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1. Introduction

The study of topology of algebraic and analytic varieties is a very old and fun-
damental subject. There are three fibrations which appear in this topic: (1)
Lefschetz pencil, which provides essential tools for treating the topology of pro-
jective algebraic varieties (see [75]); (2) Milnor fibration, which is a quite powerful
instrument in the investigation the local behavior of complex analytic varieties
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in a neighborhood of a singular point (see [77]); and recently, (3) global Milnor
fibration, which is used to study topology of affine algebraic varieties (see, for
instance, [4, 10, 14, 17, 25, 40–44, 78–80, 85, 96, 109]). Regarding the status of
the first two fibrations there was limited knowledge about global Milnor fibration.
This is due, in our opinion, the following difficulties while working with affine
algebraic varieties:

(i) affinity (different from projectivity of Lefschetz’s theory); and
(ii) globality (different from locality of Milnor’s theory).

These two difficulties lead to a new phenomenon, very crucial in the study of
the topology of affine algebraic varieties: it is the singularity at infinity.

Let P : Cn −→ C be a polynomial function. According to Thom [110] (see
also [13, 14, 40, 55, 62, 89, 93, 111, 112]), there exists a finite set of points B ⊂ C
such that the restriction

P : Cn \ P−1(B)→ C \B

is a C∞-locally trivial fibration. We call the smallest such set bifurcation set
and denote by B(P ). Naturally, a question arises:

Problem 1. How to determine the bifurcation set B(P )?

The bifurcation set B(P ) includes not only the set of critical values K0(P )
of P but may also contain some other values. This is possible because P is not
proper for n > 2. Therefore the study of the bifurcation set B(P ) is not easy
in general. This is a challenging problem of singularity theory. Until now it is
solved only in few cases. To understand the problem, let us first look at some
examples.

Example 1.1. Let P : C2→ C, (x, y) 7→ xy. Then (0, 0) is the unique critical point
with critical value P (0, 0) = 0. Now consider the topology of the fiber P−1(t).

If t = 0, then

P−1(0) = {(x, y) ∈ C2 | xy = 0} = C ∪C.

If t 6= 0, then
P−1(t) = {(x, y) ∈ C2 | xy = t}.

Let us define the map ϕ: C∗ → P−1(t) by ϕ(x) := (x, t/x), where C∗ := C−{0}.
Then ϕ is a complex analytic isomorphism. In particular, ϕ is a homeomorphism.

Therefore

H1(P−1(t),C) =
{
H1(C ∪C,C) = 0, if t = 0,
H1(C∗,C) = H1(S1,C) = C, if t 6= 0.

In this example, we have B(P ) = K0(P ) = {0}.
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Example 1.2. Broughton has remarked (see [14]) that the polynomial P : C2 →
C, (x, y) 7→ x2y−x, has no critical points; however B(P ) = {0}. To explain why
t = 0 is a special value, let us notice that

P−1(0) = {(x, y) ∈ C2 | x2y − x = 0} = C tC∗ (disjoint union).

On the other hand, using the parameterization technique as in Example 1.1, we
again find that P−1(t), t 6= 0, is homeomorphic to C∗. In particular,

H0(P−1(t),C) =
{

C2, if t = 0,
C, if t 6= 0.

Moreover, it is worth noting that

H1(P−1(t),C) = C for all t ∈ C.

Hence, the first homology group does not distinguish the special fiber P−1(0)
from the generic fiber P−1(t).

To understand what happens in Example 1.2, we have to compare the fibers
P−1(t) and P−1(0) in a neighborhood of infinity. Namely, for R sufficiently large
we put BR := {(x, y) ∈ C2 | |x|2+|y|2 6 R2}. Then the intersections P−1(t)∩BR
and P−1(0)∩BR are homeomorphic, but P−1(t)\BR and P−1(0)\BR are not. In
other words, the topology of fibers P−1(t) of the function P changes (as t tends
to 0) in a neighborhood of infinity. This leads us to the following definition.

Definition 1.3. [80] Let P : Cn→ C be a polynomial function.
(i) A point t0 ∈ C is called a regular value at infinity of P if there is a compact

set K in Cn and a positive number δ such that the restriction

P :P−1(Dδ(t0)) \K → Dδ(t0) := {t ∈ C | |t− t0| < δ}

defines a C∞-trivial fibration.
(ii) A point t0 ∈ C that is not a regular value at infinity of P is called a critical

value at infinity of P.

We denote by B∞(P ) the set of critical values at infinity of P. Then one can
prove that

B(P ) = K0(P ) ∪B∞(P ).

Hence, the problem stated above can be reformulated as follows.

Problem 2. How to determine the set B∞(P )?

There is a quite abundant literature on this topic. See, for instance, [4, 5,
7–11, 13–19, 24, 25, 28–34, 36–47, 50, 53–55, 57, 60, 72–74, 78–82, 85–88, 90–94,
96–99, 106–109]. The simplest case n = 2 was studied intensively and it is rather
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well understood: the set B∞(P ) can be computed effectively [40–44, 101]. In
the general case, the set B∞(P ) can be determined in any dimension only for
polynomials which have only “isolated singularities at infinity” (see [85, 86, 96]).

