Vitetman Jowirnall
of
$M \mathbb{A} T H I M M A T I C S$
© VAST 2008

$T 1$ Theorems for Inhomogeneous Besov and Triebel-Lizorkin Spaces over Space of Homogeneous Type*

Yanchang Han
Department of Mathematics, South China Normal University, Guangzhou, 510631, P.R. China

Received November 17, 2006

Abstract

The author establishes $T 1$ theorems for inhomogeneous Besov and TriebelLizorkin spaces by discrete Calderón type reproducing formula and the PlancherelPôlya characterization for inhomogeneous Besov and Triebel-Lizorkin spaces. These results are new even for \mathbb{R}^{d}.

2000 Mathematics Subject Classification: 42B25, 42B35, 46E35. Keywords: $T 1$ theorem, inhomogeneous Besov and Triebel-Lizorkin spaces, spaces of homogeneous type.

1. Introduction

In the past years, there has been significant progress on the problem of proving the boundedness of generalized Calderón-Zygmund operators on various function spaces. A remarkable result is the famous $T 1$ theorem of David and Journé in [3]. $T 1$ theorem has been extended for Besov and Triebel-Lizorkin spaces. For a broader view of this active area of research, see e.g. [5, 10, 12-14, 16, 17] and references therein.

The main purpose of this paper is to establish $T 1$ theorems for the inhomogeneous spaces $B_{p}^{\alpha, q}(X)$ when $\frac{d}{d+\alpha}<p \leq \infty, 0<q \leq \infty, 0<\alpha<\epsilon$ and for $F_{p}^{\alpha, q}(X)$ when $\frac{d}{d+\alpha}<p<\infty, \frac{d}{d+\alpha}<q \leq \infty, 0<\alpha<\epsilon$, and for $B_{p}^{\alpha, q}(X)$ when $\frac{d}{d+\alpha+\epsilon}<p \leq \infty, 0<q \leq \infty,-\epsilon<\alpha<0$ and for $F_{p}^{\alpha, q}(X)$ when $\frac{d}{d+\alpha+\epsilon}<p<\infty, \frac{d}{d+\alpha+\epsilon}<q \leq \infty,-\epsilon<\alpha<0$ for some $\epsilon>0$ by discrete
*Project supported by the NNSF (No. 10726071) of China.

Calderón type reproducing formula and Plancherel-Pôlya characterization for the inhomogeneous Besov and Triebel-Lizorkin spaces. Roughly speaking, T is bounded on $B_{p}^{\alpha, q}(X)$ and $F_{p}^{\alpha, q}(X)$ for the range of α, p, and q indicated above, respectively, if its kernel satisfies only half smoothness and moment conditions. An application of these results is given in [4].

To state main results of this paper, we begin by recalling the definitions necessary for inhomogeneous Besov and Triebel-Lizorkin spaces on spaces of homogeneous type and some basic facts about the Calderón-Zygmund operator theory. A quasi-metric ρ on a set X is a function $\rho: X \times X \rightarrow[0, \infty)$ satisfying:
(i) $\rho(x, y)=0$ if and only if $x=y$;
(ii) $\rho(x, y)=\rho(y, x)$ for all $x, y \in X$;
(iii) There exists a constant $A \in[1, \infty)$ such that for all $x, y, z \in X$,

$$
\rho(x, y) \leq A[\rho(x, z)+\rho(z, y)]
$$

Any quasi-metric defines a topology, for which the balls $B(x, r)=\{y \in X$: $\rho(y, x)<r\}$ for all $x \in X$ and all $r>0$ form a basis.

The following spaces of homogeneous type are variants of those introduced by Coifman and Weiss in [2].

Definition 1.1. [13] Let $d>0$ and $0<\theta \leq 1$. A space of homogeneous type $(X, \rho, \mu)_{d, \theta}$ is a set X together with a quasi-metric ρ and a nonnegative Borel measure μ on X with $\operatorname{supp} \mu=X$, and there exists a constant $0<C<\infty$ such that for all $0<r<\operatorname{diam} X$ and all $x, x^{\prime}, y \in X$,

$$
\begin{gather*}
\mu(B(x, r)) \sim r^{d} \tag{1.1}\\
\left|\rho(x, y)-\rho\left(x^{\prime}, y\right)\right| \leq C \rho\left(x, x^{\prime}\right)^{\theta}\left[\rho(x, y)+\rho\left(x^{\prime}, y\right)\right]^{1-\theta} \tag{1.2}
\end{gather*}
$$

In [14], Macías and Segovia have proved that one can replace a quasi-metric ρ of spaces of homogeneous type in the sense of Coifman and Weiss by another quasi-metric ϱ which yields the same topology on X as ρ such that (X, ϱ, μ) is the space defined by Definition 1.1 with $d=1$.

Suppose that T is a continuous linear mapping from $C_{0}^{\eta}(X)$ to $\left(C_{0}^{\eta}(X)\right)^{\prime}$, associated to a kernel $K(x, y)$ in the following sense that

$$
\langle T f, g\rangle=\iint g(x) K(x, y) f(y) d \mu(x) d \mu(y)
$$

for all test functions f and g in C_{0}^{η} with disjoint supports.
Assume that $K(x, y)$ satisfies the pointwise conditions:

$$
\begin{array}{r}
|K(x, y)| \leq C \rho(x, y)^{-d} \text { for } \rho(x, y) \neq 0 \\
|K(x, y)| \leq C \rho(x, y)^{-d-\sigma} \text { for } \rho(x, y) \geq 1 \\
\left|K(x, y)-K\left(x^{\prime}, y\right)\right| \leq C \rho\left(x, x^{\prime}\right)^{\epsilon} \rho(x, y)^{-d-\epsilon} \text { for } \rho\left(x, x^{\prime}\right) \leq \frac{\rho(x, y)}{(2 A)} \\
\left|K(x, y)-K\left(x, y^{\prime}\right)\right| \leq C \rho\left(y, y^{\prime}\right)^{\epsilon} \rho(x, y)^{-d-\epsilon} \text { for } \rho\left(y, y^{\prime}\right) \leq \frac{\rho(x, y)}{(2 A)} \tag{1.6}
\end{array}
$$

where $\epsilon \in(0, \theta), \sigma>0$.
The conditions (1.3)-(1.6) are natural when one considers the boundedness of Calderón-Zygmund operators on inhomogeneous function spaces, which were pointed out by Meyer in [16].

Assume also that T satisfies the Weak Boundedness Property, denote this by $T \in \mathrm{WBP}$,

$$
|\langle T f, g\rangle| \leq C r^{d+2 \eta}\|f\|_{C_{0}^{\eta}(X)}\|g\|_{C_{0}^{\eta}(X)}
$$

for all f and g in $C_{0}^{\eta}(X)$ with diameters of supports not greater than r.
To state the definition of the inhomogeneous Besov and Triebel-Lizorkin spaces, we need the following definitions. Let $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$.

