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1. Introduction

Let f be a non-zero holomorphic function on Dr(m) , a = (a1, . . . , am) ∈ Dr(m) ,
and

f =
∞∑

|γ|=0

aγ(z1 − a1)γ1 . . . (zm − am)γm , z(m) ∈ Dr(m) .

For each i = 1, 2, . . ., m, write

f(z(m)) =
∞∑

k=0

fi,k
̂(zi − ai)(zi − ai)k.

Set

gi,k(z1, ..., zi−1, zi+1, ..., zm) = fi,k
̂(zi − ai),

bi,k = gi,k(a1, ..., ai−1, ai+1, ..., am).
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Then

fi,a(z) =
∞∑

k=0

bi,k(zi − ai)k.

Set

vi,f (a) =
{

min
{
k : bi,k 6= 0

}
if fi,a(z) 6≡ 0

+ ∞ if fi,a(z) ≡ 0.

If f(a) = 0, then a is a zero of f(z(m)). Then the number vi,f (a) is called the
ith partial multiplicity of a.

For a point d ∈ Cp we define the function vd
f : Cm

p → (N ∪ {+∞})m by
vd

f (a(m)) = (v1,f−d(a(m)), . . . , vm,f−d(a(m))).

Now let f =
f1

f2
be a non-constant meromorphic function on Cm

p , where f1, f2

are two holomorphic functions on Cm
p having no common zeros. For a point d ∈

Cp we define the function vd
f : Cm

p → (N∪{+∞})m by vd
f (a(m)) = v0

f1−df2
(a(m))

and write vd
f (a(m)) = (vd

1,f (a(m)), . . . , vd
m,f (a(m))), v∞f (a(m)) = v0

f2
(a(m)) and

write v∞f (a(m)) = (v∞1,f (a(m)), . . . , v∞m,f (a(m))).

For a subset S of Cp we set

Ei(f, S) =
⋃

d∈S

{
(qi, a(m)) ∈ (N∪{+∞})×Cm

p |f(a(m))−d = 0, vd
i,f (a(m)) = qi

}
,

Ei(f, S ∪ {∞}) = Ei(f, S)
⋃ {

(qi, a(m)) ∈ (N ∪ {+∞}) × Cm
p |v∞i,f (a(m)) = qi

}
,

i = 1, 2..., m.

A subset S of Cp ∪ {∞} is called a unique range set (URS for short) for
p-adic meromorphic functions of several variables if for any pair of non-constant
meromorphic functions f and g on Cm

p the condition Ei(f, S) = Ei(g, S), i =
1, . . . , m, implies f = g. Similarly, let S, T be two subsets of Cp ∪ {∞} with
S ∩ T = ∅. (S, T ) is called a bi-URS for p-adic meromorphic functions of several
variables if for any pair of non-constant meromorphic functions f and g on Cm

p

the conditions Ei(f, S) = Ei(g, S) and Ei(f, T ) = Ei(g, T ), i = 1, . . . , m, imply
f = g.

Several interesting results about URS and bi-URS for entire and meromor-
phic functions on Cp have been studied in [6, 9, 11]. In[9], Khoai and An gave
sufficient conditions of URS and bi-URS in terms of uniquenees polynomials and
strong uniqueness polynomials for non-archimedean meromorphic functions of
one variable. The main tool cited in the above papers is the Nevanlinna theory in
one-dimensional non-archimedean case. In this paper by using some arguments
in [3, 9] and the p-adic Nevanlinna theory in high dimension, developed in [1,
2, 3, 5, 7, 8], we give some cases of uniqueness polynomials for p-adic meromor-
phic functions in several variables and show the existence of a bi-URS for p-adic
meromorphic functions in several variables of the form ({a1, a2, a3, a4}, {u}).
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2. Height of p-adic Holomorphic Functions of Several Variables

Let p be a prime number, Qp the field of p-adic numbers and Cp the p-adic
completion of the algebraic closure of Qp. The absolute value in Qp is normalized
so that |p| = p−1. We further use the notion v(z) for the additive valuation on
Cp which extends ordp. We use the notations

b(m) = (b1, ..., bm), bi(b) = (b1, ..., bi−1, b, bi+1, ..., bm),
b(m,is) = bi(bis),

(̂bi) = (b1, ..., bi−1, bi+1, ..., bm),
Dr =

{
z ∈ Cp : |z| 6 r, r > 0

}
,

D<r> =
{
z ∈ Cp : |z| = r, r > 0

}
,

Dr(m) = Dr1 × · · · × Drm , where r(m) = (r1, . . . , rm) for ri ∈ R∗
+,

D<r(m)> = D<r1> × · · · × D<rm>,
|γ| = γ1 + · · ·+ γm,
zγ = zγ1

1 ...zγm
m

rγ = rγ1
1 ...rγm

m ,
γ = (γ1, ..., γm),

where γi ∈ N, | . | = | . |p, log = logp .
Notice that the set of (r1, ..., rm) ∈ R∗m

+ such that there exist x1, ..., xm ∈ Cp

with |xi| = ri, i = 1, ..., m, is dense in R∗m
+ . Therefore, without loss of generality

one may assume that D<r(m)> 6= ∅.
Let f be a non-zero holomorphic function in Dr(m) and

f =
∑

|γ|≥0

aγzγ , |zi| 6 ri for i = 1, . . . , m.

