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Abstract. Let M be a weakly d-Koszul module and let G(M ) be its associated

graded module. We give some relations between the minimal projective resolutions of

such M and G(M ). Moreover, the notion of d-Koszul block module is introduced. For

a perfect graded module M , we show that M is a d-Koszul block module if and only

if the Koszul dual E(M ) =
⊕

i≥0 Exti
A(M, A0), is finitely 0-generated as a graded

E(A) =
⊕

i≥0 Exti
A(A0, A0)-module.
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1. Introduction

The so-called weakly d-Koszul module was first introduced in [4], which is a
natural generalization of weakly Koszul module introduced before by Mart́ınez-
Villa and Zacharia in [8]. Later, the author of the present paper and Wang
revisited weakly d-Koszul modules in [5], and there the following was proved:

• Let A be a d-Koszul algebra and M ∈ gr(A). Then M is weakly d-Koszul
if and only if the associated graded module G(M ) is d-Koszul.

For the definitions of d-Koszul algebra (module) and weakly d-Koszul mod-
ule, we refer to [2] and [4] for the further details. Now one can ask the following
question: For a weakly d-Koszul module M , does there exist some relations be-
tween the minimal graded projective resolutions of M and G(M )? In fact, we
obtain the following result:

Theorem 1.1. Let A be a d-Koszul algebra and M a weakly d-Koszul module.
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Let
Q = · · · → Qi

∂i−→ · · · −→ Q1
∂1−→ Q0

∂0−→ M → 0

and
P = · · · → Pi

di−→ · · · −→ P1
d1−→ P0

d0−→ G(M ) → 0

be the minimal graded projective resolutions of M and G(M ) respectively. Then
we have

Pi
∼= G(Qi)[δ(i)], ∀ i ≥ 0,

where

δ(i) =





id

2
, if i is even

(i − 1)d
2

+ 1, if i is odd

and d ≥ 2 an integer; [ ] the shift functor.

From [4], we know that weakly d-Koszul module is also a natural generaliza-
tion of d-Koszul module and they have some similar properties. The following
can be found in [4].

• Let M be a weakly d-Koszul module. Then the Koszul dual E(M ) is finitely
0-generated as a graded E(A)-module.

In the case of d-Koszul module, the converse of the above statement is also
true. In order to get the equivalent description for weakly d-Koszul module in
terms of the Koszul dual E(M ), we introduce the notion of d-Koszul block module
and we get the following result:

Theorem 1.2. Let M be a graded perfect module. Then M is a d-Koszul block
module if and only if the Koszul dual of M , E(M ) is finitely 0-generated as a
graded E(A)-module.

The whole paper is arranged as follows. In Sec. 2, we recall some nota-
tions appeared in [4, 5] and give some new definitions and notations. The main
purposes of Sec. 3 and 4 are to prove Theorem 1.1 and Theorem 1.2, respectively.

2. Notations and Definitions

Throughout, we will follow the definitions and notations of [4, 5]. For examples,
A =

⊕
i≥0 Ai denotes a graded F-algebra such that

(a) A0 is a finite dimensional semi-simple Artin algebra,
(b) A is generated in degrees zero and one; that is, Ai · Aj = Ai+j for all

0 ≤ i, j < ∞, and
(c) ∀i ≥ 0, Ai is a finitely generated F-module.

Let J denote the graded Jacobson radical of A, gr(A) denote the category
of finitely graded module and let grs(A) denote the full subcategory of gr(A)
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consisting of graded pure modules. Recall that WKd(A) denotes the category
of weakly d-Koszul modules...

Definition 2.1. Let M ∈ gr(A). Then we can regrade M as follows:

M/JM ⊕ JM/J2M ⊕ J2M/J3M ⊕ . . . . (1)

The module constructed by (1) is denoted by G(M ), which is a graded G(A)-
module under the grading:

G(M ) =
⊕

i≥0

J iM/J i+1M,

where J0 = A. More precisely,

(G(M ))0 = M/JM, (G(M ))1 = JM/J2M, . . . .

