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Abstract. The oscillation, convergence and boundedness of the solutions of some

nonlinear difference equations with multiple delay of the form

xn+1 = G(xn, xn−m1 , . . . , xn−mr), n = 0, 1, . . .

are investigated, where mi ∈ N0, ∀i = 1, . . . , r and G is a function mapping Rm+1

to R.
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1. Introduction

It is well-known that the difference equation

xn+1 = G(xn, xn−m1, . . . , xn−mr)

includes difference equations

xn+1 = λnxn +
r∑

i=1

αi(n)F (xn−mi), (1)

and
xn+1 = G(xn, xn−1, . . . , xn−m). (2)

——————————
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In [2, 5], the oscillation of solutions of the difference equation (1) was discussed.
In addition, the convergence and the boundedness of solutions of (1) were also
investigated in [5]. The authors in [1, 4] studied the global attractivity, the local
stability and the existence of positive periodic solutions of some equations, which
are special cases of (2).

Equation (2) includes many discrete versions of the most celebrated de-
lay differential equation for single species. For example, the Mackey-Glass
hematopoiesis model, the Lasota-Wazewska red blood model, and the Nichol-
son’s blowflies model.

Studying the population dynamics has attracted much attention from both
mathematicians and mathematical biologists recently. Many authors have inves-
tigated the extinction, persistence, global stability and the existence of positive
periodic solutions for several population models; see for example [3, 6–9] and
the references therein.

Motivated by the work above, in the present paper, we aim to study the
oscillation as well as nonoscillation of (1) and investigating the convergence,
boundedness of (2).

2. The Oscillation

Consider the difference equation (1), for n ∈ N, n > a for some a ∈ N, where
r, mi > 1, 1 6 i 6 r are fixed positive integers ;{λn}n, {αi(n)}n are sequences of
numbers and the function F is defined on R. Recall that, the solution {xn}n>a

of (1) is called oscillatory if for any n1 > a there exists n2 > n1 such that
xn2xn2+1 6 0. The difference equation (1) is said to be oscillatory if all its
solutions are oscillatory. The solution {xn}n>a of (1) is called nonoscillatory
if it is eventually positive or negative, i.e. there exists a n1 > a such that
xnxn+1 > 0 for all n > n1.

Theorem 1. Assume that λn = 1, ∀n ∈ N; αi(n) > 0, n ∈ N, 1 6 i 6 r;

xF (x) < 0, ∀x 6= 0; sup
x6=0

−F (x)
x

= M > 0. Then, (1) has a nonoscillatory

solution if the following holds

sup
n

r∑

i=1

αi(n) 6 1
M

mm∗

∗
(m∗ + 1)m∗+1

where m∗ = min{m1, m2, . . . , mr}, m∗ = max{m1, m2, . . . , mr}.

Proof. Setting vn =
xn

xn+1
and dividing (1) by xn, we obtain

1
vn

= 1 +
[ r∑

i=1

αi(n)
F (xn−mi)

xn−mi

mi∏

`=1

vn−`

]
, n ∈ N,

or

v−1
n = 1 −

r∑

i=1

αi(n)
[
−F (xn−mi)

xn−mi

] mi∏

`=1

vn−`, n ∈ N. (3)
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We shall prove that the equation (3) has a positive solution. Indeed, we
define

v−1 = v−2 = · · · = v−m∗ =
m∗ + 1

m∗
.

We have

v0 =
{

1 −
r∑

i=1

αi(0)
[
−F (x−mi )

x−mi

] mi∏

`=1

v−`

}−1

.

Since

0 6
r∑

i=1

αi(0)
[
−F (x−mi )

x−mi

] mi∏

`=1

v−` 6 M

r∑

i=1

αi(0)
mi∏

`=1

v−`

= M

r∑

i=1

αi(0)
(m∗ + 1

m∗

)mi

6 M

r∑

i=1

αi(0)
(m∗ + 1

m∗

)m∗

6 M · 1
M

mm∗

∗
(m∗ + 1)m∗+1

(m∗ + 1
m∗

)m∗

=
1

m∗ + 1
< 1,

we obtain 1 > 1−
∑r

i=1 αi(0)
[
−F (x−mi)

x−mi

] mi∏

`=1

v−` > 0 and therefore v0 > 1. We

can check that v0 6 m∗ + 1
m∗

. So, by (3) we have

v1 =
{

1 −
r∑

i=1

αi(1)
[
−F (x1−mi)