Then we have
lim

|γ|→∞
|aγ |rγ = 0.

Hence, there exists a (γ1, . . . , γm) ∈ Nm such that |aγ|rγ is maximal.
Define

|f |r(m) = max
06|γ|<∞

|aγ |rγ .

Lemma 2.1.([8]) For each i = 1, . . . , m, let ri1, . . . , riq be positive real numbers
such that ri1 ≥ · · · ≥ riq . Let fs(z(m)), s = 1, 2, . . . , q, be q non-zero holomorphic
functions on Dr(m,is) . Then there exists u(m,is) ∈ Dr(m,is) such that

|fs(u(m,is))| = |fs|r(m,is) , s = 1, 2, . . . , q.

Definition 2.2. The height of the function f(z(m)) is defined by

Hf (r(m)) = log |f |r(m) .

If f(z(m)) ≡ 0, then set Hf (r(m)) = −∞.
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Let f be a non-zero holomorphic function in Dr(m) and

f =
∑

|γ|≥0

aγzγ , |zi| 6 ri for i = 1, . . . , m.

Write

f(z(m)) =
∞∑

k=0

fi,k (̂zi)zk
i , i = 1, 2, . . . , m.

Set

If (r(m)) =
{

(γ1, . . . , γm) ∈ Nm : |aγ|rγ = |f |r(m)

}
,

n1i,f (r(m)) = max
{

γi : ∃ (γ1, . . . , γi, . . . , γm) ∈ If (r(m))
}

,

n2i,f (r(m)) = min
{

γi : ∃ (γ1, . . . , γi, . . . , γm) ∈ If (r(m))
}

,

ni,f (0, 0) = min
{

k : fi,k(̂zi) 6≡ 0
}
,

νf (r(m)) =
m∑

i=1

(
n1i,f (r(m)) − n2i,f (r(m))

)
.

r(m) is called a critical point if νf (r(m)) 6= 0.
For a fixed i (i = 1, . . . , m) we set for simplicity

ni,f (0, 0) = `, k1 = n1i,f (r(m)), k2 = n2i,f (r(m)).

Then there exist multi-indices γ = (γ1, . . . , γi, . . . , γm) ∈ If (r(m)) and µ =
(µ1, . . . , µi, . . . , µm) ∈ If (r(m)) such that γi = k1, µi = k2.

We consider the following holomorphic functions on Dr(m)

f`(z(m)) = fi,`(̂zi)z`
i , fk1(z(m)) = fi,k1 (̂zi)zk1

i , fk2(z(m)) = fi,k2 (̂zi)zk2
i .

The functions are not identically zero.
Set

Uif,r(m) =
{
u = u(m) ∈ Dr(m) :|f`(u)| = |f`|r(m) , |f(u)| = |f |r(m) ,

|fk1(u)| = |fk1 |r(m) , |fk2(u)| = |fk2 |r(m)

}
,

where i = 1, . . . , m. By Lemma 2.1, Uif,r(m) is a non-empty set. For each
u ∈ Uif,r(m) , set

fi,u(z) = f(u1, . . . , ui−1, z, ui+1, . . . , um), z ∈ Dri .

Theorem 2.3. Let f(z(m)) be a holomorphic function on Dr(m) . Assume that
f(z(m)) is not identically zero. Then for each i = 1, . . . , m, and for all u ∈
Uif,r(m) , we have
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1) Hf (r(m)) = Hfi,u(ri),
2) n1i,f (r(m)) is equal to the number of zeros of fi,u in Dri ,
3) n1i,f (r(m))− n2i,f(r(m)) is equal to the number of zeros of fi,u on D<ri>.
For the proof, see [8, Theorem 3.1].

From Theorem 2.3 we see that f(z(m)) has zeros on D<r(m)> if and only if r(m)

is a critical point.
For a an element of Cp and f a holomorphic function on Dr(m) , which is not

identically equal to a, define

ni,f (a, r(m)) = n1i,f−a(r(m)), i = 1, . . . , m.

