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1. A Short Survey on Faber-Erokhin Basis

Let Ω ⊂ C be a simply connected domain,K ⊂ Ω a compact set such that Ω\K
is doubly connected. Under these hypothesis, we know that (up to a rotation)
there exists a biholomorphic mapping

Φ : Ω \K −→ C(0 ; 1, R) = {z ∈ C : 1 < |z| < R},

where R > 1 is the modulus of the condensor C = (Ω,K). Let

hΩ,K(z) := sup{u(z) : u ∈ SH(Ω) : u ≤ 1, u/K ≤ 0}

be the relative extremal function and let Ωα = {z ∈ Ω : hα,K(z) < α} be its
level sets (0 < α < 1) ; we have

Ωα = Φ−1(D(0, Rα) = {z ∈ C : |z| < Rα}), ∀α ∈]0, 1[.

• Let f ∈ O(Ω), then f ◦ Φ−1 is holomorphic on the annulus C(0; 1, R), we
have by the Laurent expansion
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f ◦ Φ−1(ξ) =
+∞∑

−∞
cnξ

n, 1 < |ξ| < R, (1)

where

cn =
1

2iπ

∫

|ζ|=ρ

f ◦ Φ−1(ζ)
ζn+1

dζ, 1 < ρ < R, n ∈ Z, (2)

and the series converges normally on compact sets of the annulus. Changing
ξ ∈ C(0; 1, R) by Φ(z) ∈ Ω \K, the formula (1) becomes

f(z) =
+∞∑

−∞
cnΦ(z)n, z ∈ Ω \K

with normal convergence on compact sets of Ω \K.
But now, unlike f ◦ Φ, the function f is holomorphic on the whole Ω and by
Cauchy formula we have for all α ∈]0, 1[ and z ∈ Ωα

f(z) =
1

2iπ

∫

∂Ωα

f(t)
t − z

dt =
+∞∑

−∞
cn · 1

2iπ

∫

∂Ωα

Φ(t)n

t− z
dt.

So

f(z) =
+∞∑

−∞
cnEn(z), ∀ z ∈ Ω (3)

and

En(z) =
1

2iπ

∫

∂Ωα

Φ(t)n

t − z
dt, (4)

where α ∈]0, 1[ and z ∈ Ωα.
• In the exceptional case where Φ extends to a conformal mapping of C\K with
Φ(∞) = ∞, then En = 0, ∀n < 0. With (4) it is easy to see that En, (n ≥ 0)
is a polynomial of degree n, they are the classical Faber polynomials [5]. The
Faber polynomial sequence (En)∞0 is a basis of O(U ) for all open level set U of
the Green function GK = G(·,C \K,∞) associated to K.
• The pioneer work of Erokhin [2, 5] extends the notion of Faber polynomial to a
regular condensor (Ω,K), where Ω \K is a doubly connected domain. His work
is built on a “fundamental lemma” about the decomposition of a conformal map
onto an annulus:

Erokhin’s Fundamental Lemma 1 Every conformal map Φ from a doubly
connected domain Ω \K onto an annulus C(0, 1, R) = {w ∈ C : 1 < |w| < R}
can be decomposed into Φ = F2◦F1 where F1 and F2 are conformal maps between
simply connected domains, precisely:

1. F1 maps conformly the simply connected domain C\K onto a simply connected
domain C \ L where L is compact in C. The image by F1 of the boundary of
Ω : F1(∂Ω) defines a simply connected domain Ω1 which contains L.
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2. F2 is the biholomorphic map F2 : Ω1 → D(0, R) such that F2(∂L) = C(0, 1).

So we are in the following situation:

F1

KΩ Ω1
L

C \ L = F1(C \ K)

∂Ω1 = F1(∂Ω)

Φ = F2 ◦ F1

R
10 b b b

F2

• The Faber-Erokhin basis: With this decomposition, the Faber-Erokhin
basis is defined by analogy with the Faber one by formula (4) with n ∈ N
only

En(z) =
1

2iπ

∫

∂Ωα

Φ(t)n

t− z
dt, ∀α ∈]0, 1[ and z ∈ Ωα.