The aim of this paper is to give an overview of the theory of critical values
at infinity of complex polynomials. For the sake of harmony we sketch proofs
when possible.

2. Two Dimensional Case

We consider the case n = 2 separately, because for polynomials in two complex
variables we can give concrete information. It should be noticed that, in his
paper, Durfee [25] discussed, in a purely local setting near a point on the line
at infinity, equivalent ways of defining a critical value at infinity. On the other
hand, in this section, we focus topics, with further results, which have not been
mentioned in details in [25]. Besides, some other results are also recalled.

2.1. Euler-Poincaré Characteristic

The following first result shows that critical values at infinity of polynomials in
two complex variables are characterized by the variation of the Euler-Poincaré
number of the fiber.
Theorem 2.1. [40, 101] Let P : C2 → C be a non-constant polynomial function
and let t0 be a regular value of P. Then the following conditions are equivalent.
(i) The value t0 is a critical value at infinity of P, i.e., t0 ∈ B∞(P ).
(ii) χ(P−1(t0)) 6= χ(P−1(t)), where P−1(t) is a generic fiber of P and χ denotes
the Euler-Poincaré characteristic.

Before going into the proof, let us begin by calculating the Euler character-
istic of a reduced complex affine plane curve.

Let P : C2→ C be a polynomial function of degree d > 1. By a linear change
of coordinates (x, y) ∈ C2 which we can put P (x, y) in the form (this does not
change the sets K0(P ) and B∞(P ))

P (x, y) = xd + a1(y)xd−1 + · · ·+ ad(y), (2.1)

where ai(y) are polynomials in the variable y of degree at most i.

Let ∆ ∈ C[t, y] be the resultant (discriminant) obtained by eliminating x of
P (x, y)− t and ∂P

∂x (x, y). By the definition of the resultant, we get easily that

∆(t, y) = q0(t)ys + q1(t)ys−1 + · · ·+ qs(t), (2.2)

where qi ∈ C[t], i = 0, 1, . . . , s. We have

Lemma 2.2. (see also [34, Proposition 2.2]) Suppose that the fiber P−1(t) ⊂ C2

is reduced. Then
χ(P−1(t)) = d− degy ∆(t, y).



Critical Values of Singularities at Infinity of Complex Polynomials 5

Proof. Since the polynomial P is monic in the variable x, for each t ∈ C, the
restriction `|Ct of the linear form `: C2→ C, (x, y) 7→ y, on the fiber Ct := P−1(t)
is proper.

Let Σ := {(x1, y1), (x2, y2), . . . , (xp, yp)} be the set of critical points of `|Ct ,
so that y1, y2, . . . , yp are critical values of `|Ct.

Take y∗ ∈ C \ {y1, y2, . . . , yp}. Then `|−1
Ct

(y∗) consists of d = degP distinct
points. In the y-plane, we consider a system of paths T1, T2, . . . , Tp connecting
y1, y2, . . . , yp with y∗ such that
(i) each path Tj has no self-intersection points;
(ii) two distinct paths Ti and Tj meet only at the point y∗.

Put
Ŝ(Ct) := `|−1

Ct
(∪pi=1Ti).

Then Ŝ(Ct) is a union of 1-dimensional curves. Let Š(Ct) be the set of all curves
in Ŝ(Ct) \ `|−1

Ct
(y∗) which contain a point of Σ.

Since the set ∪pi=1Ti is a deformation retract of C and the restriction

`|Ct :Ct \Σ→ C \ {y1, y2, . . . , yp}, (x, y) 7→ y,

is a local trivial fibration, Ŝ(Ct) is a deformation retract of Ct. Moreover, one
can easily see that the set

S(Ct) := Š(Ct) ∪ `|−1
C (y∗)

is a deformation retract of Ŝ(Ct) and also of Ct. Hence,

χ(Ct) = χ(S(Ct)).

On the other hand, the set S(Ct) can be identified with a 1-dimensional
graph of d + p vertices and

∑p
j=1mj edges, where mj is the number of edges

incident on the vertex (xj, yj), i.e., mj is equal to the ramification index of `|Ct

at the point (xj, yj). Thus

χ(Ct) = χ(S(Ct)) = d+ p−
p∑

j=1

mj = d−
p∑

j=1

(mj − 1).

But, as it is easily seen, the number of ramification points
∑p

j=1(mj − 1) equals
the degree in y of the discriminant ∆(t, y) of P (x, y)− t with respect to x, i.e.,

p∑

j=1

(mj − 1) = degy ∆(t, y).

This completes the proof of the lemma. �

Now we can pass to the proof of Theorem 2.1.
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Proof of Theorem 2.1. It is trivial that (ii) ⇒ (i).
Conversely, suppose that (ii) fails. Keep all conventions and notations as

above. Let s(t) := degy ∆(t, y) be the degree of the discriminant ∆(t, y) in the
variable y. Lemma 2.2 now shows that χ(P−1(t)) = d − s(t). By assumption,
s(t) = s for all t ∈ Dδ(t0) := {t ∈ C | |t − t0| < δ}, 0 < δ � 1. Consequently,
there exists a positive number r such that the system of equations




P (x, y) = t,

∂P

∂x
(x, y) = 0,

has no solution on the set P−1(Dδ(t0)) \ {|y| 6 r}. Thus, we can construct a
diffeomorphism which trivializes the fibration

P :P−1(Dδ(t0)) \ {|y| 6 r} −→ Dδ(t0).