Fix real numbers ρ1, . . . , ρm with 0 < ρi 6 ri, i = 1, . . . , m.
For each x ∈ R, set

Ai(x) = (ρ1, . . . , ρi−1, x, ri+1, . . . , rm), i = 1, . . . , m,

Bi(x) = (ρ1, . . . , ρi−1, x, ρi+1, . . . , ρm), i = 1, . . . , m.

Define the counting function Nf (a, r(m)) by

Nf (a, r(m)) =
1

lnp

m∑

i=1

ri∫

ρi

ni,f (a, Ai(x))
x

dx.

If a=0, then set Nf (r(m)) = Nf (0, r(m)).
Then

Nf (a, Bi(ri)) =
1

lnp

ri∫

ρi

ni,f (a, Bi(x))
x

dx.

For each i = 1, 2, ...,m, set

k1,i = n1i,f (Ai(ri)), k2,i = n2i,f (Ai(ri)),

U i
if,Ai(ri)

=
{
ui = ui

(m) ∈DAi(ri) : |f`(ui)| = |f`|Ai(ri), |f(ui)| = |f |Ai(ri),

|fk1,i(u
i)| = |fk1,i|Ai(ri), |fk2,i(u

i)| = |fk2,i |Ai(ri)

}
,

Γi = {Ai(x) : Ai(x) is a critical point, 0 < x 6 ri}.

By Lemma 2.1 and Theorem 2.3, Γi is a finite set. Suppose that Γi, i = 1, . . . , m,
contains n elements Ai(xj), j = 1, . . . , n. From this and Lemma 2.1 it follows
that

U i
if,Ai(ri)

= {ui = ui
(m) ∈ U i

if,Ai(ri)
: ∃ui

i(u
j) ∈ U i

if,Ai(xj), j = 1, . . . , n} 6= ∅,

i = 1, . . . , m.
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Lemma 2.4. 1) Let f be a non-zero holomorphic function on Dr(m) . Then for
each i = 1, 2, ..., m, and for all ui ∈ U i

if,Ai(ri)
, we have

nf
i,ui

(x) = ni,f ◦ Ai(x), ρi 6 x 6 ri,

2) Let fs(z(m)), s = 1, 2, . . . , q, be q non-zero holomorphic functions on Dr(m) .

Then for each i = 1,2,..., m, there exists ui ∈ U i
ifs,Ai(ri)

for all s = 1, . . . , q.
The result can be proved easily by using Lemma 2.1 and Theorem 2.3.

Theorem 2.5. Let f be a non-zero holomorphic function on Dr(m) . Then

Hf (r(m)) − Hf (ρ(m)) = Nf (r(m)).

The proof of Theorem 2.5 follows immediately from [8, Theorem 3.2].
Set

v =(u1, . . . , um), ui ∈ U i
if,Ai(ri)

,

Nfv (r(m)) =Nf1,u1 (r1) + · · ·+ Nfm,um (rm),

V ={v : Nfv (r(m)) = Nf (r(m))}.
By Lemma 2.4 and [6], V is a non-empty set,

Nfv (r(m)) =
∑

1
ρ1<|a|6r1

(v(a) + log r1) + nf1,u1(0, ρ1)(log r1 − log ρ1) + . . .

+
∑

m
ρm<|a|6rm

(v(a) + log rm) + nfm ,um(0, ρm)(log rm − log ρm),
(2.1)

where ∑
i

ρi<|a|6ri

(v(a) + log ri)

is taken on all of zeros a of fi,ui (counting multiplicity) with ρi < |a| 6 ri, i =
1, 2, ..., m. Notice that, the sums in (2.1) are finite sums.
Denote by N fv (r(m)) the sum (2.1), where every zero a of the functions fi,ui ,
i = 1, . . . , m, is counted ignoring multiplicity. Set

N f (r(m)) = max
v∈V

N fv (r(m)).

From Lemma 2.4 it follows that one can find ui ∈ U i
if,Ai(ri)

and v = (u1, . . . , um)
such that Nf

(
r(m)

)
= Nfv (r(m)).

Now let C be some condition. Let U i∗
i,Ai(ri)

⊂ U i
if,Ai(ri)

, U i∗
i,Ai(ri)

6= ∅. For
each r(m) and ui ∈ U i∗

i,Ai(ri)
, set

vi,f (ui
i(z); C) =

{
vi,f (ui

i(z)) if ui
i(z) satisfies the condition C

0 otherwise

nfi,ui (ri; C) =
∑

|z|6ri

vi,f (ui
i(z); C),

Nf

(
r(m); C

)
= min

v∈ V

1
ln p

m∑

i=1

∫ ri

ρi

nfi,ui (x; C)

x
dx,

Nfv (r(m); C) =Nf1,u1 (r1; C) + · · ·+ Nfm,um (rm; C).
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From Lemma 2.4 it follows that one can find ui ∈ U i∗
i,Ai(ri)

and v = (u1, . . . , um)
such that Nf

(
r(m); C

)
= Nfv (r(m); C).

