunary condition but

$$f(z) = \sum_{0}^{+\infty} \varphi_{2n}(z) = \sum_{0}^{+\infty} z^{2n} = \frac{1}{1 - z^2}$$

holomorphic on $D(0,1) = \Omega_{1/3}$ admits $\mathbb{C} \setminus \{\pm 1\}$ as domain of holomorphy.

Remark 3.1. [1], J. A. Adepoju proved the Fabry-type gap theorem for Faber polynomials, his proof followed the classical one for entire series and is rather complicated.

In [4] we extend Fatou-type theorems to all common bases of the pair $(\mathcal{O}(K), \mathcal{O}(\Omega))$ in a more general situation.

4. Overconvergence

In the spirit of the proof of Theorem 2.1, the formulas (5) and (5') lead us to transport overconvergence phenomena to Faber-Erokhin series. Let $f = \sum_{0}^{+\infty} a_n E_n \in \mathcal{O}(\Omega_{\alpha})$. If f is not holomorphic on larger level sets Ω_{β} , $\alpha < \beta$, then we will say that the series $\sum_{0}^{+\infty} a_n E_n$ is overconvergent if there exists a subsequence $(m_k)_k$ such that the corresponding partial sums

$$s_{m_k}(f,z) := \sum_{\nu=0}^{m_k} a_{\nu} E_{\nu}(z),$$

converge compactly in a domain that contains properly Ω_{α} .

The unicity of coefficients in the Faber-Erokhin expansion and formula (5) give

$$s_{m_k}(\varphi_f,\zeta) := \sum_{\nu=0}^{m_k} a_{\nu} z^{\nu} = \frac{1}{2i\pi} \int_{|\tau|=R^{\beta}} \frac{s_{m_k}(f,\Phi^{-1}(\tau))(F_2^{-1})'(\tau)}{F_2^{-1}(\tau) - F_2^{-1}(\zeta)} d\tau. \tag{9}$$

Suppose now that the sequence $(s_{m_k}(f,\cdot))_k$ converges uniformly on a neighborhood V_{z_0} of a boundary point $z_0 \in \partial \Omega_{\alpha}$, then as in Theorem 2.1, we have

$$\begin{split} &\sup_{\zeta \in D(\zeta_0, r)} |s_{m_k}(\varphi_f, \zeta) - s_{m_{k'}}(\varphi_f, \zeta)| \\ &\leq \sup_{\zeta \in V_{z_0}} |s_{m_k}(f, z) - s_{m_{k'}}(f, z)| \times \int_{\gamma_{z_0}} \frac{|F_2^{-1})'(\tau)| \cdot |d\tau|}{|F_2^{-1}(\tau) - F_2^{-1}(\zeta)|} \\ &\leq C \cdot \sup_{\zeta \in V_{z_0}} |s_{m_k}(f, z) - s_{m_{k'}}(f, z)| \end{split}$$

where, as before, $\zeta_0 = \Phi(z_0)$, $D(z_0, r) \subset \Phi(V_{z_0})$. This implies that $(s_{m_k}(\varphi_f, \cdot))_k$ is a uniformly convergent Cauchy sequence on the disc $D(\zeta_0, r)$: the series $\sum_0^{+\infty} a_k z^k$ is overconvergent. By duality, the overconvergence of $\sum_0^{+\infty} a_k z^k$ implies the one for $\sum_0^{+\infty} a_k E_k$.

As an application, we have the following Ostrowski Theorem ([6]) for Faber-Erokhin expansions: let $f = \sum_{n \geq 0} a_n E_n \in \mathcal{O}(\Omega_{\alpha})$ be such that f is not holomorphic on larger level sets Ω_{β} , $\alpha < \beta$; suppose that there is an infinite number of gaps in the sequence of coefficients as follows: there exist $\nu > 0$, sequences of integers $(p_k)_k$, $(q_k)_k$ such that $a_n = 0$ for $p_k < a_n < q_k$ and $q_k \geq (1+\nu)p_k$ for all k. Then, the sequence of partial sums $(\sum_{j=0}^{p_k} a_j E_j(z))_k$ is uniformly convergent on compact sets of a domain which contains all the regular points of f on the boundary of Ω_{α} .

References

- J. A. Adepoju, Fabry-type gap theorem for Faber series, Demonstration Math. 21 (1988), 573–588.
- 2. V.D. Erokhin, Best linear approximation of functions analytically continuable from a given continuum into a given region, *Uspehi Math. Nauk* 23 (1968), 93–135.
- J. P. Kahane, A. Melas, and V. Nestoridis, Sur les séries de Taylor universelles, C.R. Acad. Sci. Paris, Série I, 330 (2000), 1003–1006.
- P. Lassère and T. V. Nguyen, Gaps and Fatou Theorem for series in Schauder basis of holomorphic functions, Complex Variables and Elliptic Equations 51 (2006), 161–164.
- 5. P. K. Suetin, Series of Faber Polynomials, Gordon and Breach Science Publishers, 1998.
- 6. E. C. Titchmarsh, Theory of Functions, Oxford University Press, 1976.