On the other hand, since P is monic in the variable x, the set P−1(Dδ(t0))∩{|y| 6
r} is compact. Therefore, t0 is a regular value at infinity of P. �

2.2. Polar Curves

Polar curves play an important role in projective geometry by generic projec-
tions, in particular in the study of numerical invariants of projective algebraic
varieties, and also in the study of projective duality (Plücker formulas). In the
1970s, local polar curves were used systematically in the study of singularities:
it can be used to produce invariants of equisingularity (“topological” invariants
of complex analytic singularities) and also to explain why the same invariants
appear in apparently unrelated questions (see, for example, [49, 63–69, 76, 102,
103, 105]). Many authors continued this study and found more and more appli-
cations of polar curves.

Our aim in this section is to study critical values at infinity with the aid of
polar curves (i.e., the critical points of projections).

Let P be a polynomial of the form (2.1) and let us fix the same notation
as in Sec. 2.1. Choose a generic linear form, which we shall take as `: C2 →
C, (x, y) 7→ y. Then by the polar curve (respectively, discriminant locus) of P
with respect to ` we mean the set of critical points (respectively, critical values)
of the polynomial map

(P, `): C2→ C2, (x, y) 7→ (P (x, y), y).

Clearly, the polar curve is defined by ∂P
∂x = 0. Moreover, the discriminant

locus consists of points (t, y) ∈ C2 where ∆(t, y) = 0.

On the other hand, it follows from Theorem 2.1 and Lemma 2.2 that t0 ∈
B(P ) if and only if s > s(t0). Then Theorem 2.1 can be stated as

Theorem 2.3. [41] (see also [19, 20, 94]) With notations as above, the following
conditions are equivalent
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(i) t0 is a critical value at infinity of P.
(ii) The line t− t0 = 0 is an asymptote of the discriminant locus, i.e.,

B∞(P ) = {t | q0(t) = 0}.

Remark 2.4. It is noted that the set of critical values of P can be characterized
in terms of the discriminant locus (see, for example, [90, Theorem 2.3]).

Next, for each t ∈ C, we consider the restriction

`|P−1(t):P−1(t)→ C, (x, y) 7→ y.

We say that a point (x∗, y∗) ∈ C2 is a ramification point of the fiber P−1(t) with
respect to the projection ` if it is a critical point of the map `|P−1(t), i.e., if the
following conditions hold

P (x∗, y∗) = t and
∂P

∂x
(x∗, y∗) = 0.

Since P is monic in x, the map `|P−1(t) is proper. By Theorem 2.3, we obtain
that t0 ∈ B(P ) if and only if for each t ∈ C sufficiently close to t0 there exists a
ramification point (x(t), y(t)) of the fiber P−1(t) with respect to the projection
` such that ‖(x(t), y(t))‖ →∞ as t→ t0. Hence,

Theorem 2.5. [42] With notions as above, the following conditions are equiva-
lent
(i) t0 is a critical value at infinity of P.
(ii) There is at least one ramification point of the fiber P−1(t) (with respect to
the projection `) which tends to infinity as t→ t0. Moreover, the number of such
ramification points equals χ(P−1(t0)) − χ(P−1(t)), where P−1(t) is a generic
fiber of P.

2.3. Semi-cycles Vanishing at Infinity

As is well-known, in the local case of isolated singularities, one can use the
middle homology group to distinguish special fibers from the generic one (see
[77]). Unfortunately, as shown in Example 1.2, a global version of this result is
not true. On the other hand, by introducing the notion of “semi-cycles vanishing
at infinity”, we show below that a certain relative homology group is sufficient
to distinguish special fibers from the generic one.

Let P be, as previously, a polynomial of the form (2.1) and consider the
linear form `: C→ C, (x, y) 7→ y. There is no loss of generality in assuming that
for each t near a given regular value t0 of P , the restriction map `|Ct of ` on
the fiber Ct := P−1(t) is simple (`|Ct is said to be simple if and only if `|−1

Ct
(y)

consists of d− 1 distinguished points for every critical value y of `|Ct). Then the
number of critical points of `|Ct is exactly s(t) := degy ∆(t, y). Let

(x1(t), y1(t)), . . . , (xs(t), ys(t))
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be critical points of the map `|Ct, t 6∈ B(P ). Now we use the notations as in the
proof of Lemma 2.2. Suppose that y∗ ∈ C is a common regular value of `|Ct

for all t near t0 and let ej(t) := `|−1
Ct

(Tj) ∩ S(Ct), j = 1, . . . , s, be the cycles
of the relative homology group H1(Ct, `|−1

Ct
(y∗)) corresponding to the critical

points (xj(t), yj(t)). These cycles define a basis of the relative homology group
H1(Ct, `|−1

Ct
(y∗)).Then, by Theorem 2.5, t0 ∈ B∞(P ) if and only if there exists an

index j ∈ {1, 2, . . . , s} such that ‖(xj(t), yj(t))‖ → ∞ when t → t0. Moreover,
since the map `|Ct is simple, the number of critical points of `|Ct tending to
infinity when t → t0 is equal to s − s(t0). Therefore, we may assume without
loss of generality that such critical points are

(x1(t), y1(t)), . . . , (xs−s(t0)(t), ys−s(t0)(t)).