Definition 1.2. [9] A sequence $\left\{S_{k}\right\}_{k \in \mathbb{Z}_{+}}$of operators is said to be an approximation to the identity if $S_{k}(x, y)$, the kernel of S_{k}, are functions from $X \times X$ into \mathbb{C} such that for all $k \in \mathbb{Z}_{+}$and all x, x^{\prime}, y and y^{\prime} in X, and some $0<\epsilon \leq \theta$ and $C>0$,

$$
\begin{gather*}
\left|S_{k}(x, y)\right| \leq C \frac{2^{-k \epsilon}}{\left(2^{-k}+\rho(x, y)\right)^{d+\epsilon}} \tag{1.7}\\
\left|S_{k}(x, y)-S_{k}\left(x^{\prime}, y\right)\right| \leq C\left(\frac{\rho\left(x, x^{\prime}\right)}{2^{-k}+\rho(x, y)}\right)^{\epsilon} \frac{2^{-k \epsilon}}{\left(2^{-k}+\rho(x, y)\right)^{d+\epsilon}} \tag{1.8}
\end{gather*}
$$

for $\rho\left(x, x^{\prime}\right) \leq \frac{1}{2 A}\left(2^{-k}+\rho(x, y)\right)$;

$$
\begin{equation*}
\left|S_{k}(x, y)-S_{k}\left(x, y^{\prime}\right)\right| \leq C\left(\frac{\rho\left(y, y^{\prime}\right)}{2^{-k}+\rho(x, y)}\right)^{\epsilon} \frac{2^{-k \epsilon}}{\left(2^{-k}+\rho(x, y)\right)^{d+\epsilon}} \tag{1.9}
\end{equation*}
$$

for $\rho\left(y, y^{\prime}\right) \leq \frac{1}{2 A}\left(2^{-k}+\rho(x, y)\right)$;

$$
\left|\left[S_{k}(x, y)-S_{k}\left(x, y^{\prime}\right)\right]-\left[S_{k}\left(x^{\prime}, y\right)-S_{k}\left(x^{\prime}, y^{\prime}\right)\right]\right|
$$

$$
\leq C\left(\frac{\rho\left(x, x^{\prime}\right)}{2^{-k}+\rho(x, y)}\right)^{\epsilon^{\prime}}\left(\frac{\rho\left(y, y^{\prime}\right)}{2^{-k}+\rho(x, y)}\right)^{\epsilon^{\prime}} \frac{2^{-k \sigma}}{\left(2^{-k}+\rho(x, y)\right)^{d+\sigma}}
$$

for $0<\epsilon^{\prime}<\epsilon, \sigma=\epsilon-\epsilon^{\prime}>0, \rho\left(x, x^{\prime}\right) \leq \frac{1}{2 A}\left(2^{-k}+\rho(x, y)\right)$ and $\rho\left(y, y^{\prime}\right) \leq$ $\frac{1}{2 A}\left(2^{-k}+\rho(x, y)\right) ;$

$$
\begin{equation*}
\int S_{k}(x, y) d \mu(x)=1 \tag{1.10}
\end{equation*}
$$

for all $k \in \mathbb{Z}_{+}$;

$$
\begin{equation*}
\int S_{k}(x, y) d \mu(y)=1 \tag{1.11}
\end{equation*}
$$

for all $k \in \mathbb{Z}_{+}$.
Definition 1.3. [12] Fix two exponents $0<\beta \leq \theta$ and $\gamma>0$. A function f defined on X is said to be a test function of type (β, γ) centered at $x_{0} \in X$ with width $d>0$ if f satisfies the following conditions:

$$
\begin{equation*}
|f(x)| \leq C \frac{d^{\gamma}}{\left(d+\rho\left(x, x_{0}\right)\right)^{d+\gamma}} \tag{1.12}
\end{equation*}
$$

$$
\begin{equation*}
\left|f(x)-f\left(x^{\prime}\right)\right| \leq C\left(\frac{\rho\left(x, x^{\prime}\right)}{d+\rho\left(x, x_{0}\right)}\right)^{\beta} \frac{d^{\gamma}}{\left(d+\rho\left(x, x_{0}\right)\right)^{d+\gamma}} \tag{1.13}
\end{equation*}
$$

for $\rho\left(x, x^{\prime}\right) \leq \frac{1}{2 A}\left(d+\rho\left(x, x_{0}\right)\right)$.
If f is a test function of type (β, γ) centered at x_{0} with width $d>0$, we write $f \in \mathcal{M}\left(x_{0}, d, \beta, \gamma\right)$, and the norm of f in $\mathcal{M}\left(x_{0}, d, \beta, \gamma\right)$ is defined by

$$
\|f\|_{\mathcal{M}\left(x_{0}, d, \beta, \gamma\right)}=\inf \{C \geq 0: \text { (1.12) and (1.13) hold }\} .
$$

We denote by $\mathcal{M}(\beta, \gamma)$ the class of all $f \in \mathcal{M}\left(x_{0}, 1, \beta, \gamma\right)$. It is easy to see that $\mathcal{M}\left(x_{1}, d, \beta, \gamma\right)=\mathcal{M}(\beta, \gamma)$ with equivalent norms for all $x_{1} \in X$ and $d>0$. Furthermore, it is also easy to check that $\mathcal{M}(\beta, \gamma)$ is a Banach space with respect to the norm in $\mathcal{M}(\beta, \gamma)$. We denote by $(\mathcal{M}(\beta, \gamma))^{\prime}$ the dual space of $\mathcal{M}(\beta, \gamma)$ consisting of all linear functionals \mathcal{L} from $\mathcal{M}(\beta, \gamma)$ to \mathbb{C} with the property that there exists a constant C such that for all $f \in \mathcal{M}(\beta, \gamma)$,

$$
|\mathcal{L}(f)| \leq C\|f\|_{\mathcal{M}(\beta, \gamma)}
$$

We denote by $\langle h, f\rangle$ the natural pairing of elements $h \in(\mathcal{M}(\beta, \gamma))^{\prime}$ and $f \in$ $\mathcal{M}(\beta, \gamma)$. Since $\mathcal{M}\left(x_{1}, d, \beta, \gamma\right)=\mathcal{M}(\beta, \gamma)$ with the equivalent norms for all $x_{1} \in$ X and $d>0$, thus, for all $h \in(\mathcal{M}(\beta, \gamma))^{\prime},\langle h, f\rangle$ is well defined for all $f \in$ $\mathcal{M}\left(x_{0}, d, \beta, \gamma\right)$ with $x_{0} \in X$ and $d>0$. In what follows, we let $\widetilde{\mathcal{M}}(\beta, \gamma)$ be the completion of $\mathcal{M}(\theta, \theta)$ in $\mathcal{M}(\beta, \gamma)$ when $0<\beta, \gamma<\theta$.

