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1. Introduction

In the past years, there has been significant progress on the problem of proving
the boundedness of generalized Calderén-Zygmund operators on various function
spaces. A remarkable result is the famous 7’1 theorem of David and Journé in
[3]. T1 theorem has been extended for Besov and Triebel-Lizorkin spaces. For
a broader view of this active area of research, see e.g. [5, 10, 12-14, 16, 17] and
references therein.

The main purpose of this paper is to establish T'1 theorems for the inhomo-

geneous spaces B;f’q(X) when d_%a <p<o0,0<qg<o00,0<ac<eandfor
d d

F4(X) when Tra <P <0, 7q <q¢ < 00,0 <a<e and for By 1(X)

when ﬁ <p<00,0<qg< 00, —€ < a< 0and for F*9(X) when

ﬁ<p<oo,ﬁ<q§ 00, —e < «a < 0 for some e > 0 by discrete
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Calderdn type reproducing formula and Plancherel-Polya characterization for
the inhomogeneous Besov and Triebel-Lizorkin spaces. Roughly speaking, T is
bounded on Bg’q(X) and FI‘,“?(X) for the range of «, p, and ¢ indicated above,
respectively, if its kernel satisfies only half smoothness and moment conditions.
An application of these results is given in [4].

To state main results of this paper, we begin by recalling the definitions
necessary for inhomogeneous Besov and Triebel-Lizorkin spaces on spaces of
homogeneous type and some basic facts about the Calderén-Zygmund operator
theory. A quasi-metric p on a set X is a function p : X x X — [0, co) satisfying:
(i) p(z,y) = 0if and only if x = y;

(ii) p(z,y) = p(y, x) for all z,y € X;
(iii) There exists a constant A € [1,00) such that for all z,y,z € X,

p(z,y) < Alp(z, 2) + p(z,y)].

Any quasi-metric defines a topology, for which the balls B(z,r) = {y € X :
ply,z) <r} for all z € X and all » > 0 form a basis.

The following spaces of homogeneous type are variants of those introduced
by Coifman and Weiss in [2].

Definition 1.1. [13] Let d > 0 and 0 < 6 < 1. A space of homogeneous type
(X, p, a0 is a set X together with a quasi-metric p and a nonnegative Borel
measure pu on X with suppu = X, and there exists a constant 0 < C < oo such
that for all 0 < r < diamX and all z,2’,y € X,

p(B(z,r)) ~ 1, (1.1)
lp(z,y) — p(a’,y)| < Cp(x, ") [p(x, y) + p(z’, )] ~°. (1.2)

In [14], Macias and Segovia have proved that one can replace a quasi-metric
p of spaces of homogeneous type in the sense of Coifman and Weiss by another
quasi-metric ¢ which yields the same topology on X as p such that (X, o, p) is
the space defined by Definition 1.1 with d = 1.

Suppose that 7' is a continuous linear mapping from CJ(X) to (CJ(X)),
associated to a kernel K (x,y) in the following sense that

(Tf,9) // )f(y)dp(z)dp(y)

for all test functions f and ¢ in Cf] with disjoint supports.

Assume that K(z,y) satisfies the pointwise conditions:

K (z,y)] < Cp(x,y)~* for p(z,y) # 0, (1.3)

|K (2, y)| < Cp(z,y)~ =7 for p(a,y) > 1, (1.4)
, e e p(z,y)

K (z,y) — K(z',y)| < Cp(x,2) p(z,y) " for p(x, ') < 2 s
K (z,y) — K(2,9)| < Cp(y,y ) pla,y) =4 for p(y,y) < pg;g ,
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where € € (0,6),0 > 0.

The conditions (1.3)-(1.6) are natural when one considers the boundedness
of Calderén-Zygmund operators on inhomogeneous function spaces, which were
pointed out by Meyer in [16].

Assume also that T satisfies the Weak Boundedness Property, denote this
by T'€ WBP,

(T f,g)] < CTd+2anHCS(X)HQHCS(X)

for all f and ¢ in C(X) with diameters of supports not greater than r.

To state the definition of the inhomogeneous Besov and Triebel-Lizorkin
spaces, we need the following definitions. Let Z+ = N U {0}.