If γ is a multi-index and f is a meromorphic function of m variables, then
we denote by ∂γf the partial derivative

∂|γ|f

∂zγ1
1 . . .∂zγm

m
.

Theorem 2.6. Let f be a non-zero entire function on Cm
p and γ a multi-index

with | γ |> 0. Then

H∂γf (Be(re)) − Hf (Be(re)) 6 − | γ | log re + O(1).

The proof of Theorem 2.6 follows immediately from [5, Lemma 4.1].

3. Height of p−adic Meromorphic Functions of Several Variables

Let f =
f1

f2
be a meromorphic function on Dr(m) (resp., Cm

p ), where f1, f2 are

two holomorphic functions on Dr(m) (resp., Cm
p ), have no common zeros, and

a ∈ Cp.
We set

Hf (r(m)) = max
16i62

Hfi(r(m)),

Nf (a, r(m)) = Nf1−af2(r(m)),

Nf (∞, r(m); C) = Nf2 (r(m); C),

and
Nf (a, r(m); C) = Nf1−af2(r(m); C).

Lemma 3.1. Let f =
f1

f2
be a non-constant meromorphic function on Cm

p .

Then there exists a multi-index γ1 = (0, . . . , 0, γ1e, 0, . . . , 0) such that γ1e = 1

and ∂γ1f =
∂γ1f1.f2 − ∂γ1f2.f1

f2
2

and the Wronskian

W = W (f1, f2) = det
(

f1 f2

∂γ1f1 ∂γ1f2

)

is not identically zero.
For the proof, see [5, Lemma 4.2].
Let a1, . . .aq ∈ Cp. Set Gj = f1 − ajf2, j = 1, . . . q, and Gq+1 = f2. In

Theorem 3.2 we take C to be the following condition: Gj(z(m)) 6= 0 with some
z(m) ∈ Cm

p and for all j = 1, . . . , q + 1.
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Set

N0,W (r(m)) = NW (0, r(m); C),
N0,∂γ1f (r(m)) = N0,W (r(m)).

Theorem 3.2. Let f be a non-constant meromorphic function on Cm
p and

aj ∈ Cp, j = 1, . . . , q. Then

(q − 1)Hf (Be(re))

6
q∑

j=1

N f (aj , Be(re)) + N f (∞, Be(re)) − N0,∂γ1f (Be(re)) − log re + O(1).

Proof. Set G = {Gβ1 . . .Gβq−1}, where (β1, . . . , βq−1) is taken on all different
choices of q−1 numbers in the set {1, . . . , q+1}, and Gj = f1−ajf2, j = 1, . . . , q,
and Gq+1 = f2. Set HG(r(m)) = max

(β1...βq−1)
HGβ1 ...Gβq−1

(r(m)). �

We need the following lemma.

Lemma 3.3. We have HG(r(m)) ≥ (q−1)Hf (r(m))+O(1), where the O(1) does
not depend on r(m).

Proof. We have

HG(r(m)) = max
(β1,... ,βq−1)

HGβ1 ...Gβq−1
(r(m))

= max
(β1,... ,βq−1)

∑

16j6q−1

HGβi
(r(m)).

Assume that for a fixed r(m), the following inequalities hold

HGβ1
(r(m)) ≥ HGβ2

(r(m)) ≥ . . . ≥ HGβq+1
(r(m)).

Then

HG(r(m)) = HGβ1
(r(m)) + HGβ2

(r(m)) + · · ·+ HGβq−1
(r(m)). (3.1)

Since a1, . . . , aq are distinct numbers in Cp, then

fi = bi0Gβq + bi1Gβq+1 , i = 1, 2,

where bi0 , bi1 are constants, which do not depend on r(m). It follows that

Hfi(r(m)) 6 max
06j61

HGβq+j
(r(m)) + O(1).

Therefore, we obtain

Hfi(r(m)) 6 HGβj
(r(m)) + O(1),
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for j = 1, . . . , q − 1 and i = 1, 2. Hence,

Hf (r(m)) = max
16i62

Hfi(r(m)) 6 HGβj
(r(m)) + O(1), (3.2)

for j = 1, . . . , q−1. Summarizing (q−1) inequalities (3.2) and by (3.1), we have

HG(r(m)) ≥ (q − 1)Hf (r(m)) + 0(1).

Now we prove Theorem 3.2. Denote by W (g1, g2) the Wronskian of the two
entire functions g1, g2 with respect to the γ1 as in Lemma 3.1.