Therefore, G can be regarded as a functor from gr(A) to gr0(A) as follows:

G : gr(A) → gr0(A)

via
G(M ) = M/JM ⊕ JM/J2M ⊕ J2M/J3M ⊕ . . .

and
G(M

f→ N ) = G(M )
G(f)→ G(N ),

where M, N ∈ gr(A), f ∈ HomA(M, N ), and G(f)(x+J i+1M ) = f(x)+J i+1N ,
where x ∈ J iM .

We will call G the associated graded functor (G-functor for short) and G(M )
the associated graded module of M (G-module for short).

Similarly, we can define G(A) for a graded algebra A.

The following are the basic properties of the functor G.

Proposition 2.2. Let M ∈ gr(A). Then
(a) G(A) ∼= A as a graded F-algebra;
(b) G(M ) ∈ gr0(G(A)) = gr0(A);
(c) If M is pure, then G(M )[i] ∼= M as a graded A-module for some i;
(d) G2 = G;
(e) G(JnM ) ∼= JnG(M ) for all n ≥ 0;
(f) Let M ∈ Gr(A). Then M ∈ gr(A) if and only if G(M ) ∈ gr(A);
(g) Let {Mi}n

i=1 be a family of finitely generated graded A-modules. Then

G(
n⊕

i=1

Mi) =
n⊕

i=1

G(Mi).
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i.e., the functor G preserves finite direct sums;
(h) Let P ∈ gr(A) be a graded projective module. Then G(P ) is a pure graded

projective G(A)-module;
(i) Let f ∈ HomA(M, N ) be an epimorphism. Then G(f) is also an epimor-

phism from G(M ) to G(N ).

Proof. By definition, G(A)i = Ji/Ji+1 = Ai for all i ≥ 0 since the graded F-
algebra A = A0⊕A1⊕· · · is generated in degrees 0 and 1. Now the first assertion
is clear. For the second assertion, we first prove that G(M ) is a graded G(A)-
module. Indeed, we can define the module action as follows:

µ : G(A) ⊗ G(M ) −→ G(M )

via
µ((a + J iA) ⊗ (m + JjM )) = a · m + J i+j−1M

for all a + J iA ∈ G(A) and m + JjM ∈ G(M ). It is easy to check that µ
is well-defined and under µ, G(M ) is a graded G(A)-module. Note that the
generating space of M is M/JM = G(M )0, now (b) is obvious. The proof of
the third assertion is similar to (a) and we omit it. Statements (d), (e) and (f)
are clear. For the proof of (g), we only need to show the case of n = 2. Note
that

J(M1 ⊕ M2) = JM1 ⊕ JM2

and thus

J i(M1 ⊕ M2)
J i+1(M1 ⊕ M2)

=
J iM1 ⊕ J iM2

J i+1M1 ⊕ J i+1M2

∼=
J iM1

J i+1M1
⊕ J iM2

J i+1M2
,

which follows that

G(M1 ⊕ M2) = G(M1) ⊕G(M2).

Note that G(P ) is a pure graded G(A)-module and P is a direct summand of
some copies of A[−i], where [ ] is the shift functor. Now by (g), (h) is immediate
and by the definition of G(f), (i) is clear. �

Definition 2.3. Let A be a d-Koszul algebra and M ∈ gr(A). Let

· · · → Qn
fn→ · · · → Q1

f1→ Q0
f0→ M → 0

be a minimal graded projective resolution of M . We call M a weakly d-Koszul
module if for i, k ≥ 0, Jk ker fi = Jk+1Qi ∩ ker fi if i is even and Jk ker fi =
Jk+d−1Qi ∩ ker fi if i is odd.

Let WKd(A) denote the category of weakly d-Koszul modules.

Definition 2.4 Let M ∈ gr(A) then we can find a set SM = {Sk0 , Sk1 , · · · , Sks}
of A0-submodules of M such that:
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(a) k0 < k1 < · · · < ks;
(b) Each Ski is concentrated in degree ki;
(c) M/JM = Sk0 ⊕ Sk1 ⊕ · · · ⊕ Sks as graded A0-modules.

