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1. Introduction

Let f be a non-zero holomorphic function on D, , a = (a1,...,am) € Dr,,,
and
(oo}
f = Z a7(21 — al)"“ .. (Zm — am)%", Z(m) € D,«(m).
|v|=0

For each 1 = 1,2,...,m, write

i —_—

Fzm) = Y fon(zi — ai)(z: — ai)*.

k=0

Set

o —

Gik (215 ooy Zie 1, Zig1s ooor Zm) = fire(2i — ai),

bik = Gik(a1, oy Qim1, Qig1s oy Q).
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Then
o0
fz a Z - az

Set
vis(a) = { min {k:b; #0} if fia(2) 0
of + o0 if f;4(2) =0.
If f(a) =0, then a is a zero of f(2(;)). Then the number v; ¢(a) is called the
N partial multiplicity of a.
For a point d € C, we define the function ’Uf Cyr — (NU {+o0})™ by

vi(am) = (v f-alagm)), - - Vm,f—a(am)))-
Now let f = f— be a non-constant meromorphic function on C}*, where fi, fo

are two holomorphlc functions on C" having no common zeros. For a point d €
C, we define the function v§ : C" — (NU{+00})™ by v}(agm)) = v}, _ g, (a(m))

and write Uf(a(m)) = (ULf(a(m)), ) ..,U%7f(a(m))), U?"(a(m)) = U?CQ (a(m)) and
write vy (a@m)) = (Uff’f (@gm))s- - U;’if(a(m)

For a subset S of C,, we set

Ei(f.9) = {(Qiaa(m)) € (NU{+0o}) X CI' f(aim)) —d = 0, v s(agm)) = Qi};

des

Ei(f.8 U{oo}) = Bi(£, ) { (@ apm) € (NU{+00}) x €105 (agm) = a4

i=1,2...,m

A subset S of C, U {oo} is called a unique range set (URS for short) for
p-adic meromorphic functions of several variables if for any pair of non-constant
meromorphic functions f and g on C;* the condition E;(f,S) = Ei(g,S), i =
1,...,m, implies f = g. Similarly, let S,T be two subsets of C, U {oo} with
SNT =0.(S,T) is called a bi-URS for p-adic meromorphic functions of several
variables if for any pair of non-constant meromorphic functions f and g on C*
the conditions E;(f,S) = E;(g,S) and E;(f,T) = Ei(9,T),i =1, ..., m, imply
f=g

Several interesting results about URS and bi-URS for entire and meromor-
phic functions on C, have been studied in [6, 9, 11]. In[9], Khoai and An gave
sufficient conditions of URS and bi-URS in terms of uniquenees polynomials and
strong uniqueness polynomials for non-archimedean meromorphic functions of
one variable. The main tool cited in the above papers is the Nevanlinna theory in
one-dimensional non-archimedean case. In this paper by using some arguments
in [3, 9] and the p-adic Nevanlinna theory in high dimension, developed in [1,
2, 3,5, 7, 8], we give some cases of uniqueness polynomials for p-adic meromor-
phic functions in several variables and show the existence of a bi-URS for p-adic
meromorphic functions in several variables of the form ({a1, a2, as, as}, {u}).
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2. Height of p-adic Holomorphic Functions of Several Variables

Let p be a prime number, Q, the field of p-adic numbers and C, the p-adic
completion of the algebraic closure of Q,,. The absolute value in Q,, is normalized
so that |p| = p~!. We further use the notion v(z) for the additive valuation on
C, which extends ord,. We use the notations

bim)y = (b1, .y bi),  bi(b) = (b1, .oy bim1,b,big1, oy ),

bim,i.) = bi(bi,),

(bz) = (bl, ey bi—l; bi—i—l; ey bm);

D, ={z€C,:|z|<r,r>0},

D~ = {z eCp:lzl=r,r> 0},

Dy .y = Dry X -++ X Dy, Where 7(,,) = (r1,...,rm) for r; € RY,
<ramy> = D<ry> X oo X Deyp s,
=7+ + Ym.