Definition 2.6. [41] We call ej(t), j = 1, 2, . . . , s−s(t0), semi-cycles vanishing
at infinity when t→ t0.

As a direct consequence of this definition, we get

Theorem 2.7. [41] (See also [47]) The following conditions are equivalent
(i) t0 is a critical value at infinity of P.
(ii) There exist semi-cycles ej(t) vanishing at infinity when t→ t0. The number
of such semi-cycles equals χ(P−1(t0))− χ(P−1(t)).

Remark 2.8. The number of semi-cycles ej(t) vanishing at infinity can be given
in another way as follows

χ(P−1(t0)) − χ(P−1(t)) = s − degy ∆(t0, y)

=
(
{P = t} ,

{
∂P

∂x
= 0

})
−

(
{P = t0} ,

{
∂P

∂x
= 0

})

= dimC
C[x, y]

(P − t, ∂P
∂x

)
− dimC

C[x, y]
(P − t0, ∂P∂x )

;

here (X,Y ) stands for the (total) intersection number of complex affine plane
curves X and Y.

2.4. Milnor-Lê Number

We will define below an invariant λt(P ), t ∈ C, as the difference between Milnor
numbers at infinity of special fibers and of the generic one. More precisely, let
P : C2→ C be a polynomial function of degree d. The homogenization of P (x, y)
is the homogeneous complex polynomial P (x, y, z) of degree d :

P (x, y, z) := zdP
(x
z
,
y

z

)
.

The compactification of the fibers Ct := P−1(t) in the complex projective plane
P2 are the projective curves Ct with projective equations P (x, y, z) − tzd = 0.
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These curves pass through the same points on the line at infinity {z = 0}, namely
through

{a1, a2, . . . , ap} = {P = z = 0}

which corresponds to the asymptotic directions of the fibers P−1(t).

For each ai, 1 6 i 6 p, let µai (Ct) be the Milnor number of the germ of the
analytic curve Ct at the point ai. As µai(Ct) is upper semicontinuous in t [14],
there exists an integer

µi := inf
t∈C

µai(Ct).

Hence, for a generic t, µai(Ct) = µi, and for finitely many t0, µai(Ct0) > µi.

Definition 2.9. We define for any t ∈ C

λt(P ) :=
p∑

i=1

[µai(Ct)− µi],

and we call it the Milnor-Lê number at infinity of the fiber P−1(t).

Remark 2.10. Let us note that λt(P ) and
∑

t∈C λt(P ) are topological invariants
of P (see, for example, [5, 14, 17, 34, 40, 86, 96, 101, 107]).

The set of critical values at infinity of polynomials in two variables can be
computed by using the λ-invariant, as described below.

Theorem 2.11. [40, 70] We have

B∞(P ) = {t ∈ C | λt(P ) > 0}.

Proof. Without loss of generality, after a linear change of coordinates, we can
suppose that P has the form (2.1).

LetD be the compactification of the polar curve D := {∂P∂x = 0}. By Bezout’s
theorem,

(Ct, D) = d(d− 1) for all t ∈ C.

On the other hand,

(Ct, D) =
∑

a∈C2

(Ct, D)a +
∑

a∈P2−C2

(Ct, D)a

= dimC
C[x, y]

(P − t, ∂P
∂x

)
+

∑

a∈Ct∩{z=0}

(Ct, D)a

= dimC
C[x, y]

(P − t, ∂P∂x )
+

p∑

i=1

(Ct, D)ai ,

where (·, ·)a stands for the local intersection multiplicity of Ct with D at a.
Moreover, since the polynomialP is monic in x, the projective curve Ct intersects
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transversally to the line at infinity {z = 0}. Then, as it is well known ([104, 22,
6, 35] for instance),

(Ct, D)ai = µai(Ct) + (Ct, {z = 0})ai − 1, i = 1, 2, . . . , p.

Hence,

d(d− 1) = (Ct, D) = dimC
C[x, y]

(P − t, ∂P∂x )
+

p∑

i=1

[µai(Ct) + (Ct, {z = 0})ai − 1].

Since the numbers (Ct, {z = 0})ai , i = 1, 2, . . . , p, do not depend on t, therefore

dimC
C[x, y]

(P − t, ∂P∂x )
− dimC

C[x, y]
(P − t0, ∂P∂x )

=
p∑

i=1

[µai(Ct0)− µai(Ct)].

Consequently,

λt0(P ) = dimC
C[x, y]

(P − t, ∂P∂x )
− dimC

C[x, y]
(P − t0, ∂P∂x )

= χ(Ct0)− χ(Ct).

Combining with Theorem 2.1, this proves the theorem. �

Remark 2.12. The number λt0(P ) counts the number of ramification points of
the fiber P−1(t) which tend to infinity as t tends to t0, and then the number
λ(P ) is the total of ramification points which tend to infinity as t varies.