x1−mi

] mi∏

`=1

v1−`

}−1

6 m∗ + 1
m∗

and now by induction 1 < vn 6 m∗ + 1
m∗

for all n = 2, 3, . . . so that {vn} is a

positive solution of (3). Next, we define

xi−m∗ =
(m∗ + 1

m∗

)m∗−i

, 0 6 i 6 m∗, xn =
xn−1

vn−1
, n = 1, 2, . . . ,

it follows that {xn} is a nonoscillatory solution of (1). �

Example 1. Consider the difference equation

xn+1 = xn +
mm

(m + 1)m+1
(−xn−m). (4)

It is clear that this equation is a particular case of (1), where λn = 1, αi(n) =
1
r

mm

(m + 1)m+1
, ∀n ∈ N, 1 6 i 6 r, mi = m, 1 6 i 6 r and F (x) ≡ −x. It is
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easy to check that the assumptions of the Theorem 1 are satisfied. If we put

xi−m =
( mm

(m + 1)m+1

)i−m

β, 1 6 i 6 m, β 6= 0, the solution of (4) is

xn =
( mm

(m + 1)m+1

)n

β, n ∈ N,

which is nonoscillatory.

Theorem 2. Assume that λn = 1, ∀n ∈ N; αi(n) > 0, n ∈ N, 1 6 i 6
r; xF (x) < 0, −F (x) > x, ∀x 6= 0. Then, (1) is oscillatory if the following
inequality holds

lim inf
n→∞

1
m∗

n−1∑

`=n−m∗

αm∗ (`) >
m∗m∗

(m∗ + 1)m∗+1

where m∗ = max{m1, m2, . . . , mr}.

Proof. The proof of the Theorem 2 can be obtained similarly as the proof of
Theorem 3, in [2], so we omit it here. �

Theorem 3. Assume that λn = λ > 1, ∀n ∈ N; αi(n) > 0, n ∈ N, 1 6 i 6 r;
xF (x) < 0, ∀x 6= 0 and there exists i0 ∈ {1, 2, . . . , r} such that

∑

`∈N

1
λ`

αi0(`) = ∞. (5)

Suppose further that, if |u| > c then |F (u)| > c1 where c and c1 are positive
constants. Then, every solution {xn}n of (1) is either oscillatory or

lim
n→∞

xn

λn
= 0.

Proof. Let {xn}n be a nonoscillatory solution of (1). Suppose that {xn}n is
an eventually positive solution. Then there is n1 ∈ N such that xn > 0 and
xn−mi > 0 for all n > n1 and i = 1, 2, . . . , r. Since

xn+1

λn+1
− xn

λn
=

1
λn+1

(xn+1 − λxn) 6 0, ∀n > n1,

we have {xn

λn
}n>n1 is nonincreasing for all n > n1. Therefore, there exists

lim
n→∞

xn

λn
. Putting β = lim

n→∞

xn

λn
, we shall show β = 0. Suppose β > 0, then there

exists n2 > n1 such that
xn > βλn, ∀n > n2.

Putting n3 = n2 + mi0 , where i0 ∈ {1, 2, . . .r}, we get

xn−mi0
> βλn−mi0 > β, ∀n > n3
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and by hypotheses, there exists a positive constant β1 such that

|F (xn−mi0
)| = −F (xn−mi0

) > β1, ∀n > n3.

This implies
1

λn+1
αi0(n)F (xn−mi0

) 6 −β1
1

λn+1
αi0(n).

On the other hand, from (1) we have

xn+1

λn+1
− xn

λn
6 1

λn+1
αi0(n)F (xn−mi0

).

Hence

xn+1

λn+1
6 xn

λn
− β1

1
λn+1

αi0(n) =
xn

λn
− β1

λ

1
λn

αi0(n), ∀n > n3

or
xn

λn
6 xn3

λn3
− β1

λ

n−1∑

`=n3

1
λ`

αi0(`), ∀n > n3.

But, in view of (5) this leads to a contradiction to our assumption that xn > 0
eventually. The case xn < 0 eventually can be considered similarly. �

Theorem 4. If the given hypothesis on the parameter λ in Theorem 3 is replaced
by 0 < λ < 1, then every solution {xn}n of (1) is either oscillatory or

lim
n→∞

xn

n
= 0.