Since f is non-constant, we have W (f1, f2) 6≡ 0. Let (α1, α2) be two distinct
numbers in {1, . . . , q+1}, and (β1, . . . , βq−1) be the rest. Note that the functions
fi can be represented as linear combinations of Gα1, Gα2. Then we have

W (Gα1 , Gα2) = c(α1,α2)W (f1, f2),

where c(α1,α2) = c is a constant, depending only on (α1, α2). We denote

A = A(α1, α2) =
W (Gα1, Gα2)

Gα1Gα2

= det




1 1

∂γ1Gα1

Gα1

∂γ1Gα2

Gα2


 .

Hence
G1 . . .Gq+1

W (f1, f2)
=

cGβ1 . . .Gβq−1

A
· (3.3)

Set Li = ∂γ1Gαi

Gαi
, i = 1, 2. Then

log |A|Be(re) 6 max
16i62

log |Li|Be(re).

By Theorem 2.6
log |Li|Be(re) 6 −|γ1| log re + 0(1).

Because |γ1| = 1
log |Li|Be(re) 6 − log re + 0(1). (3.4)

By (3.3), we obtain

q+1∑

i=j

HGj (Be(re)) − HW (Be(re)) = HGβ1 ...Gβq−1
(Be(re)) − log |A|Be(re) + O(1).

From this and (3.4), we have

HG(Be(re)) = max
(β1,... ,βq−1)

HGβ1 ...Gβq−1
(Be(re))

6
q+1∑

j=1

HGj (Be(re)) − HW (Be(re)) − log re + O(1).
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By Lemma 3.3

(q − 1)Hf (Be(re)) 6
q+1∑

j=1

HGj (Be(re)) − HW (Be(re)) − log re + O(1).

Thus

(q − 1)Hf (Be(re)) + HW (Be(re)) 6
q+1∑

j=1

HGj (Be(re)) − log re + O(1). (3.5)

By Theorem 2.5
HW (Be(re)) = NW (Be(re)) + 0(1),

HGj (Be(re)) = NGj (Be(re)) + 0(1).

From this and (3.5) we obtain

(q − 1)Hf (Be(re)) + NW (Be(re)) 6
q+1∑

j=1

NGj (Be(re)) − log re + O(1). (3.6)

For a fixed Be(re), we consider non-zero entire functions W, G1, . . . , Gq on
DBe(re). From Lemma 2.4 it follows that one can find ue ∈ Ue

Gj ,Be(re) and
ue ∈ Ue

W,Be(re), j = 1, . . . , q, such that

NW (Be(re)) = NWe,ue (re), NGj (Be(re)) = N(Gj)e,ue (re). (*)

Assume that U e∗
e,Be(re) is the set which contains elements ue with ue as in the

statement by (*). Now let ue
e(x) be a zero of Gj having the eth partial multiplicity

equal to k, (k 6= +∞), k ≥ 2. Since γ1 = (0, . . . , 0, γ1e, 0, . . . , 0) with γ1e = 1,
vi,∂γ1Gj (ue

e(x)) = k − 1 if i = e.
On the other hand,

W (Gα1 , Gα2) = c(α1,α2)W,

where (α1, α2) are two distinct numbers in {1, . . . , q + 1}. Therefore ue
e(x) is a

zero of W having the eth partial multiplicity at least k − 1.

Now we consider the function F =
q∏

j=1

Gj.

Because F is not a constant, F has zeros. Let ue
e(x) be a zero of F. By the

hypothesis, a1, . . . , aq are distinct numbers, from this it follows that there exists
one function Gj such that Gj(ue

e(x)) = 0. Therefore

q∑

j=1

N(Gj )e,ue (re) − NWe,ue (re) =
q∑

j=1

N (Gj)e,ue (re) − N0,We,ue (re).
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Thus

q∑

j=1

NGj (Be(re)) − NW (Be(re))

6
q∑

j=1

N (Gj)e,ue (re) − N0,W (Be(re))

6
q∑

j=1

NGj (Be(re)) − N0,W (Be(re)).

From this and (3.6) the proof of Theorem 3.2 is complete. �

4. Uniqueness Polynomials and bi-URS for p-adic Meromorphic Func-
tions in Several Variables

Theorem 4.1. Let f, g be two non-zero entire funtions on Cm
p such that v0

f = v0
g

on Cm
p . Then f = cg where c is a non-zero constant in Cp.