We also need the following construction of Christ in [1], which provides an analogue of the grid of Euclidean dyadic cubes on spaces of homogeneous type.

Lemma 1.4. Let X be a space of homogeneous type. Then there exist a collection $\left\{Q_{\alpha}^{k} \subset X: k \in \mathbb{Z}_{+}, \alpha \in I_{k}\right\}$ of open subsets, where I_{k} is some (possible finite) index set, and constants $\delta \in(0,1)$ and $C_{1}, C_{2}>0$ such that
(i) $\mu\left(X \backslash \cup_{\alpha} Q_{\alpha}^{k}\right)=0$ for each fixed k and $Q_{\alpha}^{k} \cap Q_{\beta}^{k}=\emptyset$ if $\alpha \neq \beta$;
(ii) for any α, β, k, l with $l \geq k$, either $Q_{\beta}^{l} \subset Q_{\alpha}^{k}$ or $Q_{\beta}^{l} \cap Q_{\alpha}^{k}=\emptyset$;
(iii) for each (k, α) and each $l<k$ there is a unique β such that $Q_{\alpha}^{k} \subset Q_{\beta}^{l}$;
(iv) $\operatorname{diam}\left(Q_{\alpha}^{k}\right) \leq C_{1} \delta^{k}$;
(v) each Q_{α}^{k} contains some ball $B\left(z_{\alpha}^{k}, C_{2} \delta^{k}\right)$, where $z_{\alpha}^{k} \in X$.

In fact, we can think of Q_{α}^{k} as being a dyadic cube with diameter roughly δ^{k} and centered at z_{α}^{k}. In what follows, we always suppose $\delta=1 / 2$. See [12] for how to remove this restriction. Also, in the following, for $k \in \mathbb{Z}_{+}, \tau \in I_{k}$, we will denote by $Q_{\tau}^{k, \nu}, \nu=1, \ldots, N(k, \tau, M)$, the set of all cubes $Q_{\tau^{\prime}}^{k+M} \subset Q_{\tau}^{k}$, where M is a fixed large positive integer.

Now, we can introduce the inhomogeneous Besov spaces $B_{p}^{\alpha, q}(X)$ and TriebelLizorkin spaces $F_{p}^{\alpha, q}(X)$ via approximations to the identity.

Definition 1.5. Suppose that $-\theta<\alpha<\theta$, and β and γ satisfying

$$
\begin{equation*}
\max (0,-\alpha+\max (0, d(1 / p-1)))<\beta<\theta, 0<\gamma<\theta \tag{1.14}
\end{equation*}
$$

Suppose $\left\{S_{k}\right\}_{k \in \mathbb{Z}_{+}}$is an approximation to identity and let $D_{0}=S_{0}$, and $D_{k}=$ $S_{k}-S_{k-1}$ for $k \in \mathbb{N}$. Let M be a fixed large positive integer, $Q_{\tau}^{0, \nu}$ be as above. Inhomogeneous Besov space $B_{p}^{\alpha, q}(X)$ for $\max \left(\frac{d}{d+\theta}, \frac{d}{d+\theta+\alpha}\right)<p \leq \infty, 0<q \leq$ ∞ is the collection of all $f \in(\widetilde{\mathcal{M}}(\beta, \gamma))^{\prime}$ such that

$$
\begin{aligned}
\|f\|_{B_{p}^{\alpha, q}(X)}= & \left\{\sum_{\tau \in I_{0}} \sum_{\nu=1}^{N(0, \tau, M)} \mu\left(Q_{\tau}^{0, \nu}\right)\left[m_{Q_{\tau}^{0, \nu}}\left(\left|D_{0}(f)\right|\right)\right]^{p}\right\}^{\frac{1}{p}} \\
& +\left\{\sum_{k=1}^{\infty}\left[2^{k \alpha}\left\|D_{k}(f)\right\|_{L^{p}(X)}\right]^{q}\right\}^{\frac{1}{q}}<\infty
\end{aligned}
$$

Inhomogeneous Triebel-Lizorkin space $F_{p}^{\alpha, q}(X)$ for $\max \left(\frac{d}{d+\theta}, \frac{d}{d+\theta+\alpha}\right)<p<\infty$ and $\max \left(\frac{d}{d+\theta}, \frac{d}{d+\theta+\alpha}\right)<q \leq \infty$ is the collection of $f \in(\widetilde{\mathcal{M}}(\beta, \gamma))^{\prime}$ such that

$$
\begin{aligned}
\|f\|_{F_{p}^{\alpha, q}(X)}= & \left\{\sum_{\tau \in I_{0}} \sum_{\nu=1}^{N(0, \tau, M)} \mu\left(Q_{\tau}^{0, \nu}\right)\left[m_{Q_{\tau}^{0, \nu}}\left(\left|D_{0}(f)\right|\right)\right]^{p}\right\}^{\frac{1}{p}} \\
& +\left\|\left\{\sum_{k=1}^{\infty}\left[2^{k \alpha}\left|D_{k}(f)\right|\right]^{q}\right\}^{\frac{1}{q}}\right\|_{L^{p}(X)}<\infty
\end{aligned}
$$

where $m_{Q_{\tau}^{0, \nu}}\left(D_{0}(f)\right)$ are averages of $D_{0}(f)$ over $Q_{\tau}^{0, \nu}$.
$T 1$ theorems for inhomogeneous Besov and Triebel-Lizorkin spaces were proved in [10]. Roughly speaking, T is bounded on $B_{p}^{\alpha, q}, 1 \leq p, q \leq \infty$ and $0<\alpha<\epsilon$, and on $F_{p}^{\alpha, q}, 1<p, q<\infty$ and $0<\alpha<\epsilon$, if T has the weak boundedness property, $T 1=0$ and the conditions (1.3)-(1.5) hold in [10]. In this paper, we will prove the following results.

Theorem A. Let $0<\epsilon \leq \theta, 0<\alpha<\epsilon$. Suppose that $T(1)=0, T \in W B P$, and $K(x, y)$, the kernel of T, satisfies (1.3) - (1.5) with $\sigma>\max \left(0, d\left(\frac{1}{p}-1\right)\right)$. Then T is bounded on $B_{p}^{\alpha, q}(X)$, for $\frac{d}{d+\alpha}<p \leq \infty, 0<q \leq \infty$, and on $F_{p}^{\alpha, q}(X)$, for $\frac{d}{d+\alpha}<p<\infty, \frac{d}{d+\alpha}<q \leq \infty$.