Definition 1.2. [9] A sequence {Sy}rez, of operators is said to be an approa-
imation to the identity if Sk(x,y), the kernel of Sk, are functions from X x X
into C such that for all k € Zy and all z,2',y and y' in X, and some 0 < e <0
and C > 0,

—ke
|Sk(z, )| < 0(2_k ﬁp(x, e (1.7)
, x, x! € 2—ke
e - sl <O (FHERT) g 09

for p(z, ') < 55(27% + p(z,));
2—k6

27k + p(x,y))dte

S (gt pyy)  \°
1S4(2,9) &(wNSC< )>( (1.9)

27F + p(z,y
for p(y, /) < 3527% + p(x,y));
|[Sk(xa y) — Sk(xa yl)] - [Sk(xla y) — Sk(xla :‘/)H

<C< plz, z') > ( Py,y') > 2o

— o \27F 4 p(a,y) 27k +p(x,y) ) 27F+ p(z,y))to

for0 < <eo=e-¢>0p) < 35 (27% + p(x,y)) and py,y') <
ﬂ(2_k +p(x,y)),

/&mwwwzl (1.10)
for all k € Zy;

/&mwwwzl (1.11)
forallk e Z.
Definition 1.3. [12] Fiz two exponents 0 < 8 < 0 and v > 0. A function f

defined on X is said to be a test function of type (3,7) centered at xo € X with
width d > 0 if f satisfies the following conditions:

d”
(d+ p(z, z0)) 7

[f@)l <C (1.12)
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f(z) = fa')| < C ( Pz, 2) @ (1.13)

3
d+ p(z, xo)) (d+ p(z, 0)) 47
for p(z, ') < 53 (d + p(x, x0)).

If f is a test function of type (f3,7) centered at zp with width d > 0, we
write f € M(zo,d, 3,7), and the norm of f in M(zg,d, 3,7) is defined by

| fllM(zo,d,8,y) = inf{C' >0:(1.12) and (1.13) hold}.

We denote by M(5,~) the class of all f € M(xo,1,03,7). It is easy to see
that M(z1,d, 8,7v) = M(B,~) with equivalent norms for all z; € X and d > 0.
Furthermore, it is also easy to check that M (3, ) is a Banach space with respect
to the norm in M(3,v). We denote by (M(53,7))" the dual space of M(S,~)
consisting of all linear functionals £ from M (3, ) to C with the property that
there exists a constant C such that for all f € M(8,7),

LN < Cllfllmsq-

We denote by (h, f) the natural pairing of elements h € (M(8,7v)) and f €
M(B,7). Since M(z1,d, 3,v) = M(B,~) with the equivalent norms for all z; €
X and d > 0, thus, for all h € (M(8,7)), (h, f) is well defined for all f €
M(zo,d, 8,7) with zp € X and d > 0. In what follows, we let M(ﬁ, v) be the
completion of M(8,6) in M(S,7) when 0 < 8, < 6.

We also need the following construction of Christ in [1], which provides an
analogue of the grid of Euclidean dyadic cubes on spaces of homogeneous type.

Lemma 1.4. Let X be a space of homogeneous type. Then there exist a col-
lection {QX € X : k € Zy,a € I} of open subsets, where I}, is some (possible
finite) index set, and constants 6 € (0,1) and C1,C2 > 0 such that

(1) u(X\ Us QF) =0 for each fired k and Q* N Qg =0ifa#8;

(ii) for any «, B, k,l with | > k, either Qlﬁ c QF or Qlﬁ Nk =10;

(iii) for each (k,a) and each | < k there is a unique 3 such that QX C Qlﬁ;

(iv) diam(QF) < Cy6*;

(v) each QF contains some ball B(zE, C20%), where zF € X.

In fact, we can think of Q¥ as being a dyadic cube with diameter roughly
6k and centered at z*. In what follows, we always suppose § = 1/2. See [12] for
how to remove this restriction. Also, in the following, for k € Z, T € I}, we will
denote by Q% v =1,...,N(k,7, M), the set of all cubes QI:,"’M C QF, where
M is a fixed large positive integer.

Now, we can introduce the inhomogeneous Besov spaces B4 (X) and Triebel-
Lizorkin spaces Fz‘f’q(X ) via approximations to the identity.