Y = 7 v,
2V =z{ .z

=t

Y= ('Yl; "'a,YTI’L)a
where v; €N, | .| =] . [, log =log,.

Notice that the set of (71, ...,7,) € R¥™ such that there exist x1, ..., 2, € C,
with |z;| = r;,i = 1,...,m, is dense in R¥™. Therefore, without loss of generality
one may assume that D, > # 0.

Let f be a non-zero holomorphic function in D and

T'(m)

f= Zav,ﬂ, |zi| <7 fori=1,...,m.

[v|=0
Then we have
lim |a,|r? = 0.
[¥|—o0
Hence, there exists a (y1,...,7vm) € N such that |a.|r" is maximal.
Define
_ ¥

|f|7‘(m) O§I|I}yzli’§<>0 |a”)’|r .
Lemma 2.1.([8]) For eachi=1,...,m, letr;,... 1, be positive real numbers
such that vy, > - >r; . Let fo(2(m)),s =1,2,...,q, be g non-zero holomorphic
functions on Dy . . Then there exists ugm,i,) € Dy, , such that

|fs(u(m,i5))| = |f8|7“(m,7,5)5 s=1,2,...,q

Definition 2.2. The height of the function f(z(n)) is defined by
Hf(r(m)) = log |f|7‘(m) .
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Let f be a non-zero holomorphic function in D and

T'(m)

f= Zavz”’, |zi| <7 fori=1,...,m.

[v]|>0
Write
F(zm)) Zfz z)zF, i=1,2,...,m.

Set

I (T(m))

f—’H

(M5 oyvm) €N ay|r7 = |f|,«(m)},

n1i,f (T (m)) max{fyz 3( fyl,...,fyi,...,'ym)elf(r(m))},

n2i, £ (T (m)) {% 3( fyl,...,fyi,...,'ym)elf(r(m))},
{k+ funle 20},

n; £(0,0) = min
£(r(my) Z (14,5 (r(my) = n2i,7 (r(m))) -
=1

r(m) is called a critical point if v¢(r(m)) # 0.
For a fixed ¢ (i =1,...,m) we set for simplicity

n4,£(0,0) = €, k1 = 114, 1 (rmy)s k2 = 12, (rm))-

Then there exist multi-indices v = (v1,...,%,---,Ym) € If(rem)) and p =
(W1 - s fhise s i) € Tp(r(my) such that v; = k1, p; = ko.

We consider the following holomorphic functions on D,

Je(zmy) = fi,@@zfa Tr (20m)) = fika @Zfl,fka (2(m)) = fz‘,m(/ZBZfQ

The functions are not identically zero.
Set

Uifﬂ“(m) = {u = U(m) € Dr(m) |f€(u)| = |f€|7“(m)a |f(u)| = |f|7“(m)’
|fk1(u)| = |fk1|7“(m)’ |fk2(u)| = |fk2|7“(m)}’

where ¢ = 1,...,m. By Lemma 2.1, Uiy, is a non-empty set. For each
u € Uiy, set

T(m)?

fi,u(z) = f(ul, ey U1, 2y UG Ty e - ,um), S Dh'

Theorem 2.3. Let f(2()) be a holomorphic function on D, . Assume that
f(2(m)) is not identically zero. Then for each i = 1,...,m, and for all u €
Uif,rimy» W€ have
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1) Hy(rm)) = Hy, . (rs),

2) 1, p(rm)) is equal to the number of zeros of fiu in Dy,,

3) i, f(1(m)) — 24,1 (r(m)) is equal to the number of zeros of fiu on Dey,>.
For the proof, see [8, Theorem 3.1].

From Theorem 2.3 we see that f(2(;,)) has zeros on Der, > if and only if (.,
is a critical point.

For a an element of C,, and f a holomorphic function on D
identically equal to a, define

7 (my » Which is not

nmv(a, T(m)) = n1i7f_a(7“(m)), t=1,...,m.