Theorem B. Let $0<\epsilon \leq \theta,-\epsilon<\alpha<0$. Suppose that $T^{*}(1)=0, T \in W B P$, and $K(x, y)$, the kernel of T, satisfies (1.3), (1.4) and (1.6) with $\sigma>\max \left(0, d\left(\frac{1}{p}-1\right)\right)$. Then T is bounded on $B_{p}^{\alpha, q}(X)$, for $\frac{d}{d+\alpha+\epsilon}<p \leq \infty, 0<q \leq \infty$, and on $F_{p}^{\alpha, q}(X)$, for $\frac{d}{d+\alpha+\epsilon}<p<\infty, \frac{d}{d+\alpha+\epsilon}<q \leq \infty$.

Theorems A and B are to give a uniform treatment in [10]. To be precise, to deal with the case where $0<\alpha<\epsilon, p, q>1$, the main tools used were the continuous Calderón reproducing formula. The proof of the case where
$-\epsilon<\alpha<0$, and $p, q>1$ then follows from the duality argument. However, the continuous Calderón reproducing formula and duality argument do not work for the cases where either p or q, or both p and q are less than or equal to 1 . The key point of the present paper is to use discrete Calderón reproducing formula and Plancherel-Pôlya characterization of the Besov and Triebel-Lizorkin spaces developed in [6, 11]. T1 theorems for inhomogeneous Triebel-Lizorkin space $F_{p}^{\alpha, q}(X)$ with $-\epsilon<\alpha<\epsilon, \max \left\{\frac{d}{d+\epsilon}, \frac{d}{d+\alpha+\epsilon}\right\}<p<\infty$ and $\max \left\{\frac{d}{d+\epsilon}, \frac{d}{d+\alpha+\epsilon}\right\}<$ $q \leq \infty$ in [17] are also stated, if T has the weak boundedness property, $T(1)=$ $0, T^{*}(1)=0$ and the conditions (1.3)-(1.6) hold. Furthermore, by use of the real interpolation theorems the author obtained the $T 1$ theorem for inhomogeneous Besov space $B_{p}^{\alpha, q}(X)$ with $-\epsilon<\alpha<\epsilon, \max \left\{\frac{d}{d+\epsilon}, \frac{d}{d+\alpha+\epsilon}\right\}<p \leq \infty$ and $0<$ $q \leq \infty$ under the same conditions. The range of index p and q has the change from $\frac{d}{d+\epsilon}$ to $\frac{d}{d+\alpha}$ with $0<\alpha<\epsilon$, the main reason is that the smoothness and moment conditions of Theorems A and B decrease a half compared with the corresponding results of [17].

2. Proofs of Theorems A and B

The basic tool to show main results is the discrete Calderón reproducing formulae in [6]. It can be stated as follows.

Lemma 2.1. Suppose that $\left\{S_{k}\right\}_{k \in \mathbb{Z}_{+}}$is an approximation to the identity as in Definition 1.2. Set $D_{k}=S_{k}-S_{k-1}$ for $k \in \mathbb{N}$ and $D_{0}=S_{0}$. Then there exist functions $\widetilde{D}_{Q_{\tau}^{0, \nu}}, \tau \in I_{0}$ and $\nu \in\{1, \ldots, N(0, \tau, M)\}$ and $\left\{\widetilde{D}_{k}(x, y)\right\}_{k \in \mathbb{N}}$ such that for any fixed $y_{\tau}^{k, \nu} \in Q_{\tau}^{k, \nu}, k \in \mathbb{N}, \tau \in I_{k}$ and $\nu \in\{1, \ldots, N(k, \tau, M)\}$ and all $f \in(\mathcal{M}(\beta, \gamma))^{\prime}$ with $0<\beta, \gamma<\theta$,

$$
\begin{align*}
f(x)= & \sum_{\tau \in I_{0}} \sum_{\nu=1}^{N(0, \tau, M)} \mu\left(Q_{\tau}^{0, \nu}\right) m_{Q_{\tau}^{0, \nu}}\left(D_{0}(f)\right) \widetilde{D}_{Q_{\tau}^{0, \nu}}(x) \\
& +\sum_{k \in \mathbb{Z}_{+}} \sum_{\tau \in I_{k}} \sum_{\nu=1}^{N(k, \tau, M)} \mu\left(Q_{\tau}^{k, \nu}\right) \widetilde{D}_{k}\left(x, y_{\tau}^{k, \nu}\right) D_{k}(f)\left(y_{\tau}^{k, \nu}\right), \tag{2.1}
\end{align*}
$$

where $\operatorname{diam}\left(Q_{\tau}^{k, \nu}\right) \sim 2^{k+M}$ for $k \in \mathbb{Z}_{+}, \tau \in I_{k}, \nu \in\{1, \ldots, N(k, \tau, M)\}$ and a fixed large $M \in \mathbb{N}$, the series converges in the norm of $L^{p}(X), 1<p<\infty$, and $\mathcal{M}\left(\beta^{\prime}, \gamma^{\prime}\right)$ for $f \in \mathcal{M}(\beta, \gamma)$ with $\beta^{\prime}<\beta$ and $\gamma^{\prime}<\gamma$, and $\left(\mathcal{M}\left(\beta^{\prime}, \gamma^{\prime}\right)\right)^{\prime}$ for $f \in(\mathcal{M}(\beta, \gamma))^{\prime}$ with $\theta>\beta^{\prime}>\beta$ and $\theta>\gamma^{\prime}>\gamma$. Moreover, $\widetilde{D}_{k}(x, y), k \in \mathbb{N}$, satisfies for any given $\epsilon \in(0, \theta)$, all $x, y \in X$ the following conditions:

$$
\begin{gather*}
\left|\widetilde{D}_{k}(x, y)\right| \leq C \frac{2^{-k \epsilon^{\prime}}}{\left(2^{-k}+\rho(x, y)\right)^{d+\epsilon^{\prime}}} ; \tag{2.2}\\
\left|\widetilde{D}_{k}(x, y)-\widetilde{D}_{k}\left(x^{\prime}, y\right)\right| \leq C\left(\frac{\rho\left(x, x^{\prime}\right)}{2^{-k}+\rho(x, y)}\right)^{\epsilon^{\prime}} \frac{2^{-k \epsilon^{\prime}}}{\left(2^{-k}+\rho(x, y)\right)^{d+\epsilon^{\prime}}} \tag{2.3}
\end{gather*}
$$

for $\rho\left(x, x^{\prime}\right) \leq \frac{1}{2 A}\left(2^{-k}+\rho(x, y)\right)$;

$$
\int_{X} \widetilde{D}_{k}(x, y) d \mu(y)=\int_{X} \widetilde{D}_{k}(x, y) d \mu(x)=0
$$

for all $k \in \mathbb{Z}_{+}$.
$\widetilde{D}_{Q_{\tau}^{0, \nu}}(x)$ for $\tau \in I_{0}$ and $\nu \in\{1, \ldots, N(0, \tau, M)\}$ satisfies

$$
\begin{gather*}
\int_{X} \widetilde{D}_{Q_{\tau}^{0, \nu}}(x) d \mu(x)=1 \\
\left|\widetilde{D}_{Q_{\tau}^{0, \nu}}(x)\right| \leq \frac{C}{(1+\rho(x, y))^{d+\epsilon}} \tag{2.4}
\end{gather*}
$$

for all $x \in X$ and $y \in Q_{\tau}^{0, \nu}$ and

$$
\begin{equation*}
\left|\widetilde{D}_{Q_{\tau}^{0, \nu}}(x)-\widetilde{D}_{Q_{\tau}^{0, \nu}}(z)\right| \leq C\left(\frac{\rho(x, z)}{1+\rho(x, y)}\right)^{\epsilon} \frac{1}{(1+\rho(x, y))^{d+\epsilon}} \tag{2.5}
\end{equation*}
$$

for all $x, z \in X$ and $y \in Q_{\tau}^{0, \nu}$ satisfying $\rho(x, z) \leq \frac{1}{2 A}(1+\rho(x, y))$; the constant C in (2.2) - (2.5) is independent of M.