Proof. Take r1, . . . , rm > 0 such that f, g have no zeros in D<r(m)>. If f is a non-
zero constant then so is g. Therefore f = cg. Assume that f is non-constant.
Since v0

f = v0
g , g is also non-constant. Let a = (a1, . . . , am), b = (b1, . . . , bm)

be two any elements of D<r(m)>. Set Ci(bi) = (b1, . . . , bi, ai+1, . . . , am), i =
1, . . . , m, By v0

f = v0
g , vi,f (z(m)) = vi,g(z(m)), i = 1, . . . , m. Then

fi,Ci(bi) = cigi,Ci(bi),

with ci = f(a)
g(a) = f(Ci(bi))

g(Ci(bi))
and ci = ci+1, i = 1, 2, ..., m− 1. From this we have

f(a)
g(a)

=
f(b)
g(b)

for all a, b ∈ Dr<m> .

Set

c =
f(a)
g(a)

, a ∈ D<r(m)>, h = f − cg.

Asume that h is not identically zero. Consider h, f, g in D<r(m)>. By Lemma 2.2,
there exists u ∈ D<r(m)> such that hi,u, fi,u, gi,u are not identically zero, i =
1, 2, . . . , m. We have fi,u = c′gi,u, c′ = f(u)

g(u) . Theorefore c = c′ and hi,u =
fi,u − cgi,u identically zero. From this we get a contradiction. So, f = cg. �

Definition 4.2. We say that a non-constant polynomial P (x) is a strong
uniqueness polynomial for p-adic meromorphic functions on Cm

p if the identity
P (f) = cP (g) implies f = g for any pair of p-adic non-constant meromorphic
functions f, g on Cm

p and for any non-zero constant c ∈ Cp. Similarly, we say
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that a non-constant polynomial P (x) is a uniqueness polynomial for p-adic mero-
morphic functions in Cm

p if the identity P (f) = P (g) implies f = g. Let P (x)
be a polynomial of degree q without multiple zeros and its derivative is given by

P ′(x) = a(x − d1)q1 . . . (x − dk)qk ,

where q1 + · · ·+ qk = q − 1 and d1, . . . , dk are distinct zeros of P ′. The number
k is called the derivative index of P .

Definition 4.3. A non-zero polynomial P (x) is said to satisfy the condition
(H) if P (dl) 6= P (dm) for 1 6 ` < m 6 k. (See [9]).

We may assume that d1, . . . , dk ∈ Cp\{0}.

Let f =
f1

f2
be a non-constant meromorphic function on Cm

p , where f1, f2 are

two holomorphic functions on Cm
p having no common zeros. For a point a ∈ Cp

we define the function
χa

f : Cm
p → N

by

χa
f (z(m)) =

{
0 if f(z(m)) 6= a

1 if f(z(m)) = a

If a = 0, then set χa
f = χf .

If a = ∞, define χ∞
f (z(m)) = −1 if z(m) is a pole of f . For a condition C, we

define

χ∗
∂γ1f (z(m); C) =





χ∂γ1f (z(m)

)
if z(m)satisfies the condition C and

f(z(m))
)
6= dj for any j,

0 otherwise.

In Theorem 4.4 and Theorem 4.6 the condition C is the condition f(z(m)) = dj

and the condition C′ is the condition g(z(m)) = dj with j = 1, 2, ..., k.

Theorem 4.4. Let P (x) ∈ Cp[x] have no multiple zeros, have derivative index
k ≥ 3, and satisfy the condition (H). Then P (x) is a uniqueness polynomial for
p-adic meromorphic functions on Cm

p .

Proof. Suppose that there are two distinct non-constant meromorphic functions
f and g on Cm

p such that P (f) = P (g). From this and by Lemma 3.1 there
exists a multi-index γ1 = (0, . . . , γ1e, 0, . . . , 0) with γ1e = 1 such that ∂γ1f 6≡ 0
and ∂γ1g 6≡ 0.

Set
ϕ =

1
f
− 1

g
.

Then, ϕ 6≡ 0 and Hϕ

(
Be(re)

)
6 Hf

(
Be(re)

)
+Hg

(
Be(re)

)
. From P (f) = P (g)

we conclude that if f(z(m)) = ∞ then g(z(m)) = ∞ and if g(z(m)) = ∞ then
f(z(m)) = ∞. Therefore χ∞

f

(
z(m)

)
= χ∞

g

(
z(m)

)
. On the other hand, we have

∂γ1f(z(m))P ′(f(z(m)) = ∂γ1g(z(m)) P ′(g(z(m))).
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Since P satisfies the condition (H), we obtain

χdj
f (z(m)) 6 χdj

g (z(m)) + χ∗
∂γ1g(z(m); C).

From this we have

k∑

j=1

χdj
f

(
z(m)

)
− χ∞

f

(
z(m)

)

6
k∑

j=1

(
χdj

g (z(m)) + χ∗
∂γ1g(z(m); C)

)
− χ∞

g (z(m))

6 χ0
ϕ(z(m)) +

k∑

j=1

χ∗
∂γ1g(z(m); C).