The submodules 〈Ski〉 are called the graded pure submodule (GP-submodules)
of M .

If M is the direct sum of its GP-submodules, i.e. M = 〈Sk0 〉 ⊕ 〈Sk1 〉 ⊕ · · · ⊕
〈Sks〉, we call it perfect. A d-Koszul block module is a module which is both
perfect and weakly d-Koszul. It is easy to see that each pure graded module is
perfect and each d-Koszul module is a d-Koszul block module. We will denote
the categories of d-Koszul block modules and perfect graded modules by KBd(A)
and P(A), respectively.

Now let us discuss some easy properties of perfect graded modules.

Proposition 2.5. Let M ∈ gr(A) and keep the same notations as in Definition
1.4. Then the following statements are equivalent
(1) M ∈ P(A);
(2) 〈Sk0 , Sk1 , · · · , Ski〉 ∈ P(A), where 0 ≤ i ≤ s;
(3) 〈Ski〉 = 〈Skj , Skj+1 , · · · , Ski, · · · 〉/〈Skj , Skj+1 , · · · , Ŝki , · · · 〉, where Ŝki means
to omit it.

Proof. It is immediate from the definition of perfect graded modules. �

Now we will give examples of d-Koszul block modules.

Example 2.6. Let M ∈ gr(A) be generated in degrees d0 < d1 < · · · < dp. Then
there exist graded pure A-modules K0, K1, · · · , Kp, such that
(i) As A0-modules, M ∼=

⊕p
i=0 Ki;

(ii) G(M ) ∼= G(
⊕p

i=0 Ki);
(iii) G(M ) ∼=

⊕p
i=0 Ki[−di].

Moreover, if M ∈ WKd(A), then for all 0 ≤ j ≤ p,
⊕j

i=0 Ki ∈ KBd(A).

In fact, let Sd0 , Sd1 , · · · , Sdp be the minimal generating spaces of M and
each Sdi is an A0-submodule of M consisting of homogeneous elements of degree
di, (0 ≤ i ≤ p). Let K0 = 〈Sd0 〉, where 〈Sd0 〉 denotes the graded A-submodule
of M generated by Sd0 . Let

K1 = 〈(M/〈Sd0 〉)d1 〉, K2 = 〈((M/〈Sd0 〉)/K1)d2 〉, . . . .

Now it is easy to see that each Ki is a graded pure module generated in
degree di. From the construction of each Ki, the statements (i), (ii) and (iii) are
clear. If M ∈ WKd(A), from the approximation chain in [4], one can see that
each Ki is a d-Koszul module. Therefore, for all 0 ≤ j ≤ p,

⊕j
i=0 Ki ∈ KBd(A).

That is, we can construct a lot of d-Koszul block modules from a given weakly
d-Koszul module.
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3. The Proof of Theorem 1.1

Lemma 3.1. Let 0 → K → M → N → 0 be an exact sequence in gr(A)
and K, M, N have the same highest degree l. Then for all k ≥ 0, we have
JkK = K ∩ JkM if and only if

0 → G(K) → G(M ) → G(N ) → 0

is an exact sequence in gr0(G(A)) = gr0(A).

Proof. (⇒) Consider the following short exact sequence

0 → K → M → N → 0

with JkK = K ∩ JkM for all k ≥ 0. Obviously, we have the following commu-
tative diagram with exact rows

where the vertical arrows are natural embeddings. By the “Snake Lemma”, we
can get the following exact sequences

0 → JkK/Jk+1K → JkM/Jk+1M → JkN/Jk+1N → 0

for all k ≥ 0. Applying the exact functor “
⊕

” to the above exact sequences, we
have

0 →
⊕

k≥0

JkK/Jk+1K →
⊕

k≥0

JkM/Jk+1M →
⊕

k≥0

JkN/Jk+1N → 0.

That is, we have the exact sequence

0 → G(K) → G(M ) → G(N ) → 0.