To prove Theorem A and Theorem B, we need the following lemmas. Their proofs are similar to that of Lemma 4.1 in [10].

Lemma 2.2. With notation as in Lemma 2.1 and Theorem A, then
(i) for $k \in \mathbb{Z}_{+}, \tau^{\prime} \in I_{0}$ and $\nu^{\prime} \in\left\{1, \ldots, N\left(0, \tau^{\prime}, M\right)\right\}$, $y_{\tau^{\prime}}^{0, \nu^{\prime}}$ is any fixed point of $Q_{\tau^{\prime}}^{0, \nu^{\prime}}, x \in X$,

$$
\begin{equation*}
\left|D_{k} T \widetilde{D}_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}(x)\right| \leq C(1+k) 2^{-k \epsilon} \frac{1}{\left(1+\rho\left(x, y_{\tau^{\prime}}^{0, \nu^{\prime}}\right)\right)^{d+\sigma^{\prime}}} \tag{2.6}
\end{equation*}
$$

where $\sigma^{\prime}=\sigma$ when $k=0$ and $\sigma^{\prime}=\epsilon$ when $k \in \mathbb{N}$,
(ii) for $k \in \mathbb{Z}_{+}, k^{\prime} \in \mathbb{N}, x, y \in X$,

$$
\begin{equation*}
\left|D_{k} T \widetilde{D}_{k^{\prime}}(x, y)\right| \leq C\left[1+\left|k-k^{\prime}\right|\right]\left(2^{\left(k^{\prime}-k\right) \epsilon^{\prime}} \wedge 1\right) \frac{2^{-\left(k \wedge k^{\prime}\right) \epsilon^{\prime}}}{\left(2^{-\left(k \wedge k^{\prime}\right)}+\rho(x, y)\right)^{d+\epsilon^{\prime}}} \tag{2.7}
\end{equation*}
$$

Lemma 2.3. With notation as in Lemma 2.1 and Theorem B, then
(i) for $k \in \mathbb{Z}_{+}, \tau^{\prime} \in I_{0}$ and $\nu^{\prime} \in\left\{1, \ldots, N\left(0, \tau^{\prime}, M\right)\right\}, y_{\tau^{\prime}}^{0, \nu^{\prime}}$ is any fixed point of $Q_{\tau^{\prime}}^{0, \nu^{\prime}}, x \in X$,

$$
\begin{equation*}
\left|D_{k} T \widetilde{D}_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}(x)\right| \leq C \frac{1}{\left(1+\rho\left(x, y_{\tau^{\prime}}^{0, \nu^{\prime}}\right)\right)^{d+\sigma^{\prime}}} \tag{2.8}
\end{equation*}
$$

where $\sigma^{\prime}=\sigma$ when $k=0$ and $\sigma^{\prime}=\epsilon$ when $k \in \mathbb{N}$,
(ii) for $k \in \mathbb{Z}_{+}, k^{\prime} \in \mathbb{N}, x, y \in X$,

$$
\begin{equation*}
\left|D_{k} T \widetilde{D}_{k^{\prime}}(x, y)\right| \leq C\left[1+\left|k-k^{\prime}\right|\right]\left(2^{\left(k-k^{\prime}\right) \epsilon^{\prime}} \wedge 1\right) \frac{2^{-\left(k \wedge k^{\prime}\right) \epsilon^{\prime}}}{\left(2^{-\left(k \wedge k^{\prime}\right)}+\rho(x, y)\right)^{d+\epsilon^{\prime}}} . \tag{2.9}
\end{equation*}
$$

Proof of Theorem A. By Lemma 2.1 and Theorem 1.5 in [6], for $f \in \widetilde{\mathcal{M}}(\beta, \gamma)$, we write

$$
\begin{aligned}
& \|T(f)\|_{B_{p}^{\alpha, q}(X)} \leq\left\{\sum _ { \tau \in I _ { 0 } } \sum _ { \nu = 1 } ^ { N (0 , \tau , M) } \left[m _ { Q _ { \tau ^ { \prime } } ^ { 0 , \nu } } \left(\sum_{\tau^{\prime} \in I_{0}} \sum_{\nu^{\prime}=1}^{N\left(0, \tau^{\prime}, M\right)} \mu\left(Q_{\tau^{\prime}}^{0, \nu^{\prime}}\right)\right.\right.\right. \\
& \left.\left.\left|D_{0} T \widetilde{D}_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}(\cdot)\right| m_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}\left(\left|D_{0}(f)\right|\right)\right]^{p}\right\}^{\frac{1}{p}} \\
& +\left\{\sum _ { \tau \in I _ { 0 } } \sum _ { \nu = 1 } ^ { N (0 , \tau , M) } \left[m _ { Q _ { \tau } ^ { 0 } , \nu } \left(\sum_{k^{\prime}=1}^{\infty} \sum_{\tau^{\prime} \in I_{k^{\prime}}} \sum_{\nu^{\prime}=1}^{N\left(k^{\prime}, \tau^{\prime}, M\right)} \mu\left(Q_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right.\right.\right. \\
& \left.\left.\left.\left|D_{0} T \widetilde{D}_{k^{\prime}}\left(\cdot, y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right|\left|D_{k^{\prime}}(f)\left(y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right|\right)\right]^{p}\right\}^{\frac{1}{p}} \\
& +\left\{\sum _ { l = 1 } ^ { \infty } \left(\sum _ { \tau \in I _ { l } } \sum _ { \nu = 1 } ^ { N (l , \tau , M) } \left[\operatorname { i n f } _ { z \in Q _ { , } ^ { l , \nu } } \left(\sum_{\tau^{\prime} \in I_{0}} \sum_{\nu^{\prime}=1}^{N\left(0, \tau^{\prime}, M\right)} \mu\left(Q_{\tau^{\prime}}^{0, \nu^{\prime}}\right)\right.\right.\right.\right. \\
& \left.\left.\left.\left.\times \mu\left(Q_{\tau^{l, \nu}}^{l}\right)^{-\frac{\alpha}{d}+\frac{1}{p}}\left|D_{l} T \widetilde{D}_{Q_{\tau^{\prime}, \nu^{\prime}}}(z)\right| m_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}\left(\left|D_{0}(f)\right|\right)\right)\right]^{p}\right)^{\frac{q}{p}}\right\}^{\frac{1}{q}} \\
& +\left\{\sum _ { l = 1 } ^ { \infty } \left(\sum _ { \tau \in I _ { l } } \sum _ { \nu = 1 } ^ { N (l , \tau , M) } \left[\operatorname { i n f } _ { z \in Q _ { \tau ^ { \prime } , \nu } } \left(\sum_{k^{\prime}=1}^{\infty} \sum_{\tau^{\prime} \in I_{k^{\prime}}} \sum_{\nu^{\prime}=1}^{N\left(k^{\prime}, \tau^{\prime}, M\right)} \mu\left(Q_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right.\right.\right.\right. \\
& \left.\left.\left.\left.\times \mu\left(Q_{\tau}^{l, \nu}\right)^{-\frac{\alpha}{\alpha}+\frac{1}{p}}\left|D_{l} T \widetilde{D}_{k^{\prime}}\left(z, y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right) \| D_{k^{\prime}}(f)\left(y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right|\right)\right]^{p}\right)^{\frac{q}{p}}\right\}^{\frac{1}{q}} \\
& \doteq A_{1}+A_{2}+A_{3}+A_{4} .
\end{aligned}
$$