2.5. Resolution
In general, it is easier to deal with proper maps. In the case of complex polyno-
mial functions in two variables, there is a natural way to compactify the function.
Let P : C2→ C be a complex polynomial of degree d and P its homogenization.
The polynomial P extends to a map

P̃ : P2 · · · → P1 := C ∪ {∞}, (x : y : z) 7→ (P (x, y, z) : zd),

which is undefined at a finite number of points on the line at infinity {z = 0}.
By blowing up these points, one gets a manifold X and a map π:X → P2 such
that the map P̂ :X → P1 which is the lift of P̃ is everywhere defined. We
call the map π a resolution of P. Some interesting results on the structure of
resolutions are discovered in [71]. For example, the intersection graph of the
divisor π−1({z = 0}) is a tree A. Moreover, the space P̂−1(∞) is connected.
In other words, P̂−1(∞) defines a strict connected subtree A∞ of A. We shall
call the divisor π−1({z = 0}), the divisor at infinity of X , and a component of
π−1({z = 0}) on which P̂ is not constant is called dicritical.

Following [70, 71], each connected component of A−A∞ is a bamboo which
contains a unique dicritical component of P̂ and this dicritical component is the
only irreducible component of the bamboo which meets A∞. Let B be a bamboo
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of A − A∞ and let DB be its dicritical component. If B has more than one
component, the components of B other than DB define a sub-bamboo B′ of B.
The restriction to B′ of the function P̂ is a finite constant. This value will be
called the atypical value of the bamboo B.

The next result gives a criterion for critical values at infinity in terms of a
resolution.

Theorem 2.13. [70, 71] Under above notations we have

B∞(P ) = {critical values 6=∞ of the restriction of ϕ to dicritical components}∪
{atypical values of P̂ on each bamboos of A −A∞ with at least two vertices}.

2.6. Lojasiewicz Number at Infinity of the Fiber

Let P : Cn→ C be a polynomial function. It turns out that for t ∈ C the property
of being in B∞(P ) depends on the behavior of the gradient of P near the fiber
P−1(t).

Adapting Milnor’s definition let us define the gradient of P by

gradP (x) :=
(
∂P

∂x1
(x),

∂P

∂x2
(x), . . . ,

∂P

∂xn
(x)

)
,

where x := (x1, x2, . . . , xn) and the bar denotes the conjugation.

Definition 2.14. [43] Let t ∈ C. By the Lojasiewicz number at infinity of the
fiber P−1(t) we mean the number

L∞,t(P ) := lim
δ→0

lim
r→∞

lnϕδ,t(r)
ln r

,

where
ϕδ,t(r) := inf{‖gradP (x)‖ | ‖x‖ = r and |P (x)− t| 6 δ}.

An equivalent definition is (see [20, 100])

L∞,t(P ) = inf
ψ

val (gradP ◦ ψ)
valψ

,

where ψ = (ψ1, . . . , ψn) is a meromorphic map at infinity such that limτ→0 ‖ψ(τ )‖
= ∞ and limτ→0 P (ψ(τ )) = t, here valλ for λ meromorphic at infinity is de-
fined as follows: if λ(τ ) =

∑∞
i=k akτ

k, ak 6= 0, is the Laurent series of λ in a
neighborhood of 0 then valλ := k; if λ ≡ 0 then valλ := +∞.

The following result shows that critical values at infinity of polynomials in
two complex variables are characterised in terms of the Lojasiewicz number at
infinity of the fiber.
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Theorem 2.15. [43] (see also [25, 59]) Let P : C2 → C be a polynomial in two
complex variables. The following conditions are equivalent
(i) t0 ∈ B∞(P ).
(ii) L∞,t0(P ) < −1.
(iii) L∞,t0(P ) < 0.

To prove the theorem we need additional terminology.

Definition 2.16. We say that a fractional power series

ϕ(y) = c1y
q1/N + c2y

q2/N + · · · , |y| � 1, with q1 > q2 > · · · , N ∈ N,

a Puiseux root at infinity of the curve with the equation P (x, y) = 0 if the series
ϕ(τN ), |τ | � 1, converges at infinity and P (ϕ(y), y) ≡ 0.

Proposition 2.17. Assume that the polynomial P is of the form (2.1). Then
the curve {P (x, y) = 0} has exactly d Puiseux roots at infinity. Each root has a
representation of the form:

ciy+
−k0∑

k=−1

c0ky
k+c10y

m1
n1 +

−k1∑

k=−1

c1ky
m1+k

n1 +· · ·+cg0y
mg

n1n2...ng +
−∞∑

k=−1

cgky
mg+k

n1n2...ng .

Proof. Let C ⊂ P2 be the compactification of the curve C := {P (x, y) = 0}. The
projective curve C meets the line at infinity {z = 0} in finitely many points say
a1, a2, . . . , ap . Since P is monic in x, we may write

ai = (−ci : 1 : 0) ∈ P2, i = 1, 2, . . . , p.