Definition 1.5. Suppose that —0 < a < 0, and (8 and ~ satisfying

max(0, —a + max(0,d(1/p—1))) < 8 < 6,0 <~ < 6. (1.14)
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Suppose {Sk}rez, is an approximation to identity and let Dy = Sy, and Dy =

Sy — Sk_1 for k € N. Let M be a fived large positive integer, Q%Y be as above.
Inhomogeneous Besov space Bg’q(X) for max (d%, ﬁ) <p<Loo,0<qg<L
00 is the collection of all f € (M(ﬁ, v)) such that

N(0,7,M) p
Ifllsgacn =S D > m@QY")[mgor (I Do(f))]
T€Il v=1

+ {Z [2ka|Dk(f)|LP(X)]q} < 0.

k=1

Inhomogeneous Triebel-Lizorkin space Fz‘f’q(X) for max ( ) <p< oo

d__d
d+0° d+0+a

and max (d-%e’ ﬁ) < q < 00 is the collection of f € (M(ﬁ, v)) such that

D=

N(0,7,M)
1 llgea ) = (@) mgo. (| Do(f))]7
1€l v=1
+ {Z[Qkale(f)l]q} < oo,
k=1

L (X)

where mgo.. (Do(f)) are averages of Do(f) over Q%V.

T1 theorems for inhomogeneous Besov and Triebel-Lizorkin spaces were
proved in [10]. Roughly speaking, T  is bounded on By1,1 < p,qg < oo and
0 < a<eandon FiP1 < pg<ooand 0 < a <e¢ if T has the weak
boundedness property, T1 = 0 and the conditions (1.3)—(1.5) hold in [10]. In
this paper, we will prove the following results.

Theorem A. Let 0 < € < 0,0 < a < €. Suppose that T(1) =0, T € WBP, and
K(z,y), the kernel of T, satisfies (1.3) — (1.5) with o > max(0, d(z—l; —1)). Then

T is bounded on Bg1(X), for d%} <p<00,0<q< o0, and on FHYX), for

_d_ _d_

d+a <p <00, d+a

< q < o0.

Theorem B. Let 0 < e < 0, —e < a < 0. Suppose that T*(1) = 0,T € WBP, and
K(z,y), the kernel of T, satisfies (1.3), (1.4) and (1.6) with ¢ > max(0, d(%—l)).
Then T is bounded on Bg’q(X), for ﬁ < p<o00,0<q < o0, and on
FU(X), for o9— < p < 00, 79— < ¢ < o0,

Theorems A and B are to give a uniform treatment in [10]. To be precise,
to deal with the case where 0 < a < €,p,q > 1, the main tools used were
the continuous Calderén reproducing formula. The proof of the case where
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—e < a <0, and p, ¢ > 1 then follows from the duality argument. However, the
continuous Calderén reproducing formula and duality argument do not work for
the cases where either p or ¢, or both p and ¢ are less than or equal to 1. The
key point of the present paper is to use discrete Calderén reproducing formula
and Plancherel-Polya characterization of the Besov and Triebel-Lizorkin spaces
developed in [6, 11]. T'1 theorems for inhomogeneous Triebel-Lizorkin space
F9(X) with —e < a <, max{d;iﬁ, ﬁ} < p < oo and max{d;iﬁ, d_ir;i_ﬁ} <
g < oo in [17] are also stated, if T' has the weak boundedness property, T(1) =
0, T%(1) = 0 and the conditions (1.3)—(1.6) hold. Furthermore, by use of the real
interpolation theorems the author obtained the T'1 theorem for inhomogeneous
Besov space By9(X) with —e < a < ¢, max{d+6, d+a+6} <p<ooand0 <
q < o0 under the same conditions. The range of index p and ¢ has the change
from +E to W with 0 < a < €, the main reason is that the smoothness and
moment conditions of Theorems A and B decrease a half compared with the
corresponding results of [17].

2. Proofs of Theorems A and B

The basic tool to show main results is the discrete Calderén reproducing formulae
in [6]. It can be stated as follows.

Lemma 2.1. Suppose that {Sk}rez, is an approzimation to the identity as in
Definition 1.2. Set Dy = Sy, — Sp—1 for k € N and Dy = Sy. Then there exist
functions D v, T € Io and v € {1,... ,N(0,7,M)} and {Dy(z,y)}een such
that for any fived y&v € QFV, k € N,T €l andv e{l,...,Nk,7,M)} and
all fe (M(B,7)) with0 < B,y <8,

N(0,7,M)
D=3 D Q¥ )mgoe (Do(£) Dy (@)
T€ly v=1
N (k,7,M)