Erokhin shows that the sequence (En)n≥0 is a common basis for the spaces
O(Ω), O(Ωα), (0 < α < 1) but generally En 6≡ 0 when n < 0. The trivial
expansion (3) is then tranformed in

f(z) =
+∞∑

0

anEn(z), z ∈ Ω,

where the an are in general new coefficients given by an integral formula usually
more complicated than (2). Precisely, we have for all f ∈ O(Ωα), 0 < ρ < α < 1:

an =
1

2iπ

∫

|ζ|=ρ

ϕf (ζ)
ζn+1

dζ

with for all |ζ| < Rρ

ϕf (ζ) =
+∞∑

0

anζ
n =

1
2iπ

∫

|τ |=Rρ

f(Φ−1(τ ))(F−1
2 )′(τ )

F−1
2 (τ ) − F−1

2 (ζ)
dτ. (5)
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2. Hadamard Type Results for Faber-Erokhin Expansions

Let f be a holomorphic function on the level set Ωα such that f 6∈ O(Ωγ ), for
all α < γ < 1. Let f =

∑
n≥0 anEn be its expansion in the Faber-Erokhin basis,

so the power series

ϕf (ζ) :=
∞∑

0

anζ
n

has Rα as radius of convergence. Moreover, (5) implies that for all 0 < β < α
and |ζ| < Rβ:

ϕf (ζ) =
+∞∑

0

anζ
n =

1
2iπ

∫

|τ |=Rβ

f(Φ−1(τ ))(F−1
2 )′(τ )

F−1
2 (τ ) − F−1

2 (ζ)
dτ. (6)

Theorem 2.1. f extends holomorphically across a point z0 ∈ ∂Ωα if and only
if ϕf extends holomorphically across the point ζ0 := Φ(z0) ∈ C(0, Rα).

Proof. • Necessary condition. Suppose that there exists a neighborhood Vz0 ⊂
Ω \K of z0 such that f extends holomorphically on Ωα ∪Vz0 . Let r > 0 be such
that

D(ζ0, r) ⊂⊂ Φ(Vz0) ⊂ C(0; 1, R),

and choose 0 < β < α sufficiently close to α so that

D(ζ0, r) ∩D(0, Rβ) 6= ∅.

Now, consider the oriented path γz0 below

Φ

K

Ωα

Ω

z0

Vz0
b

γz0

b

b

b b b b

ζ0

0 1
R

Rα
Rβ

Then the function defined by the formula

ψ(ζ) =
1

2iπ

∫

γz0

f(Φ−1(τ ))(F−1
2 )′(τ )

F−1
2 (τ ) − F−1

2 (ζ)
dτ, ζ ∈ D(ζ0, r) ∪D(0, Rβ). (7)

is clearly holomorphic on D(ζ0, r)∪D(0, Rβ).
On the other hand by the Cauchy formula
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1
2iπ

∫

C(ζ0,r)+

f(Φ−1(τ ))(F−1
2 )′(τ )

F−1
2 (τ ) − F−1

2 (ζ)
dτ = 0, ∀ ζ ∈ D(ζ0, r). (8)

Formula (8) combined with (6) and (7) assures that

ψ = ϕf on D(0, Rβ) ∩D(ζ0, r) 6= ∅,

so we succed to extends holomorphically ϕf across ζ0.
• Sufficient condition. The proof is the same; it is built on the dual formula of
(5)

(5′) f(z) =
+∞∑

0

anEn(z) =
1

2iπ

∫

∂Ωβ

ϕf (Φ(t))
t− z

dt, ∀ z ∈ Ωβ.

Applications. By contradiction, we have the following property: f ∈ O(Ωα)
has Ωα as domain of holomorphy if and only if ϕf has the disc D(0, Rα) as
domain of holomorphy.

So we are able to extend for expansions following the Faber-Erokhin basis
some theorems on the boundary behaviour of a power series. For example, we
have

• (Hadamard): Let f(z) =
∑+∞

0 ankEnk(z) ∈ O(Dα) be such that f 6∈
O(Dβ), ∀ β > α. If there exists a constant c > 0 such that nk+1 − nk > c ·
nk, ∀ k ∈ N, then Dα is the domain of holomorphy of f .
Or in a stronger form, we have

• (Fabry-Pólya): Let f(z) =
∑+∞

0 nkEnk(z) ∈ O(Dα) be such that f 6∈
O(Dβ), ∀ β > α. If limk

nk

k
= ∞ then Ωα is the domain of holomorphy of

f . Conversely (Pólya), every increasing sequence of integers n0 < n1 < . . .
such that every series

∑+∞
0 ankEnk has Ωα as domain of holomorphy, satisfies

lim
k

nk

k
= ∞.