Fix i ∈ {1, 2, . . . , p}. Consider the equation

zdP

(
x

z
,
1
z

)
= 0

in a neighborhood of the point (−ci, 0) ∈ C2. We substitute

u := x+ ci

and obtain

fi(u, z) := zdP

(
u− ci
z

,
1
z

)
= 0.

Clearly, fi ∈ C[u, z] has the form

fi(u, z) := gi(u) + zhi(u, z),

where gi ∈ C[u], hi ∈ C[u, z] and g(0) = h(0, 0) = 0. By Puiseux’s theorem (see
[12, 113]), the equation fi(u, z) = 0 (locally around the point (0, 0)) admits si :=
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ordgi roots u = uij(z), j = 1, 2, . . . , si. Note that
∑p

i=1 si = d. Moreover, these
roots are usually written in the form (omitting the subscripts i, j for simplicity)

k0∑

k=1

c0kz
k + c10z

m′
1

n′
1 +

k1∑

k=1

c1kz

m′
1+k

n′
1 + · · ·+ cg0z

m′
g

n′
1

n′
2

...n′
g +

∞∑

k=1

cgkz

m′
g+k

n′
1

n′
2

...n′
g ,

with each pair (m′
i, n

′
i) relatively prime and

m′
1

n′
1

<
m′

2

n′
1n

′
2

< · · · ,

and then (m′
1, n

′
1), . . . , (m′

g, n
′
g) are called the Puiseux pairs for the correspond-

ing root.

Let ϕ′
ij(z) := −ci + uij(z). Then x = ϕ′

ij(z) is a root of the curve C with
the equation zdP

(
x
z
, 1
z

)
= 0, locally around the point ai. Moreover, it is easy to

see that the fractional power series x = yϕ′
ij(1/y) satisfies the conditions of the

proposition, where

nj = n′
j,

mj = n′
1n

′
2 · · ·n′

j −m′
j , j = 1, 2, . . . , g.

Hence the proposition follows. �

Definition 2.18. For a fractional power series x = ϕ(y), which is expressed as
in Proposition 2.17, we call the pairs

(m1, n1), (m2, n2), . . . , (mg, ng)

the Puiseux pairs at infinity of ϕ.

Now we can pass to the proof of Theorem 2.15.

Proof of Theorem 2.15. This proof is due to [59]. Without loss of generality, we
can assume that the polynomial P has the form (2.1).

We shall show that each of conditions (i)-(iii) is equivalent to the following
condition

(iv) There is a Puiseux root at infinity of the polar curve {∂P∂x = 0} such that

P (ϕ(y), y)) − t0 → 0, as y →∞.

The implication (iv) ⇔ (i) follows from Theorem 2.5.
(iv) ⇒ (ii): In fact, let ϕ be a Puiseux root at infinity of the polar curve

{∂P∂x = 0} such that

P (ϕ(y), y) − t0 = cyα + terms of degrees less than α, α < 0, c 6= 0.
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An easy computation shows that

gradP (ϕ(y), y) = (0, αcyα−1 + · · · ).

Hence |y|‖gradP (ϕ(y), y)‖ → 0 as y →∞.

On the other hand, since P (x, y) is monic in x, so is ∂P
∂x
. Consequently, there

exist positive numbers c1, c2 such that

c1‖(ϕ(y), y)‖ 6 |y| 6 c2‖(ϕ(y), y)‖, |y| � 1.

Thus we have (ii).
(ii) ⇒ (iii): It is clear.
(iii) ⇒ (iv): Assume that L∞,t0(P ) < 0. This means that there exists a

sequence of points (xk, yk) ∈ C2 such that the following conditions hold:

‖(xk, yk)‖ →∞, P (xk, yk)→ t0 and ‖gradP (xk, yk)‖ → 0.

Using the Curve Selection Lemma at infinity [79], we can assume that (xk, yk)
lies on an analytic curve

λ : x = c1s
n1 + c2s

n2 + . . . , y = s−N ,

where s → 0, N > 0, n1 < n2 < · · · (n1 need not be positive). We must have
n1 + N > 0, since xk/yk is bounded. We can rewrite λ as a fractional power
series

λ : x = c1y
−n1/N + c2y

−n2/N + · · · , −N 6 n1 < n2 · · · .

Let us apply the change of variables

X := x− λ(y), Y := y−1

to P (x, y)− t0, yielding

M (X,Y ) := P (X + λ(1/Y ), 1/Y )− t0 =
∑

cijX
iY j/N .

For each cij 6= 0, let us plot a dot at (i, j/N ), called a Newton dot. The set of
Newton dots is called the Newton diagram of M. Clearly, it has at most finitely
many dots lying on or below the X-axis. Moreover, there is one dot at (d, 0)
because P is monic in the variable x.

The assumption P (λ(y), y)− t0 → 0 means that M (0, Y )→ 0 as Y → 0. As
a consequence, all Newton dots of M (0, Y ) lie above the X-axis.

If M (X,Y ) has no dots on X = 1, then

0 =
∂M

∂X
(0, Y ) =

∂P

∂x
(λ(y), y)
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and we have (iv). If it is not the case, let (1, h1) denote the lowest Newton dot
on X = 1. We must have h1 > 0, since otherwise ∂M

∂X (0, Y ) = ∂P
∂x (λ(y), y) does

not tend to zero when y tends to infinity.