+ 3 S @)D DN EY). (21

k€Zy TEIL v=1

where diam(Q*Y) ~ 28+M for k€ Zy,7 € Iy,v € {1,...,N(k,7, M)} and a
fixed large M € N, the series converges in the norm of LP(X),1 < p < oo,
and M(B',7') for f € M(B,v) with 5/ < 3 and v < 7, and ( 8,4 for

fe WM(B,v) withd >3 > 3 and 8 >~ > ~. Moreover, Dk(x,y),k: e N,
satisfies for any given € € (0,0), all x,y € X the following conditions:

- 2—k6'
D <C ; 2.2

) e

Di(w,y) — Di(a',y)| < C '
| Dy, (2, y) — Di(2',y)| < (2—k+p(x,y 27 + p(x, y))dte
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Jor p(z, ') < 55 27% + p(z,y));

[ Dulwipaut) = | Dutae,yyduta) =0
X X

Jorall k € Z.
Dgow(z) for 7 € Io and v € {1,...,N(0,7, M)} satisfies

/X Do (z)dp(z) =1,

- c
[Dgo.v ()] < 05 p@ ) (2.4)

forallz € X andy € Q%" and

p(z, 2) > 1
L+ p(x,y) ) (1+ plx,y))tte

for allz,z € X and y € Q%" satisfying p(x,2) < 55(1 + p(,y)); the constant
C in (2.2) — (2.5) is independent of M.

|Dgov (x) — Do (2)] < C ( (2.5)

To prove Theorem A and Theorem B, we need the following lemmas. Their
proofs are similar to that of Lemma 4.1 in [10].

Lemma 2.2. With notation as in Lemma 2.1 and Theorem A, then
(i) forkeZy, v €lyandv' € {1,... ,N(0,7, M)}, yg}'/ is any fixed point of

Qgi'/, reX,
~ 1
|DyTD . (x)] < C(1 +k)27k¢ — : (2.6)
A (14 pla,yg”))+e
where o' = o when k =0 and 0’ = € when k € N,
(i3) forkeZy, K eN, z,ye X,
. , k)¢ 2—(kAk')e'
\DyT Dy (2, )| < C[1+ |k — K] (2 —k)e' A 1) : .
CRCEw e
(2.7)

Lemma 2.3. With notation as in Lemma 2.1 and Theorem B, then
(i) forkeZy, v €ly andv' € {1,... ,N(0,7, M)}, yg}'/ is any fixed point of
Q% , z e X,

T
1
(1+ pla, y""))d+e’

|DiTD .00 ()] < C

(2.8)

where 0’ = o when k =0 and 0’ = € when k € N,
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(i3) forkeZy, K eN, z,ye X,
—(kNE")€e
|DiT Dy (,y)| < C[1L+ |k — K] ( (=R A 1) —(k/\k2’) i ar
(2 + p(z,y))d+e
(2.9)

Proof of Theorem A. By Lemma 2.1 and Theorem 1.5 in [6], for f € M(3,7~),

we write
N(0,7,M) N(O,7’,M)
ITlsgrco <{X X |me (X X
1€l v=1 T'ely v'=1
|DeTD O,IV,(.)|mQ0,IV,(|Do(f)|))]”}”
N(k',7',M)
k' u')

N(O,T,M)
HY X QZZ 2w
'=17'€ly, v'=
MDA}
N(0,7",M)

HE (X Z (X 2w
X M(Qiﬁ’/)_%—‘r%lDlTﬁQU,’ul (Z)|on,u'(|D0(f)|))]p)%}
foe) N(l,7,M) N(k',7",M) L,
HY(E X [ inf (S S wet)
LT p=irer, v=1
SIENGEAS G

<=

Q=

Q=

=1 7€l v=1
X M(Ql” —aty |DlTDk/(z y )’

= A1+ A+ Az + As
The estimate of Ay is similar to Theorem 1 in [5]. It remains to deduce the

estimates of Ay, Ay and As.
From (2.6), the Holder inequality for p > 1 and (a+b)? < a? +b? for p <1

we deduce
N(0,7,M) N(0,7",M) 1 pAl
ase{y X X ¥ | P
T€ly v=1l T1/€ly v'=1 (1+ ( 'y Yr ))

[mgos (IDo(HN}

<=

N(0,7’ M)
o (IDo (NI}

sc{ ¥ )

T'ely v'=1

< C | fllszacx)
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¥ is any point of Q%" yo}”, is any point of

where 3% -

By (2.7), it follows that

N(k' 7, M) N(0,7,M)