Proof. Let {xn}n be a nonoscillatory solution of (1). Suppose that {xn}n is an
eventually positive solution. We have

xn+1

λn+1
6 xn

λn
, ∀n ≥ n1.

This yields
xn+1 6 xn

λn
λn+1 = λxn < xn because λ ∈ (0, 1)

and
xn+1

n + 1
<

xn

n + 1
<

xn

n
, ∀n > n1.

Hence, {xn

n
}n is nonincreasing for all n > n1 and therefore lim

n→∞

xn

n
= β

exists. We can prove β = 0 similarly as in the proof of Theorem 3. Thus
Theorem 4 is proved. �

Theorem 5. Assume that λn = λ > 1, ∀n ∈ N; αi(n) > 0, n ∈ N, 1 6 i 6 r;
xF (x) < 0, ∀x 6= 0 and there exist i0 ∈ {1, 2, . . . , r} and L > 0 such that

|F (u)| > L, ∀u ∈ R and Lαi0(n)
1

λmi0+1 > 1, ∀n ∈ N.
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Then (1) is oscillatory.

Proof. Let {xn}n be as in Theorem 3 so that {
xn

λn
}n>n1 is nonincreasing for all

n > n1. Thus, for all n > n1 we have

xn−mi0
> xnλ−mi0

and

xn+1 = λxn +
r∑

i=1

αi(n)F (xn−mi)

6 λxn + αi0(n)F (xn−mi0
),

6 λxn − αi0(n)Lxn−mi0
,

6 λxn − αi0(n)Lxnλ−mi0 ,

= λxn[1 − αi0(n)Lλ−mi0−1],

= λxn[1 − Lαi0(n)
1

λmi0+1 ] 6 0.

This contradicts our assumption. �

3. Convergence and Boundedness

Consider the difference equation (2), where n ∈ N, x−m, x−m+1, . . . , x0 are pos-
itive initial values and the function

G(z0, z1, . . . , zm) : R+ × . . .× R+ → R+.

We give conditions under which every solution of this equation is convergent
or bounded. First of all we have

Lemma 1. If λ0 +λ1 +λ2 + · · ·+λm < 1 then there exists a number s > 1 such
that

λ0s + λ1s
2 + λ2s

3 + · · ·+ λmsm+1 < 1.

Lemma 2. Let {βn}n be a sequence which satisfies the following relations:

β0 = β−1 = · · · = β−m = 1,

βn+1 = λ0βn + λ1βn−1 + · · ·+ λmβn−m.

If P := λ0 + λ1 + λ2 + · · ·+ λm > 1 where λi ≥ 0, then βn > 1, ∀n ∈ N0 and βn

is monotone increasing for n ∈ N0.

Theorem 6. Assume that G(z0, z1, . . . , zm) 6
∑m

i=0 λizi and
∑m

i=0 λi < 1.
Then every solution of (2) converges to zero.
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Proof. Since G(z0, z1, . . . , zm) 6
∑m

i=0 λizi, for a positive number a > 1 we get

axn+1 = aG(xn,... ,xn−m) 6 aλ0xnaλ1xn−1 . . .aλmxn−m .

Put yn = axn . Clearly

yn+1 6 [yn]λ0. [yn−1]λ1 . . . [yn−m]λm

and yn ≥ 1. Hence, η = max{y−m, y−m+1, . . . , y0} ≥ 1. Using Lemma 1, we
can prove the following estimations by induction

yn+1 6 ηs−n

, n ∈ N0, (6)

where s was given in Lemma 1. For n = 0, we have

y1 6 [y0]λ0, [y−1]λ1 . . . [y−m]λm 6 ηλ0+λ1+...+λm < η1 = ηs−0
.

Assume that (6) holds for the steps 1, 2, . . . , n, we estimate the solution at step
n + 1 as follows

yn+1 6 [yn]λ0 · [yn−1]λ1 . . . [yn−m]λm

6 ηs−(n−1) .λ0 .ηs−(n−2).λ1 . . . ηs−(n−m+1) .λm

= ηs−n .(λ0s+λ1s2+λ2s3+...+λmsm+1)

6 ηs−n

.

This implies lim
n→∞

yn 6 η0 = 1. Since yn ≥ 1 for all n, we have lim
n→∞

yn = 1,
hence lim

n→∞
xn = 0. The proof is complete. �

Assume that equation (2) has a unique positive equilibrium x. We have a
sufficient condition for convergence to x.