Fix real numbers p1,...,pm With0 < p; <7r;, 1 =1,...,m.
For each x € R, set

Ai(2) = (P1y oo s Pic 1y Ty Tigdy ooy Tm),y 8= 1,000, m,

Bl(x) = (pla"'api—laxap’i-'rl)"'apm)ai: 1)"'am'
Define the counting function Ny (a,r(n)) by

T4
1 & N'7f(a,A'($))
Nf(aﬂ“(m)) = EZ/%CZ.%
1=1
P

If a=0, then set N¢(r(m)) = Ny (0,7(m))-
Then

Ti

Ny(a, Bi(r:)) = ﬁ / M .
Pi

For each i = 1,2, ..., m, set

kii=mn1i,5(Ai(r:)), kai = nas, ¢ (Ai(r4)),

UiiﬁAq,(T‘m) = {U;i = szm) EDA%(T%) : |fe(u")| = |f€|Aﬂr(T1)’ |f(u")| = |f|Aq,(7'7,)’
P ) = Ui s Wi 0] = s §

T = {A;(z) : A;(x) is a critical point, 0 < z < r;}.

By Lemma 2.1 and Theorem 2.3, T'; is a finite set. Suppose that I';, i =1,...,m,
contains n elements A;(x7), j = 1,...,n. From this and Lemma 2.1 it follows
that

Uis ) = 10" = Uy € Ujp a,ry » 05 (W) €U 4, 0iys 3= 1,00} #0,

t=1,...,m.
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Lemma 2.4. 1) Let f be a non-zero holomorphic function on D Then for

T(m) "
eachi=1,2,...,m, and for all u’ EUfA (ri) W have

nfmyuq, ($) =N f0 A'L( )a pi ST < T,
2) Let fs(2(m)),s = 1,2,...,q, be q¢ non-zero holomorphic functions on Dy -

Then for each i = 1,2,..., m, there exists u’ Euf Ai(ri) foralls=1,...,q.
The result can be proved easily by using Lemma 2.1 and Theorem 2.3.

Theorem 2.5. Let f be a non-zero holomorphic function on D Then

Hy(r(m)) = Hy(pim)) = Ny (rm))-
The proof of Theorem 2.5 follows immediately from [8, Theorem 3.2].
Set

T(m) "

v=>u' ..., um),u EUﬁA(m,

Ny, (rm)) =Ng, o (1) + -4 Np o (7m),
V ={v: Ny, (r(m)) = Ny (rem)}-
By Lemma 2.4 and [6], V is a non-empty set,

Ny, (ramy) = 21 (v(a) +logri) + ny, ,1(0, p1)(logry —logpr) + ...

p1<|al<r1
+ Z ) +logry,) + N um (0 pm)(log Tm —log pm),
pm<|a|<rm (2.1)

where

>, (o(a) +logr)

p7,<|a|§7'7,
is taken on all of zeros a of f; ,i (counting multiplicity) with p; < |a| <7y, i =
1,2, ...,m. Notice that, the sums in (2.1) are finite sums.

Denote by N, (r(m)) the sum (2.1), where every zero a of the functions f; ,i,
i=1,...,m, is counted ignoring multiplicity. Set
Nf(?“(m)) maX Nf (T(m))

From Lemma 2.4 it follows that one can ﬁnd ut e Y i As () andv = (u',...,u™)
such that N (r(m)) = Ny, (r(m))-

Now let C be some condition. Let Ui"’*A%(m - szA (ri)? Ui"’*A%(m # (). For
each 7(,,) and u' € UZA (ri)? set

{ vi r(ul(2)) if u(z) satisfies the condition C
0 otherwise

vi f(uj(2); C) =

nfm,iﬂ' (T“C) = Z U%f(uz(z)7c)a

[z|<r;

T
Nf(r(m),C = min —Z/ s “7 dx,

ve Vinp

Ny, (r(m);: C) :me1 (r1;C) + -+ Nppowm (1 ©).
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From Lemma 2.4 it follows that one can find v’ € Uf*Aq(m and v = (ul,...,u™)
such that Ny (r(m); C) = Ny, (r(m); C).