The estimate of A_{4} is similar to Theorem 1 in [5]. It remains to deduce the estimates of A_{1}, A_{2} and A_{3}.

From (2.6), the Hölder inequality for $p>1$ and $(a+b)^{p} \leq a^{p}+b^{p}$ for $p \leq 1$, we deduce

$$
\begin{aligned}
A_{1} \leq & C\left\{\sum_{\tau \in I_{0}} \sum_{\nu=1}^{N(0, \tau, M)} \sum_{\tau^{\prime} \in I_{0}} \sum_{\nu^{\prime}=1}^{N\left(0, \tau^{\prime}, M\right)}\left[\frac{1}{\left(1+\rho\left(y_{\tau^{\prime}, \nu}^{0,}, y_{\tau^{\prime}}^{0, \nu^{\prime}}\right)\right)^{d+\sigma^{\prime}}}\right]^{p \wedge 1}\right. \\
& {\left.\left[m_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}\left(\left|D_{0}(f)\right|\right)\right]^{p}\right\}^{\frac{1}{p}} } \\
\leq & C\left\{\sum_{\tau^{\prime} \in I_{0}} \sum_{\nu^{\prime}=1}^{N\left(0, \tau^{\prime}, M\right)}\left[m_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}\left(\left|D_{0}(f)\right|\right)\right]^{p}\right\}^{\frac{1}{p}} \\
\leq & C\left\|\|_{B_{p}^{\alpha_{p}^{\prime, q}(X)}}\right.
\end{aligned}
$$

where $y_{\tau}^{0, \nu}$ is any point of $Q_{\tau}^{0, \nu}, y_{\tau^{\prime}}^{0, \nu^{\prime}}$ is any point of $Q_{\tau^{\prime}}^{0, \nu^{\prime}}$.
By (2.7), it follows that

$$
\begin{aligned}
A_{2} \leq & C\left\{\sum _ { k ^ { \prime } = 1 } ^ { \infty } \sum _ { \tau ^ { \prime } \in I _ { k ^ { \prime } } } \sum _ { \nu ^ { \prime } = 1 } ^ { N (k ^ { \prime } , \tau ^ { \prime } , M) } \sum _ { \tau \in I _ { 0 } } \sum _ { \nu = 1 } ^ { N (0 , \tau , M) } \left[2^{-k^{\prime} d} 2^{-k^{\prime} \alpha}\left[1+k^{\prime}\right]\right.\right. \\
& \left.\left.\times \frac{1}{\left(1+\rho\left(y_{\tau}^{0, \nu}, y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right)^{d+\epsilon^{\prime}}}\right]^{p \wedge 1}\left[\mu\left(Q_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)^{-\frac{\alpha}{d}}\left|D_{k^{\prime}}(f)\left(y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right|\right]^{p}\right\}^{\frac{1}{p}} \\
\leq & C\left\{\sum_{k^{\prime}=1}^{\infty}\left(\left[2^{-k^{\prime} d} 2^{-k^{\prime} \alpha}\left(1+k^{\prime}\right)\right]^{p \wedge 1} 2^{k^{\prime} d}\right)^{\frac{q}{p} \wedge 1}\right. \\
& \left.\times\left(\sum_{\tau^{\prime} \in I_{k^{\prime}}} \sum_{\nu^{\prime}=1}^{N\left(k^{\prime}, \tau^{\prime}, M\right)}\left[\left.\mu\left(Q_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)^{-\frac{\alpha}{d}+\frac{1}{p}} \sup _{z \in Q_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}} \right\rvert\, D_{k^{\prime}}(f)(z)\right]^{p}\right)^{\frac{q}{p}}\right\}^{\frac{1}{q}} \\
\leq & C\|f\|_{B_{p}^{\alpha, q}(X)}
\end{aligned}
$$

where these inequalities follow from the fact that

$$
\begin{gathered}
\sum_{k^{\prime}=1}^{\infty} \sum_{\tau^{\prime} \in I_{k^{\prime}}} \sum_{\nu^{\prime}=1}^{N\left(k^{\prime}, \tau^{\prime}, M\right)} 2^{-k^{\prime} d} 2^{-k^{\prime} \alpha}\left[1+k^{\prime}\right] \frac{1}{\left(1+\rho\left(y_{\tau}^{0, \nu}, y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right)^{d+\epsilon^{\prime}} \leq C} \\
\sum_{k^{\prime}=1}^{\infty}\left[2^{-k^{\prime} d} 2^{-k^{\prime} \alpha}\left(1+k^{\prime}\right)\right]^{p \wedge 1} 2^{k^{\prime} d}+\sum_{k^{\prime}}\left(\left[2^{-k^{\prime} d} 2^{-k^{\prime} \alpha}\left(1+k^{\prime}\right)\right]^{p \wedge 1}\right)^{\frac{q}{p} \wedge 1} \leq C
\end{gathered}
$$

and the last inequality follows from the Plancherel-Pôlya characterization of the Besov spaces [6].