QY

Ay < C{ZZ >y oy [2—’fd2—’f‘*[1+k]

k'=11'€l;, v'=1 T€ly v=1
1

X » "
(1+ p(y2", y5")

C{ i ([2—k'd2—k’a(1 n k,/)]pAl2k’d)%A1

] Q) E D (W)

<=

Sk
——
Q=

<
k'=1
N(k', 7" ,M) p
oy y—aql
(XY [u@) i s (Du(ne)])
T/ €l v'=1 ZEQE:'VI
< Clflszox)

where these inequalities follow from the fact that

Nk 7' M)

1

Z Z Z 2—k’d2—k’a[1+k/]

0,
k'=17'€l}, v'=1 (1+p(y7'uay

o

k'=1

T

’ ’
kv

’

))d—i-e’ < C’

Z [2—k’d2—k'a(1 n k,/)]il’/\l2k’d +Z([2—k'd2—k'a(1 +k/)]pA1)FA1 <
kl

and the last inequality follows from the Plancherel-Polya characterization of the

Besov spaces [6].
By (2.6), it follows that

N(l,7,M) N(0,7",M)

ne o XY YY)

T€el; v=1 T'ely v'=1

2l(1 4 1)27"
’ [ (1 +p(ye” g ))

jo%s) . N(O,T',M)
S C{ Z [2[0((1 + l)2—l6] (p/\l); ( Z Z

=1 'elp v'=1
< Clflseax)

Similarly, for f € M(ﬁ, v), we have

1 PAIN T
) )
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1T () rgee )
N(0,7,M) N0, M)

(XY W (XY
rely  v=1 rely  v'=1

~ P\ v
IDGTD g Ol (1D6(1)D) ]}
N(0,7,M) N(k', 7' ,M)

kv

HY X [szv(Z > X m@n)
T€ly v=1 k=171 elk, v'=1
~ k' v p %
Do TDw (i NI (N 1) |}
N(l,7,M) N(0,7,M)

HEx s [mf DN SRTER

=1 r€l; v=1 EQ" T'ely v'=1

~ q
IDITD g, (2)lmepr (Do (Hxg | |,

N(l,7,M) Nk 7' M)

JiEe s | int, TY Y wed)

=1 r€l; v=1 Q- k'=17'€l;, v/'=1

1
q

1

o ~ ’ l/’ ’ l/’ q q
X 1(@) ™ DIT Do (™ ) () Dae (F) Wl xgee ]
= D1+ By + B3+ By,

LP(X)

where ylj,, ¥ are any point in Q’::"/,

The estimates of By and By are similar to A; above and Theorem 2 in [5],
respectively. It remains to deduce the estimates of B and Bs.

From (2.7), the Holder inequality for ¢ > 1 and (a + b)? < a? 4 b7 for g < 1,
Lemma A.2 in [8], the Fefferman-Stein vector-valued inequality in [7], it follows
that

(oo}
By < C{ [ S oKdg TRy 4 e
k'=1
N(K' 7' M)

X @ D ) ]

T €l v'=1 Lr(X)
0 gAl
< o5 st
k'=1
N(k', 7', M) pqly 1
kv —a kv r) 4
(X X w@E ) DN g ) |1 L

T €l v/'=1
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Nk 7' M)

< {X T X (M@ e g ]} ]

k'=17'€l;, v'=1

Lr(X)

< COlfllEgacx),

where d+—a < r < min(p,q,1).

From (2.6), the Holder inequality for p > 1 and (a +b)? < a? + b? for p < 1,
the Lemma A.2 in [7], it follows that

N(l,7,M)
B o [( YOS @z
=1 1€l; v=1

N(0, 7', M)

DINDS

, 0\ d+e
el v'=1 (1 + pl, y%" ))

1 a\ L

mgou (IDo(ND]") " dn(a) |

D=

N(0,7",M)

{/(Z2l“q1+lq2_l€q[ (Z 3 g0,

=1 T'€ly v'=1

IN

N(0,7",M) r r 1
< of [[m (;e:[o D oD ) @] du@)}”
<

Cll Al gy

where we used the L7 (X) boundedness of Hardy-Littlewood maximal functions.
This proves Theorem A. [ |

Proof of Theorem B. The main difference of proof between Theorem B and
Theorem A is that we should replace Lemma 2.2 by Lemma 2.3. We leave the
details to the reader. ™
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