(⇐) Suppose that we have the exact sequence,

0 → G(K) → G(M ) → G(N ) → 0,

which yields an exact sequence

0 →
⊕

k≥0

JkK/Jk+1K →
⊕

k≥0

JkM/Jk+1M →
⊕

k≥0

JkN/Jk+1N → 0.

Note that the functor “
⊕

” is exact and K, M, N have the same highest degree,
we have the following exact sequences

0 → JkK/Jk+1K → JkM/Jk+1M → JkN/Jk+1N → 0
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for all k ≥ 0, which implies that for all k ≥ 0, we have JkK = K ∩ JkM .
Therefore, we are done. �

Now we can prove Theorem 1.1.

Proof. Consider the following exact sequence

0 → ker f0 → Q0 → M → 0.

Note that Q is minimal, which yields the following exact sequence

0 → ker f0 → JQ0 → JM → 0.

It is easy to see that the highest degrees of ker f0, JQ0 and JM are the same.
Since M ∈ WKd(A), we have

Jk ker f0 = ker f0 ∩ Jk+1Q0 = ker f0 ∩ Jk(JQ0), ∀k ≥ 0.

Now by Lemma 3.1, we have the following exact sequence

0 → G(ker f0) → G(JQ0) → G(JM ) → 0,

which yields the following exact sequence

0 → G(ker f0)[1] → G(Q0) → G(M ) → 0.

Now consider the following exact sequence

0 → ker f1 → Q1 → ker f0 → 0.

Note that M ∈ WKd(A), we have the following exact sequence

0 → ker f1 → Jd−1Q1 → Jd−1 ker f0 → 0.

Observe that the highest degrees of ker f1, Jd−1Q1 and Jd−1 ker f0 are the same
and M ∈ WKd(A), we have

Jk ker f1 = ker f1 ∩ Jk+d−1Q1 = ker f1 ∩ Jk(Jd−1Q1), ∀k ≥ 0.

Now by Lemma 3.1, we have the following exact sequence

0 → G(ker f1) → G(Jd−1Q1) → G(Jd−1 ker f0) → 0,

which yields the following exact sequence

0 → G(ker f1)[d − 1] → G(Q1) → G(ker f0) → 0,

and we have the exact sequence

0 → G(ker f1)[d] → G(Q1)[1] → G(ker f0)[1] → 0.
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Repeat the above argument and by induction, we have a minimal graded pro-
jective pure resolutions in gr(A)

· · · → G(Qn)[δ(n)] → · · · → G(Q1)[δ(1)] → G(Q0) → G(M ) → 0.

Now consider the following commutative diagram with exact rows

Note that two rows are pure minimal graded resolutions of G(M ), we see that
all the αi are isomorphisms for i ≥ 0 and we are done. �

Corollary 3.2. Let A be a d-Koszul algebra and M ∈ gr(A). Let

Q = · · · → Qi
fi−→ · · · −→ Q1

f1−→ Q0
f0−→ M → 0

be a minimal graded projective resolution of M . Then

· · · → G(Qn)[δ(n)] → · · · → G(Q1)[δ(1)] → G(Q0) → G(M ) → 0

is a minimal projective resolution if and only if M ∈ WKd(A).

Proof. (⇒) By assumption and the definition of d-Koszul modules, G(M ) is
d-Koszul by [5], which is equivalent to that M is weakly d-Koszul.

(⇐) Follows from Theorem 1.1. �

4. The Proof of Theorem 1.2

Lemma 4.1. Let M =
⊕

i≥k0
Mi be a d-Koszul block module and use the

notations in Definition 2.4. Then
(1) All the GP-submodules 〈Ski〉 are d-Koszul modules, where 0 ≤ i ≤ t;
(2) 〈Ski〉 ∩ JkM = Jk〈Ski 〉 for all k ≥ 0;
(3) All the A-modules 〈Ski1

, Ski2
, · · · , Skip

〉/〈Skj1
, Skj2

, · · · , Skjm
〉 are d-Koszul

block modules, where

{Ski1
, Ski2

, · · · , Skip
} ⊆ {Sk0 , Sk1 , · · · , Skt}

and
{Skj1

, Skj2
, · · · , Skjm

} ⊂ {Ski1
, Ski2

, · · · , Skip
}.