If ~ is a multi-index and f is a meromorphic function of m variables, then
we denote by 07 f the partial derivative
ol f
0z ... .0z
Theorem 2.6. Let f be a non-zero entire function on C;' and v a multi-index
with | v |> 0. Then
Hovp(Be(re)) — Hp(Be(re)) < — | v | logre + O(1).

The proof of Theorem 2.6 follows immediately from [5, Lemma 4.1].

3. Height of p—adic Meromorphic Functions of Several Variables

h

Let f = =~ be a meromorphic function on D, (resp., (Cg“), where f1, fo are
2
two holomorphic functions on Dy (resp., (Cg“), have no common zeros, and
a € C,.
We set
Hp(rom) = max Hy, (rom)),
Ni(a;7(m)) = Npi—afs (r(m));
Ny (00,7(m); C) = Ny, (r(m); €,
and
Nf(a, T(m); C) = Nf1—afz(r(m)§ C)
Lemma 3.1. Let f = é be a mon-constant meromorphic function on CJ'.

2
Then there exists a multi-index v1 = (0,...,0,791¢,0,...,0) such that 1. = 1
O fy.fo — O fo.
and O f = f1f2f2 LR
2

and the Wronskian

W =W(f1, f2) = det (é?ilfl 8£2f2>

is mot identically zero.

For the proof, see [5, Lemma 4.2].

Let a1,...aq € C,. Set G; = fr —ajfe,5 =1,...q, and Gg41 = fo. In
Theorem 3.2 we take C' to be the following condition: G(2()) # 0 with some
zm) € Cptand forall j =1,... ¢+ 1.
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Set
No,w (r(m)) = Nw (0,7(m); C),
No,om £(7(m)) = No,w (T(m))-

Theorem 3.2. Let f be a non-constant meromorphic function on CJ' and
a; €Cp,j=1,...,q. Then

(q - 1)Hf(Be (Te))

< Zﬁf(aj, Be(r¢)) + N (00, Bo(re)) — No.gm #(Be(re)) — logre + O(1).

Proof. Set G = {Gp, ...Gp,_, }, where (B1,...,04-1) is taken on all different
choices of g—1 numbers in the set {1, ... ,¢+1},and G; = fi—ajf2, j=1,...,¢,

and Gq+1 = fg. Set HG(T(m)) = 7 m%X )HGBr“GBq,l (T(m))- [ |
We need the following lemma.

Lemma 3.3. We have Hq(7(n)) > (¢ —1)H (7)) +O(1), where the O(1) does
not depend on 1 ().

Proof. We have

He(rm)) = (o H oG (rm)

max Z He, (r(m))-

B Breba-1)y Gg

Assume that for a fixed r(,,), the following inequalities hold
Heg, (r(m)) = Hap, (P(m)) = - = Hea, |, (r(m))-
Then
He(rim)) = Hag, (rm) + Hap, (rem)) + -+ Hay (remy)- (3.1)
Since ai, ... ,aq are distinct numbers in C,, then
fi = bi,Gpg, +i,Gp,,,, i =1,2,

where b;,, b;, are constants, which do not depend on r,,). It follows that

Hy,(rem) < max Hep, , (rom) + O(1).

Therefore, we obtain

qu, (T(m)) g HGBJ' (T(m)) + O(l),
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forj=1,...,9—1and i=1,2. Hence,

Hf(?“(m)) = max Hy, (T(m)) < HGBj (T(m)) + O(l), (3.2)

1<i<2
forj=1,...,¢—1. Summarizing (¢ — 1) inequalities (3.2) and by (3.1), we have

He(r(my) = (@ = 1)H¢(rm)) + 0(1).

Now we prove Theorem 3.2. Denote by W (g1, g2) the Wronskian of the two
entire functions g1, go with respect to the v; as in Lemma 3.1.