Corollary 1. If G(z0, z1, . . . , zm) satisfies Lipschitz condition in every variable
zi with Lipschitz factors Li which satisfy

∑m
i=0 Li < 1, then every solution of

(2) is convergent to the positive equilibrium x.

Proof. We have

|xn+1 − x| = |G(xn, xn−1, . . . , xn−m) − G(x, x, . . . , x)|
6 |G(xn, xn−1, . . . , xn−m) − G(x, xn−1, . . . , xn−m)|
+ |G(x, xn−1, . . . , xn−m) − G(x, x, xn−2, . . . , xn−m)|
· · ·
+ |G(x, x, . . . , x, xn−m) − G(x, x, . . . , x)|
6 L0|xn − x| + L1|xn−1 − x| + . . . + Lm|xn−m − x|.
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Putting yn = |xn − x|, we have

yn+1 6 L0yn + L1yn−1 + . . . + Lmyn−m.

By Theorem 6, the proof is complete. �

Remark 1. In the case of

G(xn, xn−1, . . . , xn−m) = λnxn +
m∑

i=1

αi(n)F (xn−i),

where αi(n) ≥ 0,
∑m

i=1 αi(n) = 1, ∀n ∈ N and F : [0,∞) → [0,∞) is a continu-
ous function, applying Theorem 6 to equation (2), we obtain some convergence
results presented in [5, 6].

Under converse conditions, the following theorem gives a sufficient condition
for the non-convergence to zero of the solutions of (2).

Theorem 7. Assume that G(z0, z1, . . . , zm) ≥
∑m

i=0 λizi and
∑m

i=0 λi > 1.
Then, every solution {xn} of (2) satisfies

lim inf
n→∞

xn > 0.

Proof. As in the proof of Theorem 6, we put yn = axn . Then we have

yn+1 ≥ [yn]λ0 . . . [yn−1]λ1 . . . [yn−m]λm

and θ = min{y0, y−1, . . . , y−m} > 1. We prove yn ≥ θβn by induction.

Clearly, y1 ≥ [y0]λ0 [̇y−1]λ1 . . . [y−m]λm ≥ θλ0+λ1+λ2+...+λm = θβ1 .
Assuming that yn ≥ θβn for the steps 1, 2, . . . , n, we have

yn+1 ≥ [yn]λ0.[yn−1]λ1 . . . [yn−m]λm

≥ θλ0βn .θλ1βn−1 . . . θλmβn−m

= θλ0βn+λ1βn−1+...+λmβn−m

= θβn+1 .

By Lemma 2, we get yn+1 > θβn+1 > θβ1 = θP , ∀n ∈ N0. This yields xn+1 >
P. loga θ > 0. Hence, lim inf

n→∞
xn > P. loga θ > 0. �

Definition 1. A solution {xn}n of (2) is called persistent if

0 < lim inf
n→∞

xn 6 lim sup
n→∞

xn < ∞.

The following theorem gives a sufficient condition for the persistence of (2).
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Theorem 8. Assume that

G(x0, x1, . . . , xm) = H(x0, x1, . . . , xm; x0, x1, . . . , xm)

where
H(x0, x1, . . . , xm; y0, y1, . . . , ym) : [0,∞)2(m+1) → [0,∞)

is a continuous function, increasing in xi and decreasing in yi and

H(x0, x1, . . . , xm; y0, y1, . . . , ym) > 0

if xi, yi > 0. Suppose further that

lim sup
xi,yi→∞

H(x0, x1, . . . , xm; y0, y1, . . . , ym)
x0 + x1 + . . . + xm

<
1

m + 1
,

lim inf
xi,yi→0+

H(x0, x1, . . . , xm; y0, y1, . . . , ym)
x0 + x1 + . . . + xm

>
1

m + 1
.

Then every solution {xn}∞n=−m of (2) is persistent.

Proof. The proof of this theorem can be obtained similarly as the proof of
Theorem 2 in [6]. �

4. Conclusion

New results for oscillation or nonoscillation of the difference equation (1) and the
extensive results for convergence and boundedness of a class of general difference
equations (2) are given in this paper. Note that, some results in [5, 6] are
particular cases of Theorem 6 and Theorem 8.

Acknowledgements. The authors would like to thank the referees for useful
comments, which improve the presentation of this paper.
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