For example, the function f(z) =
∑+∞

0 R−2nαE2n(z) (Hadamard) or g(z) =∑+∞
0 R−n2αEn2(z) (Fabry) admits Ωα as domain of holomorphy but this is not

the cases for h(z) =
∑+∞

0 R−nαEn(z) which presents a unique singular point
(which of course is Φ−1(1)) on the boundary ∂Ωα.

3. The Case of an Arbitrary Common Basis.

With the same hypothesis on the pair (K,Ω) let us consider now an arbitrary
common basis (ϕn)n for the spaces O(K), O(Ω). It extends as a common basis
of the intermediate spaces O(Ωα), (0 < α < 1). This is not difficult to see that
the preceeding results are no longer true for any common basis (ϕn)n: consider
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the simple example where K = D(0, 1/2) ⊂ Ω = D(0, 2). This condensor admits
as level sets the discs Ωα = D(0, 2

3α
2 + 1

2 ). Consider the common basis

ϕn(z) = zπ(n), n ∈ N

where π : N → N is a bijection such that π(2n) = 2n. Then the function
f(z) =

∑+∞
0 ϕ2n (z) satisfies the Hadamard lacunary condition but

f(z) =
+∞∑

0

ϕ2n (z) =
+∞∑

0

z2n =
1

1 − z2

holomorphic on D(0, 1) = Ω1/3 admits C \ {±1} as domain of holomorphy.

Remark 3.1. [1], J. A. Adepoju proved the Fabry-type gap theorem for Faber
polynomials, his proof followed the classical one for entire series and is rather
complicated.
In [4] we extend Fatou-type theorems to all common bases of the pair (O(K),O(Ω))
in a more general situation.

4. Overconvergence

In the spirit of the proof of Theorem 2.1, the formulas (5) and (5’) lead us
to transport overconvergence phenomena to Faber-Erokhin series. Let f =∑+∞

0 anEn ∈ O(Ωα). If f is not holomorphic on larger level sets Ωβ, α < β,
then we will say that the series

∑+∞
0 anEn is overconvergent if there exists a

subsequence (mk)k such that the corresponding partial sums

smk (f, z) :=
mk∑

ν=0

aνEν(z),

converge compactly in a domain that contains properly Ωα.
The unicity of coefficients in the Faber-Erokhin expansion and formula (5)

give

smk (ϕf , ζ) :=
mk∑

ν=0

aνz
ν =

1
2iπ

∫

|τ |=Rβ

smk (f, Φ−1(τ ))(F−1
2 )′(τ )

F−1
2 (τ ) − F−1

2 (ζ)
dτ. (9)

Suppose now that the sequence (smk (f, ·))k converges uniformly on a neighbor-
hood Vz0 of a boundary point z0 ∈ ∂Ωα, then as in Theorem 2.1, we have
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sup
ζ∈D(ζ0,r)

|smk(ϕf , ζ) − smk′ (ϕf , ζ)|

≤ sup
ζ∈Vz0

|smk(f, z) − smk′ (f, z)| ×
∫

γz0

|F−1
2 )′(τ )| · |dτ |

|F−1
2 (τ ) − F−1

2 (ζ)|
≤ C · sup

ζ∈Vz0

|smk (f, z) − smk′ (f, z)|

where, as before, ζ0 = Φ(z0), D(z0, r) ⊂ Φ(Vz0). This implies that (smk (ϕf , ·))k

is a uniformly convergent Cauchy sequence on the disc D(ζ0, r) : the series∑+∞
0 akz

k is overconvergent. By duality, the overconvergence of
∑+∞

0 akz
k im-

plies the one for
∑+∞

0 akEk.
As an application, we have the following Ostrowski Theorem ([6]) for Faber-

Erokhin expansions: let f =
∑

n≥0 anEn ∈ O(Ωα) be such that f is not holo-
morphic on larger level sets Ωβ , α < β; suppose that there is an infinite number
of gaps in the sequence of coefficients as follows: there exist ν > 0, sequences of
integers (pk)k, (qk)k such that an = 0 for pk < an < qk and qk ≥ (1+ν)pk for all
k. Then, the sequence of partial sums (

∑pk

j=0 ajEj(z))k is uniformly convergent
on compact sets of a domain which contains all the regular points of f on the
boundary of Ωα.
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