Since f is non-constant, we have W (f1, f2) #Z 0. Let (a1, az) be two distinct
numbersin {1,...,¢+1},and (B, ..., B4—1) be the rest. Note that the functions
fi can be represented as linear combinations of G,,, G,. Then we have

W(Goq ) Ga2) = C(al,az)W(fla f2)a

where ¢(q, a,) = ¢ is a constant, depending only on (a1, az). We denote

1 1
— _ W(Gal’GOQ) _
A= A(Oq, Oég) = m = det o Gal o Gag
Ga, Ga,
Hence
Gl---Gq+1 _ CGg1 ---Gﬁq,l. (3 3)
W(f1, f2) A
Set L = £52%, i =1,2. Then
log|Alp, () < max log|Lilp, (r.)-
By Theorem 2.6
log|Li|p.(r.) < =Im[logre + 0(1).
Because |y1] =1
log|Li|.(r.) < —logre +0(1). (3.4)

By (3.3), we obtain

g+1
Z HGj (Be(re)) - HW(Be (Te)) = HGgl...Gqu (Be (Te)) — log |A|Be(re) + 0(1)-

From this and (3.4), we have

Heg(Be(re)) = . maﬁx )Hcﬁlmcﬁq71 (Be(re))

g1
< Z HGj (Be (Te)) - HW(Be(Te)) —logre + O(l)
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By Lemma 3.3
q+1
(¢ —1)H;(B ZHG — Hw (Be(re)) —logre + O(1).
Thus
q+1
(¢ = DHf(Bc(re)) + Hw(B ZHG —logr. + O(1).  (3.5)

By Theorem 2.5
Hyw (Be(re)) = Nw (Be(re)) +0(1),

Heg,(Be(re)) = Na, (Be(re)) +0(1).

From this and (3.5) we obtain

q+1
(¢ —1)Hg(Be(re)) + Nw (B ZNG —logre + O(1).  (3.6)
For a fixed Be(r.), we consider non-zero entire functions W,Gy,...,G, on

Dg, (r,). From Lemma 2.4 it follows that one can find u® € Ué, B.(r., and
u® € U‘fVBe(Te),j =1,...,q, such that

Nw (Be(re)) = Nw, e (re), Ng; (Be(re)) = N(Gj)e,ue (Te). (*)

Assume that U:*B (re) is the set which contains elements u® with u® as in the
statement by (*). Now let u¢(x) be a zero of G having the e'" partial multiplicity
equal to k, (k # +00),k > 2. Since v1 = (0,...,0,7v1¢,0,...,0) with v1, = 1,
vigna, (ui(r)) =k —1if i =e.

On the other hand,
W(Goq ) Ga2) = c(ozl,(m)Wa

where (a1, a2) are two distinct numbers in {1, ..., ¢+ 1}. Therefore ué(x) is a
zero of W having the e'® partial multiplicity at least k& — 1.

q
Now we consider the function F = [] Gj.

j=1
Because F' is not a constant, F' has zeros. Let ué(z) be a zero of F. By the
hypothesis, a1, ... , a4 are distinct numbers, from this it follows that there exists

one function G; such that G;(ug(z)) = 0. Therefore

q q
Z N(Gj)e,ue (Te) - e ue Z N G )e u® Te NO We ue( )
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Thus
q
2N = N (Be(ro))
q J—
<D N G)).e (re) = Now(Be(re))
=1
q J—
<D No, (Belre)) = Now (Be(r2)):
j=1
From this and (3.6) the proof of Theorem 3.2 is complete. (]

4. Uniqueness Polynomials and bi-URS for p-adic Meromorphic Func-
tions in Several Variables

Theorem 4.1. Let f, g be two non-zero entire funtions on CJ' such that ’U?c = ’Ug
on CJ'. Then f = cg where c is a non-zero constant in Cp,.