Proof. It is similar to that of [4, Theorem 2.6] and we omit it. �

Lemma 4.2. Let M ∈ gr(A) and use the notations of Definition 2.4. Then M
is a d-Koszul block module if and only if
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(1) All the GP-submodules of M are d-Koszul modules, and
(2) M is the direct sum of all its GP-submodules.

Proof. Suppose M is a d-Koszul block module. By the definition, it is a perfect
graded module and M is the direct sum of all its GP-submodules. By Lemma
4.1, all the GP-submodules of M are d-Koszul modules.

Conversely, by condition (2), M is a perfect graded module. To complete the
proof of the theorem, we need only show M ∈ WKd(A). We need only consider
the case M = 〈Sk0 , Sk1〉 since the other cases can be proved similarly. Note that
d-Koszul modules are of course d-Koszul block modules, hence weakly d-Koszul
module. Consider the following exact sequence

0 → 〈Sk0〉 → 〈Sk0 , Sk1〉 → 〈Sk1 〉 → 0,

where, by hypothesis, 〈Sk0〉 and 〈Sk1 〉 are d-Koszul modules and J〈Sk0 〉 = 〈Sk0 〉∩
J〈Sk0 , Sk1〉. From [4], we have M ∈ WKd(A). �

Proposition 4.3. Let M ∈ P(A) and use the notations in Definition 2.4.
Then M is a d-Koszul block module if and only if the Koszul dual of all its
GP-submodules, E(〈Ski〉) =

⊕
n≥0 Extn

A(〈Ski 〉, A0) are generated in degree 0 as
a graded E(A)-module.

Proof. By Lemma 4.1, a perfect graded module is a d-Koszul block module if and
only if all its GP-submodules are d-Koszul modules, which is equivalent to the
fact that all the Koszul duals, E(〈Ski〉) =

⊕
n≥0 Extn

A(〈Ski 〉, A0) are generated
in degree 0 as a graded E(A)-module (by [2]). �

Theorem 4.4. Let M ∈ P(A) and use the notations in Definition 2.4. Then
M is a d-Koszul block module if and only if the Koszul dual of M , E(M ) =⊕

n≥0 Extn
A(M, A0) is generated in degree 0 as a graded E(A)-module.

Proof. Assume M ∈ P(A) is a d-Koszul block module, then

E(M ) =
⊕

n≥0

Extn
A(〈Sk0 , Sk1, · · · , Skt〉, A0)

=
⊕

n≥0

Extn
A(〈Sk0 〉 ⊕ 〈Sk1 〉 ⊕ · · · ⊕ 〈Skt〉, A0)

=
⊕

n≥0

(Extn
A(〈Sk0 〉, A0) ⊕ Extn

A(〈Sk1 〉, A0) ⊕ · · · ⊕ Extn
A(〈Skt〉, A0))

= (
⊕

n≥0

(Extn
A(〈Sk0 〉, A0)) ⊕ (

⊕

n≥0

(Extn
A(〈Sk1 〉, A0))

⊕ · · · ⊕ (
⊕

n≥0

(Extn
A(〈Skt〉, A0))

is generated in degree 0 as a graded E(A)-module.



270 Jia-Feng Lü

Conversely, since M ∈ P(A) and E(M ) =
⊕

n≥0 Extn
A(M, A0) is generated in

degree 0 as a graded E(A)-module, then each
⊕

n≥0 Extn
A(〈Ski 〉, A0) is a direct

summand of E(M ). Hence all E(〈Ski〉) =
⊕

n≥0 Extn
A(〈Ski 〉, A0) are generated

in degree 0 as a graded E(A)-module. By Proposition 4.3, we finish the proof.
�

Now put Theorem 4.4 and [5, Theorem 4.3] together, we complete the proof
of Theorem 1.2.
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