Now the idea of the proof is to use the Newton dots on or bellow the X-axis
to “swallow” the Newton dot (1, h1). Let us consider this idea on the following
example

M (X,Y ) := Y 3 − 2XY +X3Y −1 +X4.

The dot (1, 1) represents −2XY. We use the dot (3,−1) (which represents the
monomial X3Y −1) to swallow (1, 1).

Let us take a root c 6= 0 of ∂
∂z (z

3 − 2z) = 0. So c =
√

2
3 and let γ =

√
2
3Y.

Then, by an easy calculation, we see that the lowest Newton dot on X = 1 of
M (X +

√
2
3
Y, Y ) is higher than (1, 1). On X = 0, all dots remain above the

X-axis.

In the general case, let M (X,Y ) =
∑
cijX

iY j/N . The Newton diagram of
∂M
∂X is obtained from the Newton diagram of M by a shift by one unit to the
left. All Newton dots of M on X = 0 disappear. Let EH be the highest Newton

edge of
∂M

∂X
(i.e., EH is the compact edge to right of the highest Newton dot of

∂M
∂X ). Then let us collect all the terms of M (X,Y ) corresponding to EH :

ϕH (X,Y ) :=
∑

(i−1,j/N)∈EH

cijX
iY j/N .

Take any root c (c 6= 0) of ∂
∂zϕH (z, 1) = 0 and let θH be the angle between the

edge EH and the X-axis. In the expansion of ϕH (X + cY tan θH , Y ), the term
XY h1 has coefficient 0, since ∂

∂zϕH (c, 1) = 0. Let γ1(Y ) := γ0(Y ) + cY tan θH ,
here γ0(Y ) := λ(1/Y ). We say that γ1(Y ) is the result of the sliding (at infinity)
of γ0 along ∂M

∂X
.

We see that the lowest Newton dot on X = 1 of M1(X,Y ) := M (X +
γ1(Y ), Y ) is higher than (1, h1). On X = 0, all dots remain above the X-axis.

A recursive sliding γ0 → γ1 → γ2 → · · · , will then yield a Puiseux root at
infinity γ of the polar curve ∂P

∂x = ∂M
∂X = 0, for which

M̃ (X,Y ) := M (X + γ(Y ), Y )

has no dots on X = 1, and dots on X = 0 all lie above the X-axis.

An easy calculation, using the Chain Rule, yields

y
∂P

∂x
= Y −1∂M̃

∂X
,

y
∂P

∂y
= Y

∂M̃

∂Y
− Y γ′(Y )

∂M̃

∂X
,
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whence Condition (iv) holds along the curve (x := γ(1/y), y) for |y| � 1.

All is now proven. �

We end this section with a formula for L∞,t0(P ), t0 ∈ B∞(P ), in terms of
Puiseux roots at infinity of the curve {P (x, y) = t0} ⊂ C2.

Assume that P has the form (2.1). Then, by Proposition 2.17, the curve
{P (x, y) = t0} has d Puiseux roots at infinity ϕ1, ϕ2, . . . , ϕd, say.

For each root ϕi, let

ρi := min
j 6=i

val(ϕi(y) − ϕj(y)).

Now let ψi(y) denote ϕi with its terms of degree ρi replaced by ξyρi , ξ a generic
number (or an indeterminant), and all lower-order terms omitted.

The following formula is analogous to the formula for the local Lojasiewicz
exponent of the gradient of P, given in [58]:

Theorem 2.19. [43, 44] Let t0 ∈ C be such that the fiber P−1(t0) is reduced. If
t0 is a critical value at infinity of P, then

L∞,t0(P ) = min
i=1,2,... ,d

val(P (ψi(y), y) − t0)− 1.

2.7. Topological Triviality at Infinity, M-tameness and the Lojasiewicz Number
at Infinity

Let P : Cn → C be a polynomial function. It is important to understand the
meaning of B∞(P ) = ∅ (hence B(P ) = K0(P )). There are some special cases
when the polynomial has no critical values at infinity: Pham [89] and Fedoryuk
[27] have imposed lower bound conditions for ‖gradP (x)‖ for large values ‖x‖,
Kushnirenko has proved this in [61] for convenient polynomials with nondegener-
ate Newton principal part at infinity, Broughton [13, 14] for “tame” polynomials
and Némethi and Zaharia [78, 79] for the larger class of “quasitame” and “M -
tame” polynomials. Let us recall the last definition from [78]. Put

M (P ) := {x ∈ Cn | ∃λ ∈ C such that gradP (x) = λx}.

Geometrically, a point x ∈ M (P ) if and only if either x is a critical point of
P, or x is not a critical point of P, but the fiber P−1(P (x)) does not intersect
transversally, at x, the sphere {y ∈ Cn | ‖y‖ = ‖x‖}. The polynomial P is
called M-tame if for any sequence {xk} ⊂ M (P ) such that limk→∞ ‖xk‖ = ∞,
then limk→∞ P (xk) =∞. Then the topological triviality at infinity is related to
M -tameness as follows.