Proof. Takery,...,r,m > 0such that f, g have no zeros in D, ~. If f is anon-
zero constant then so is g. Therefore f = cg. Assume that f is non-constant.
Since ’U?c = ’Ug, g is also non-constant. Let a = (a1,...,am), b = (b1,...,bm)
be two any elements of Do, ~. Set Ci(bi) = (b1,...,bi,ait1,.- -, am), @ =

1,...,m, By ’U?c = ’Ug, Vi, f(2(m)) = Vig(2(m)), i =1,...,m. Then

Ji,0i(b:) = CiGi,C(b1)>

with ¢; = gézg = gég:g:)))) and ¢; = ¢;y1,i = 1,2,...,m— 1. From this we have
b
f(a) = M forall a,be D,_, .
gla) — g(b)
Set
c:f(a)aa/eD<T >,h:f_Cg-
g(a) o

Asume that & is not identically zero. Consider h, f,gin D, ~. By Lemma 2.2,
there exists u € D<,«(m)> such that h; .y, fiu, gi,u are not identically zero, ¢ =

1,2,...,m. We have f;, = dgin, ¢ = %. Theorefore ¢ = ¢ and h;, =
fiu — ¢9i identically zero. From this we get a contradiction. So, f = cg. n

Definition 4.2. We say that a non-constant polynomial P(x) is a strong
uniqueness polynomial for p-adic meromorphic functions on CJ' if the identity
P(f) = cP(g) implies f = g for any pair of p-adic non-constant meromorphic
functions f,g on CJ' and for any non-zero constant ¢ € Cp. Similarly, we say
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that a non-constant polynomial P(x) is a uniqueness polynomial for p-adic mero-
morphic functions in C;* if the identity P(f) = P(g) implies f = g. Let P(x)
be a polynomial of degree q without multiple zeros and its derivative is given by

P'(z)=a(z —d)?...(z — dy)%,

where g1+ +q. =q—1 and d1, .. .,dy are distinct zeros of P'. The number
k is called the derivative index of P.

Definition 4.3. A non-zero polynomial P(x) is said to satisfy the condition
(H) if P(d)) # P(dm) for 1 <L <m < k. (See [9]).

We may assume that di, ..., d; € C,\{0}.
Let f = ﬁ be a non-constant meromorphic function on C', where f1, f2 are

2
two holomorphic functions on C}' having no common zeros. For a point a € C,
we define the function
Xf: C— N
by
0 if f(Z(m)) #a
a(, —
Xf( (m)) { 1 if f(Z(m)) =a
If a =0, then set x% = x-
If a = oo, define X7 (2(m)) = =1 if 2(p) is a pole of f. For a condition C, we
define
Xa’Ylf(Z(m)) if z(;n)satisfies the condition C' and

Xom f(%(m); C) = f(2(my)) # dj for any j,
0 otherwise.

In Theorem 4.4 and Theorem 4.6 the condition C' is the condition f(2(;,)) = d;
and the condition C’ is the condition g(z()) = d; with j = 1,2, ..., k.

Theorem 4.4. Let P(z) € Cp,lz] have no multiple zeros, have derivative index
k > 3, and satisfy the condition (H). Then P(z) is a uniqueness polynomial for
p-adic meromorphic functions on C}'.

Proof. Suppose that there are two distinct non-constant meromorphic functions
J and g on CJ' such that P(f) = P(g). From this and by Lemma 3.1 there
exists a multi-index 4 = (0,...,71¢,0,...,0) with 79, = 1 such that " f £ 0
and 07 g # 0.

Set

Then, ¢ # 0 and H,, (Be(re)) < Hy (Be(re)) —|—Hg(Be(7°e)). From P(f) = P(g)
we conclude that if f(z(,)) = co then g(2(n)) = oo and if g(2(;,)) = oo then
f(2(m)) = o0. Therefore X7 (z(m)) =Xy (z(m)). On the other hand, we have

I f(zm) )P’ (f(2m)) = 0" 9(2(my) P'(9(2(m)))-
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Since P satisfies the condition (H), we obtain

dj j *
XfJ (Z(m)) < ij (Z(m)) + Xa’Ylg(Z(m) ; C)

From this we have
k
> X7
=1
k

<D (X Gamy) + X (2em)s €)) = X5 (2m))

j=1

H

(2(m)) = XF (2(m))

k

<X (zm) + D Xbg(2(m): ©)-
j=1

Therefore, applying Theorem 3.2 to the function f and values d, . ..d; we have

(k - 1) Hy (Be(re))
k
< wa (dj’ BC(TC)) +Nf (OO, Be(re)) - NO,@“Ylf (Be(re)) - 10g7“e + 0(1)

Jj=1

< Ny (Be(re)) + No,orig (Be(re); C) — No,or f (Be(re)) — logre + O(1).
Similarly

(k —1)Hg (Be(re))
< Nq; (Be(re)) + No,ovi § (Be(re); C') — No grig (Be(re)) — logre + O(1).