Therefore, applying Theorem 3.2 to the function f and values d1, . . .dk we have

(k − 1) Hf (Be(re))

6
k∑

j=1

Nf (dj, Be(re)) + Nf (∞, Be(re)) − N0,∂γ1f (Be(re)) − log re + 0(1)

6 Nϕ (Be(re)) + N0,∂γ1g (Be(re); C) − N0,∂γ1f (Be(re)) − log re + O(1).

Similarly

(k − 1)Hg (Be(re))
6 Nϕ (Be(re)) + N0,∂γ1f (Be(re); C′) − N0,∂γ1g (Be(re)) − log re + O(1).

Summing up these inequalities and using Theorem 2.5, we obtain

(k − 1) (Hf (Be(re)) + Hg (Be(re)))
62 (Hf (Be(re)) + Hg (Be(re))) − N0,∂γ1f (Be(re)) − N0,∂γ1g (Be(re))

+ N0,∂γ1g (Be(re); C) + N0,∂γ1f (Be(re); C′) − 2 log re + O(1).

Since
N0,∂γ1g (Be(re); C) 6 N0,∂γ1g (Be(re)) ,

and
N0,∂γ1f (Be(re); C′) 6 N0,∂γ1f (Be(re))

we have
(k − 3) (Hf (Be(re)) + Hg (Be(re))) + 2 log re 6 O(1).

It follows that k − 3 < 0 and we get a contradiction. Theorem 4.4 is proved. �

Definition 4.5.([9]) A non-zero polynomial P (x) is said to satisfy the condition

(G) if
k∑

i=1

P (di) 6= 0.
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Theorem 4.6. Let P (x) ∈ Cp[x] be a polynomial having no multiple zeros.
Let P (x) satisfy the conditions (H) and (G) and k ≥ 3 be the derivative index
of P (x). Then P (x) is a strong uniqueness polynomial for p-adic meromorphic
functions on Cm

p .

Proof. By Theorem 4.4, P (x) is a uniqueness polynomial. Asume that P (x) is
not a strong uniqueness polynomial for p-adic meromorphic functions on Cm

p .
Then there exist two distinct non-constant meromorphic functions f and g on
Cm

p such that P (f) = cP (g) for some non-zero constant c. We consider the set

A =
{
(`, h) : P (d`) = cP (dh)

}

and denote the number of elements of A by k0. We set k0 = 0 if A = ∅. For the
rest of the proof we need three lemmas below.

Lemma 4.7. In the above situation, if f is not a Mobius transformation of g,
then k0 = k.

Proof. Since P (x) satisfies the condition (H), if (`1, h1), (`2, h2) are elements of
A such that h1 = h2 or `1 = `2, then (`1, h1) = (`2, h2). From this k0 6 k.

Consider the possible cases:
Case 1. k0 ≥ 2. After a suitable change of indices, we may assume that

P (d1) = cP (dt(1)), . . . , P (dk0) = cP (dt(k0)).

Define

ϕ =
1
f
−

dt(1) − dt(2)

(d2 − d1)(g − dt(1)) + d1(dt(2) − dt(1))
.

Then ϕ 6≡ 0. If f(z(m)) = ∞ then g(z(m)) = ∞. If f(z(m)) = dj , 1 6 j 6
k0, z(m) ∈ Cm

p , then, g(z(m)) = dt(j) or ∂γ1g(z(m)) = 0, because P (x) satisfies
the condition (H). If f(z(m)) = dj, k0 +1 6 j 6 k, then P (dj) 6= cP (dj). Hence
g(z(m)) 6= dj for every k0 + 1 6 j 6 k. This implies ∂γ1g(z(m)) = 0. Thus

k∑

j=1

χdj
f

(
z(m)

)
− χ∞

f

(
z(m)

)

6
k0∑

j=1

(
χ

dt(j)
g

(
z(m)

)
+ χ∂γ1g

(
z(m); C

))
+

k∑

j=k0+1

χ∗
∂γ1g

(
z(m); C

)
− χ∞

g

(
z(m)

)

6 χ0
ϕ

(
z(m)

)
+

k0∑

j=3

χ
dt(j)
g

(
z(m)

)
+

k∑

j=1

χ∗
∂γ1g

(
z(m); C

)
.
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Applying Theorem 3.2 to the function f and values d1, . . .dk, we have

(k − 1)Hf (Be(re))

6N f

(
∞, Be(re)

)
+

k∑

j=1

N f

(
dj, Be(re)

)
− N0,∂γ1f

(
Be(re)

)
− log re + O(1)

6Nϕ

(
Be(re)

)
+

k0∑

j=3

N g

(
dt(j), Be(re)

)

+ N0,∂γ1g

(
Be(re); C

)
− N0,∂γ1f

(
Be(re)

)
− log re + O(1).