By (2.6), it follows that

$$
\begin{aligned}
A_{3} \leq & C\left\{\sum _ { l = 1 } ^ { \infty } \left(2^{-d l} \sum_{\tau \in I_{l}} \sum_{\nu=1}^{N(l, \tau, M)} \sum_{\tau^{\prime} \in I_{0}} \sum_{\nu^{\prime}=1}^{N\left(0, \tau^{\prime}, M\right)} \mu\left(Q_{\tau^{\prime}}^{0, \nu^{\prime}}\right)\left[m_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}\left(\left|D_{0}(f)\right|\right)\right]^{p}\right.\right. \\
& \times\left[2^{l \alpha}(1+l) 2^{-l \epsilon} \frac{1}{\left.\left.\left.\left(1+\rho\left(y_{\tau^{l} \nu}^{l, \nu}, y_{\tau^{\prime}}^{0, \nu^{\prime}}\right)\right)^{d+\epsilon}\right]^{p \wedge 1}\right)^{\frac{q}{p}}\right\}^{\frac{1}{q}}}\right. \\
\leq & C\left\{\sum_{l=1}^{\infty}\left[2^{l \alpha}(1+l) 2^{-l \epsilon}\right]^{(p \wedge 1) \frac{q}{p}}\left(\sum_{\tau^{\prime} \in I_{0}} \sum_{\nu^{\prime}=1}^{N\left(0, \tau^{\prime}, M\right)} \mu\left(Q_{\tau^{\prime}}^{0, \nu^{\prime}}\right)\left[m_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}\left(\left|D_{0}(f)\right|\right)\right]^{p}\right)^{\frac{q}{p}}\right\}^{\frac{1}{q}} \\
\leq & C\|f\|_{B_{p}^{\alpha, q}(X) .}
\end{aligned}
$$

Similarly, for $f \in \widetilde{\mathcal{M}}(\beta, \gamma)$, we have

$$
\begin{aligned}
& \|T(f)\|_{F_{p}^{\alpha, q}(X)} \\
& \leq\left\{\sum _ { \tau \in I _ { 0 } } \sum _ { \nu = 1 } ^ { N (0 , \tau , M) } \mu (Q _ { \tau } ^ { 0 , \nu }) \left[m _ { Q _ { \tau } ^ { 0 , \nu } } \left(\sum_{\tau^{\prime} \in I_{0}} \sum_{\nu^{\prime}=1}^{N\left(0, \tau^{\prime}, M\right)} \mu\left(Q_{\tau^{\prime}}^{0, \nu^{\prime}}\right)\right.\right.\right. \\
& \left.\left.\left.\left|D_{0} T \widetilde{D}_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}(\cdot)\right| m_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}\left(\left|D_{0}(f)\right|\right)\right)\right]^{p}\right\}^{\frac{1}{p}} \\
& +\left\{\sum _ { \tau \in I _ { 0 } } \sum _ { \nu = 1 } ^ { N (0 , \tau , M) } \left[m _ { Q _ { \tau } ^ { 0 , \nu } } \left(\sum_{k^{\prime}=1}^{\infty} \sum_{\tau^{\prime} \in I_{k^{\prime}}} \sum_{\nu^{\prime}=1}^{N\left(k^{\prime}, \tau^{\prime}, M\right)} \mu\left(Q_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right.\right.\right. \\
& \left.\left.\left.\left|D_{0} T \widetilde{D}_{k^{\prime}}\left(\cdot, y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right|\left|D_{k^{\prime}}(f)\left(y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right|\right)\right]^{p}\right\}^{\frac{1}{p}} \\
& +\|\left\{\sum _ { l = 1 } ^ { \infty } \sum _ { \tau \in I _ { l } } \sum _ { \nu = 1 } ^ { N (l , \tau , M) } \left[\inf _{z \in Q_{\tau}^{l, \nu}} \sum_{\tau^{\prime} \in I_{0}} \sum_{\nu^{\prime}=1}^{N\left(0, \tau^{\prime}, M\right)} \mu\left(Q_{\tau}^{l, \nu}\right)^{-\frac{\alpha}{d}}\right.\right. \\
& \left.\left.\left|D_{l} T \widetilde{D}_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}(z)\right| m_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}\left(\left|D_{0}(f)\right|\right) \chi_{Q_{\tau}^{l, \nu}}\right]^{q}\right\}^{\frac{1}{q}} \|_{L^{p}(X)} \\
& +\|\left\{\sum _ { l = 1 } ^ { \infty } \sum _ { \tau \in I _ { l } } \sum _ { \nu = 1 } ^ { N (l , \tau , M) } \left[\inf _{z \in Q_{\tau^{l}, \nu}} \mid \sum_{k^{\prime}=1}^{\infty} \sum_{\tau^{\prime} \in I_{k^{\prime}}} \sum_{\nu^{\prime}=1}^{N\left(k^{\prime}, \tau^{\prime}, M\right)} \mu\left(Q_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right.\right. \\
& \left.\left.\left.\times \mu\left(Q_{\tau}^{l, \nu}\right)^{-\frac{\alpha}{d}} D_{l} T \widetilde{D}_{k^{\prime}}\left(\cdot, y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)(z) D_{k^{\prime}}(f)\left(y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right) \right\rvert\, \chi_{Q_{\tau}^{l, \nu}}\right]^{q}\right\}^{\frac{1}{q}} \|_{L^{p}(X)} \\
& \doteq B_{1}+B_{2}+B_{3}+B_{4},
\end{aligned}
$$

where $y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}$ are any point in $Q_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}$.
The estimates of B_{1} and B_{4} are similar to A_{1} above and Theorem 2 in [5], respectively. It remains to deduce the estimates of B_{2} and B_{3}.

From (2.7), the Hölder inequality for $q>1$ and $(a+b)^{q} \leq a^{q}+b^{q}$ for $q \leq 1$, Lemma A. 2 in [8], the Fefferman-Stein vector-valued inequality in [7], it follows that