Summing up these inequalities and using Theorem 2.5, we obtain

(k —1) (Hf (Be(re)) + Hg (Be(re)))
<2 (Hyf (Be(re)) + Hg (Be(re))) — No,on f (Be(re)) — No,org (Be(re))
+ NO,871g (Be(re)Q C) + NO,871f (Be (7“6); Cl) —2logre + O(l)

Since

Noﬁvlg (Be(Te); C) g N07871g (Be(Te)) s
and

N07871f (Be (7“6); Cl) g N07871f (Be (7“6))
we have

(k—3) (Hf (Be(re)) + H, (Be(re))) +2logre < O(1).

It follows that £k — 3 < 0 and we get a contradiction. Theorem 4.4 is proved. m

Definition 4.5.([9]) A non-zero polynomial P(x) is said to satisfy the condition

(@) if é P(dy) #0
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Theorem 4.6. Let P(z) € C,lz] be a polynomial having no multiple zeros.
Let P(x) satisfy the conditions (H) and (G) and k > 3 be the derivative index
of P(x). Then P(x) is a strong uniqueness polynomial for p-adic meromorphic
Junctions on C}'.

Proof. By Theorem 4.4, P(z) is a uniqueness polynomial. Asume that P(z) is
not a strong uniqueness polynomial for p-adic meromorphic functions on C}'.
Then there exist two distinct non-constant meromorphic functions f and g on
Cj such that P(f) = cP(g) for some non-zero constant c. We consider the set

A= {(e, h): P(dg) = cP(dh)}

and denote the number of elements of A by kg. We set kg = 0 if A = (). For the
rest of the proof we need three lemmas below.

Lemma 4.7. In the above situation, if f is not a Mobius transformation of g,
then kg = k.

Proof. Since P(x) satisfies the condition (H), if (¢1, k1), (f2, ha) are elements of

A such that hy = hg or ¢1 = {3, then ({1, h1) = (¢2, ha). From this kg < k.
Consider the possible cases:

Case 1. kg > 2. After a suitable change of indices, we may assume that

P(dl) = CP(dt(l)), ey P(dkg) = CP(dt(k‘[)))'
Define

o= 1 di(1) — dy(2)
[ (de —di)(g — dir)) + di(de2) — diay)

Then ¢ # 0. If f(z(m)) = oo then g(z4m)) = oo. If f(zpm)) = dj, 1 < j <
ko, 2(m) € CJ', then, g(z(m)) = di,) or 97 g(z(m)) = 0, because P(r) satisfies
the condition (H). If f(z(m)) = dj, ko+1 < j <k, then P(d;) # cP(d;). Hence
9(2(my) # dj for every ko 4+ 1 < j < k. This implies 07 g(z(,)) = 0. Thus

k
> (zm) = xF (2m)
j=1
0 k
dy(; .
<D (Y (om) +x0710 (20mi €)) + 30 Xomig (203 €) = X5 (2m)
=1 J=ko+1

ko

k
s y
<X (2 ) + DX (2 ) + D2 X (20m1: ).