Similarly

(k − 1)Hg(Be(re))

6Nϕ

(
Be(re)

)
+

k0∑

j=3

Nf

(
dt(j), Be(re)

)

+ N0,∂γ1f

(
Be(re); C′

)
− N0,∂γ1g

(
Be(re)

)
− log re + 0(1).

Summing up these inequalities and using Theorem 2.5 we get

(k − 1) (Hf (Be(re)) + Hg (Be(re)))
62 (Hf (Be(re)) + Hg (Be(re)))

+ (k0 − 2) (Hf (Be(re)) + Hg (Be(re))) − 2 log re + O(1).

So
(k − k0 − 1) (Hf (Be(re)) + Hg (Be(re))) + 2 log re 6 O(1).

From this we have k0 > k − 1. Hence k0 = k.

Case 2. k0 = 0. Set ϕ =
1
f
−

1
g
. As in the proof of Theorem 4.4, we obtain k < 3,

a contradiction. So k0 6= 0.

Case 3. k0 = 1. Then there exists a unique element (`, h) such that P (d`) =
cP (dh). Set

ϕ =
1
f
− dh

d`g
.

Using Theorem 3.2 and by using the same assymptions as in the proof of Theorem
4.4, we obtain k < 3, a contradiction. So k0 6= 1.
Hence, the proof of Lemma 4.7 is complete. �

Lemma 4.8. Under the assymptions of Theorem 4.6, we have k0 = k.

Proof. We consider the following cases:
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Case 1. f =
c0g + c1

c2g + c3
.

By P (f) = cP (g), and f and g are not constants, c2 = 0 and c3 6= 0. Then f =
ag + b with a =

c0

c3
, b =

c1

c3
and a 6= 0. Since P (f) = cP (g), P (ag + b) = cP (g).

From this we have
aP ′(ag + b) = cP ′(g).

Thus

aq
(
g − d1 − b

a

)q1

. . .
(
g − dk − b

a

)qk

= c
(
g − d1

)q1
. . .

(
g − dk

)qk
.

This implies that there exists a permutation
(
t(1), . . . , t(k)

)
of (1, . . . , k) such

that
dt(1) =

d1 − b

a
, . . . , dt(k) =

dk − b

a
.

Then
cP

(
dt(`)

)
= cP

(d` − b

a

)
= P

(
a
d` − b

a
+ b

)
= P (d`)

for all ` = 1, . . . , k. So k = k0.

Case 2. f 6= c0g + c1

c2 + c3
.

By Lemma 4.7, k = k0.
Thus Lemma 4.8 is proved. �

Lemma 4.9. Let k ≥ 3 and P (x) satisfy the condition (H). If there are two
distinct non-constant meromorphic functions f and g on Cm

p such that P (f) =
cP (g) for some non-zero constant, then there exists a permutation (t(1), . . . , t(k))
of (1, . . . , k) such that

c =
P (d1)

P (dt(1))
= · · · = P (dk)

P (dt(k))
.

Proof. Lemma 4.9 follows from Lemma 4.8. �

We now continue to prove Theorem 4.6. Assume P (f) = cP (g). If c = 1,
then by Theorem 4.4, f = g. If c 6= 1, by Lemma 4.9 there exists a permutation(
t(1), . . . , t(k)

)
of

(
1, . . . , k) such that

c =
P (d1)

P (dt(1))
= · · · =

P (dk)
P (dt(k))

6= 1.

Since P satisfies the condition (G), we obtain

c =
P (d1) + P (d2) · · ·+ P (dk)

P (dt(1)) + P (dt(2)) + · · ·+ P (Pt(k))
= 1,
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and we get a contradiction. The proof of Theorem 4.6 is complete. �

Theorem 4.10. Let P (x) ∈ Cp[x] be a polynomial having no multiple zero. Let
P (x) satisfy the conditions (H) and (G) and k ≥ 3 be derivative index of P (x).
Let S be the set of roots of P (x) = 0 and u ∈ (Cp r S), u 6= 0. Then (S, {u}) is
a bi-URS for p-adic meromorphic functions on Cm

p .

Proof. Without loss of generality, we may assume that u = ∞. Suppose
that f and g are two non-constant meromorphic functions on Cm

p satisfying
Ei(f, S) = Ei(g, S), Ei(f,∞) = Ei(g,∞), for all i = 1, . . . , m. By Theorem 4.1,
P (f)/P (g) = c for some non-zero constant. By Theorem 4.6, P (x) is a strong
uniqueness polynomial for p-adic meromorphic function on Cm

p . Thus f = g. So
(S, {u}) is a bi-URS for p-adic meromorphic functions on Cm

p . �
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