$$
\begin{aligned}
B_{2} \leq & C\left\{\left[\sum_{k^{\prime}=1}^{\infty} 2^{-k^{\prime} d} 2^{-k^{\prime} \alpha}\left[1+k^{\prime}\right] 2^{\frac{k^{\prime} d}{r}}\right.\right. \\
& \left.\left.\times\left[\mathrm{M}\left(\sum_{\tau^{\prime} \in I_{k^{\prime}}} \sum_{\nu^{\prime}=1}^{N\left(k^{\prime}, \tau^{\prime}, M\right)} \mu\left(Q_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)^{-\frac{\alpha}{d}}\left|D_{k^{\prime}}(f)\left(y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right| \chi_{Q_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}}\right)^{r}\right]^{\frac{1}{r}}\right]^{q}\right\}^{\frac{1}{q}} \|_{L^{p}(X)} \\
\leq & C \|\left\{\sum_{k^{\prime}=1}^{\infty}\left[2^{-k^{\prime} d} 2^{-k^{\prime} \alpha}\left[1+k^{\prime}\right] 2^{\frac{k^{\prime} d}{r}}\right]^{q \wedge 1}\right. \\
& \left.\times\left[\mathrm{M}\left(\sum_{\tau^{\prime} \in I_{k^{\prime}}} \sum_{\nu^{\prime}=1}^{N\left(k^{\prime}, \tau^{\prime}, M\right)} \mu\left(Q_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)^{-\frac{\alpha}{d}}\left|D_{k^{\prime}}(f)\left(y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right| \chi_{Q_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}}\right)^{r}\right]^{\frac{q}{r}}\right\}^{\frac{1}{q}} \|_{L^{p}(X)}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C\left\|\left\{\sum_{k^{\prime}=1}^{\infty} \sum_{\tau^{\prime} \in I_{k^{\prime}}} \sum_{\nu^{\prime}=1}^{N\left(k^{\prime}, \tau^{\prime}, M\right)}\left[\mu\left(Q_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)^{-\frac{\alpha}{\alpha}}\left|D_{k^{\prime}}(f)\left(y_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}\right)\right| \chi_{Q_{\tau^{\prime}}^{k^{\prime}, \nu^{\prime}}}\right]^{q}\right\}^{\frac{1}{q}}\right\|_{L^{p}(X)} \\
& \leq C\|f\|_{F_{p}^{\alpha, q}(X)}
\end{aligned}
$$

where $\frac{d}{d+\alpha}<r<\min (p, q, 1)$.
From (2.6), the Hölder inequality for $p>1$ and $(a+b)^{p} \leq a^{p}+b^{p}$ for $p \leq 1$, the Lemma A. 2 in [7], it follows that

$$
\begin{aligned}
B_{3} \leq & C\left\{\int \left(\sum _ { l = 1 } ^ { \infty } \sum _ { \tau \in I _ { l } } \sum _ { \nu = 1 } ^ { N (l , \tau , M) } \chi _ { Q _ { \tau ^ { l } } ^ { l } (} (x) \left[2^{l \alpha}(1+l) 2^{-l \epsilon}\right.\right.\right. \\
& \left.\left.\left.\times \sum_{\tau^{\prime} \in I_{0}} \sum_{\nu^{\prime}=1}^{N\left(0, \tau^{\prime}, M\right)} \frac{1}{\left(1+\rho\left(x, y_{\tau^{\prime}}^{0, \nu^{\prime}}\right)\right)^{d+\epsilon}} m_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}\left(\left|D_{0}(f)\right|\right)\right]^{q}\right)^{\frac{p}{q}} d \mu(x)\right\}^{\frac{1}{p}} \\
\leq & C\left\{\int \left(\sum _ { l = 1 } ^ { \infty } 2 ^ { l \alpha q } (1 + l) ^ { q } 2 ^ { - l \epsilon q } \left[\mathrm { M } \left(\sum_{\tau^{\prime} \in I_{0}} \sum_{\nu^{\prime}=1}^{N\left(0, \tau^{\prime}, M\right)} m_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left(\left|D_{0}(f)\right|\right) \chi_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}\right)^{r}(x)\right]^{\frac{q}{\tau}}\right)^{\frac{p}{q}} d \mu(x)\right\}^{\frac{1}{p}} \\
\leq & C\left\{\int\left[\mathrm{M}\left(\sum_{\tau^{\prime} \in I_{0}} \sum_{\nu^{\prime}=1}^{N\left(0, \tau^{\prime}, M\right)} m_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}\left(\left|D_{0}(f)\right|\right) \chi_{Q_{\tau^{\prime}}^{0, \nu^{\prime}}}\right)^{r}(x)\right]^{\frac{p}{r}} d \mu(x)\right\}^{\frac{1}{p}} \\
\leq & C\|f\|_{F_{p^{\prime}}^{\alpha, q}(X)},
\end{aligned}
$$

where we used the $L^{\frac{p}{r}}(X)$ boundedness of Hardy-Littlewood maximal functions. This proves Theorem A.

Proof of Theorem B. The main difference of proof between Theorem B and Theorem A is that we should replace Lemma 2.2 by Lemma 2.3. We leave the details to the reader.

References

1. M. Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq Math. 60/61 (1990), 601-628.
2. R. R. Coifman and G. Weiss, Analyse Harmonique Noncommutative Sur Certains Espaces Homogenes, Lecture Notes in Math, 242, Springer-Verlag, Berlin and New York, 1971.
3. G. David and J. L. Journé, A boundedness criterion for generalized CalderónZygmund operators, Ann. of Math. 120 (1984), 371-397.
4. Y. C. Han, New characterizations of inhomogeneous Besov and Triebel-Lizorkin spaces over spaces of homogeneous type, Submitted.
5. D. G. Deng and Y. S. Han, T1 Theorem for Besov and Triebel-Lizorkin spaces, Science in China Ser.A Math. 34 (2004), 657-664.
6. D. G. Deng, Y. S. Han and D. C. Yang, Inhomogeneous Plancherel-Pôlya type inequality on spaces of homogeneous type and their applications, Communications in Contemporary Mathematics, 6 (2004), 221-243.
7. C. Feferman and E. M. Stein, Some maximal inequalities, Amer. J. Math., 93 (1971), 107-115.
8. M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
9. Y. S. Han, Plancherel-Pôlya type inequality on spaces of homogeneous type and its applications, Proc. Amer. Math. Soc., 126 (1998), 3315-3327.
10. Y. S. Han, S. Z. Lu and D. C. Yang, Inhomogeneous Besov and Triebel-Lizorkin space on spaces of homogeneous type, Approx. Theory Appl. 15 (1999), 37-65.
11. Y. S. Han, S. Z. Lu and D. C. Yang, Inhomogeneous discrete Calderón reproducing formulas for spaces of homogeneous type, J. Fourier Anal. Appl., 7 (2001), 571-600.
12. Y. S. Han and E. T. Sawyer, Littlewood-Paley theory on spaces of homogeneous type and classical function spaces, Mem. Amer. Math. Soc., 110 (1994), 1-126.
13. Y. S. Han and D. C. Yang, New characterizations and applications of inhomogeneous Besov and Triebel-Lizorkin space on spaces of homogeneous type and fractals, Dissertationes Math. (Rozprawy Mat.) 403 (2002), 1-102.
14. P. G. Lemarie, Continuite sur les espaces de Besov des operateurs definis par des integrales, Ann. Inst. Fouier(Grenoble), 4 (1985), 175-187.
15. R. A. Macias and C. Segovia, Lipschitz function on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270.
16. Y. Meyer, Wavelets and Operators, (Cambridge Studies in Advanced Mathematics: 37), Cambridge University Press, 1992.
17. D. C. Yang, $T 1$ Theorem on Besov and Triebel-Lizorkin spaces on spaces of homogeneous type and their applications. Zeitschrift für Analysis ihre Anwendungen, 22 (2003), 53-72.