Jj=3 Jj=1
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Applying Theorem 3.2 to the function f and values dy, . ..dg, we have

<N, (oo, Be(re)) n iﬁf (dj, Be(re)) _ No,mlf(Be(re)) —logre + O(1)
gﬁw(Be(re)) + 3 Ng(dt(j)a Be(Te))
j=3

+ No,ovig (Be(re); C) — No,om s (Be(re)) —logre +O(1).
Similarly
(k = 1)Hy(Be(re))
<N, (B.(ro)) + iﬁf (drsy. Ber)

=3

+ No,om ¢ (Be(re); C") - Noﬁvlg(Be(re)) —logre + 0(1).
Summing up these inequalities and using Theorem 2.5 we get

(k—1) (Hf (Be(re)) + Hy (Be(re)))
<2(Hy (Be(re)) + Hg (Be(re)))
+ (ko — 2) (Hf (Be(re)) + H, (Be(re))) — 2logre + O(1).

So
(k= ko — 1) (Hg(Be(re)) + Hg (Be(re))) + 2logre < O(1).

From this we have kg > k — 1. Hence ko = k.

1 1
Case 2. kg = 0. Set ¢ = — — —. As in the proof of Theorem 4.4, we obtain k < 3,

a contradiction. So kg # 0.

Case 3. ko = 1. Then there exists a unique element (¢, h) such that P(d;) =
cP(dp). Set
1 dp

7o [ deg

Using Theorem 3.2 and by using the same assymptions as in the proof of Theorem
4.4, we obtain k < 3, a contradiction. So kg # 1.
Hence, the proof of Lemma 4.7 is complete. [ |

Lemma 4.8. Under the assymptions of Theorem 4.6, we have ko = k.

Proof. We consider the following cases:
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cog + c1
cog +c3
By P(f) = cP(g), and f and g are not constants, c; = 0 and ¢3 # 0. Then f =

ag + b with a = C—O, b= and a # 0. Since P(f) = ¢P(g), P(ag+ b) = cP(g).
C3 C3
From this we have

Case 1. f =

aP'(ag +b) = cP'(g).
Thus

Ao (o a0 o

a a

This implies that there exists a permutation (t(l), e t(k:)) of (1,...,k) such

that
di—b dip — b
)"')dt(k): .
a

dy(1) =

Then

cP (dyey)) = cp(dea_ b) = P(adea_ by b) = P(dy)

forall{=1,...,k. So k = k.

cog + C1
Case 2. e
Ui Cco + c3

By Lemma 4.7, k = ko.
Thus Lemma 4.8 is proved. [ ]

Lemma 4.9. Let k > 3 and P(x) satisfy the condition (H). If there are two
distinct non-constant meromorphic functions f and g on C;' such that P(f) =
cP(g) for some non-zero constant, then there exists a permutation (t(l), ce t(k))
of (1,...,k) such that

oo Py - Pldi)
P(dy1)) P(de(r))
Proof. Lemma 4.9 follows from Lemma 4.8. n

We now continue to prove Theorem 4.6. Assume P(f) = cP(g). If ¢ = 1,
then by Theorem 4.4, f = g. If ¢ # 1, by Lemma 4.9 there exists a permutation
(t(l), .. .,t(kz)) of (1, ..., k) such that

P(dy) P(dy)

T Py Pldiw) #1

c

Since P satisfies the condition (G), we obtain

oo P(d)+ P(dy) -+ P(di)
P(dy1)) + P(dy2)) + -+ P(Piw))

:1,
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and we get a contradiction. The proof of Theorem 4.6 is complete. n

Theorem 4.10. Let P(z) € Cplz] be a polynomial having no multiple zero. Let
P(z) satisfy the conditions (H) and (G) and k > 3 be derivative index of P(x).
Let S be the set of roots of P(x) =0 and u € (Cp, N\ S),u # 0. Then (S, {u}) is
a bi-URS for p-adic meromorphic functions on Cp'.

Proof. Without loss of generality, we may assume that u = oo. Suppose
that f and g are two non-constant meromorphic functions on CJ' satisfying
Ei(f,S)=Ei(g,5), Ei(f,0) = Ei(g,), for alli =1,...,m. By Theorem 4.1,
P(f)/P(g) = c for some non-zero constant. By Theorem 4.6, P(x) is a strong
uniqueness polynomial for p-adic meromorphic function on C'. Thus f = g. So
(S, {u}) is a bi-URS for p-adic meromorphic functions on C}". ]
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