Proposition 2.20. [78] Let P : Cn → C be a non-constant polynomial. If P is
M-tame then B∞(P ) = ∅.
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Proof. Indeed, take any t0 ∈ C and let Dδ(t0) := {t ∈ C | |t− t0| < δ} be a small
open disc centered at t0. Since P is M -tame, we can find a smooth vector field
v(x) on P−1(Dδ(t0))∩{‖x‖ � 1} such that 〈v(x), x〉 = 0 and 〈v(x), gradP (x)〉 =
1. Now using the solution of the differential equation dx

dt = v(x) we obtain that
the restriction

P−1(Dδ(t0)) ∩ {‖x‖ � 1} → Dδ(t0)

is a trivial fibration. Hence, t0 is a regular value at infinity of P. �

On the other hand, in order to know when the set B∞(P ) is empty, we con-
sider the Lojasiewicz number at infinity L∞(P ) which measures the asymptotic
growth at infinity of the gradient of P. Precisely, when P has non-isolated criti-
cal points, we let L∞(P ) := −∞. If P has only isolated critical points, we define
L∞(P ) by

L∞(P ) := lim
r→∞

lnϕ(r)
ln r

,

where ϕ(r) := inf‖x‖=r ‖gradP (x)‖.

Definition 2.21. We say that L∞(P ) is the Lojasiewicz number at infinity of
P.

One can easily show that the number L∞(P ) is the smallest upper bound
of the set of all real numbers l > 0 which satisfy the condition: there exists a
positive constant c such that

‖gradP (x)‖ > c‖x‖l for ‖x‖ � 1.

Moreover, directly from definitions we get easily that

Proposition 2.22. [43] (see also, [20]) Let P : Cn→ C, n > 2, be a non-constant
polynomial function. If L∞(P ) 6 −1, then there exists t0 ∈ C such that

L∞(P ) = L∞,t0(P ).

The following result gives, in the case n = 2, a complete answer of the
question mentioned above.

Theorem 2.23. [43] Let P : C2 → C be a non-constant polynomial. Then the
following conditions are equivalent
(i) B∞(P ) = ∅.
(ii) The polynomial P is M-tame.
(iii) L∞(P ) > −1.

Proof. (i) ⇒ (iii) Assuming the contrary and using Proposition 2.22 we can find
t0 ∈ C such that

L∞,t0(P ) = L∞(P ) 6 −1.

By Theorem 2.15, we obtain that t0 ∈ B∞(P ), which is a contradiction.
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(iii) ⇒ (ii) Assuming the contrary and using Curve Selection Lemma at
infinity ([79, 77]) we can find a real analytic curve (λ(τ ), ϕ(τ )): (0, ε)→ C×Cn
such that

lim
τ→0
‖ϕ(τ )‖ =∞, gradP (ϕ(τ )) = λ(τ )ϕ(τ ), and lim

τ→0
P (ϕ(τ )) ∈ C.

Then it is not hard to see that

lim
τ→0
‖ϕ(τ )‖‖gradP (ϕ(τ ))‖ = 0.

Hence, it follows from the definition of L∞(P ) that L∞(P ) 6 −1, a contradic-
tion.

(ii) ⇒ (i) follows from Proposition 2.20. �

Remark 2.24. It was proved in [18, 19, 43] that for every polynomial function
P : C2→ C, the Lojasiewicz number at infinity L∞(P ) is either −∞ or a rational
number different from −1. Moreover, for each rational number r 6= −1, there
exists a polynomial function P : C2→ C such that L∞(P ) = r.

2.8. Links at Infinity

Another way to compute B∞(P ) is to consider links at infinity of complex affine
plane curves. Indeed, let P : C2 → C be a polynomial function and t ∈ C.
The intersection of the fiber Ct := P−1(t) with any sufficiently large sphere
S3 := {(x, y) ∈ C2 | |x|2 + |y|2 = R2} is transverse, and gives a well-defined link
up to isotopy, L(Ct,∞) := (S3, S3 ∩Ct), called the link at infinity of Ct.

In [80] it was shown that the embedded smooth topology of the generic fiber
Ct of P is determined by the topological type of its link at infinity. It was
conjectured that the same is true for any smooth fiber, but counter-examples
have been found by Artal ([2, 3]). Nevertheless, the topology of link at infinity
of any reduced fiber Ct of P determines a lot of information about Ct and
P. For example, it determines the Euler characteristic of Ct, corrected by the
Milnor numbers of the singularities of Ct if Ct is singular. It also determines
the polynomial degree of P to extent possible, namely the set of degrees of
polynomial maps P ◦ Φ with Φ: C2 → C2 a polynomial automorphism of C2

(replacing P by P ◦Φ does not change the topology of P ). We send to [80, 82]
for more details.

In this section we will give a relationship between critical values at infinity
and “irregular links at infinity”. To describe our next main result we need a
quick review of splice diagrams for toral links; more details are given in [26, 80].

Let Ct, as previously, be a compactification of the fiber Ct := P−1(t). The
projective curve Ct meets the line at infinity H∞ := {z = 0} in a1, a2, . . . , ap.
Let D0 be a 2-disk in H∞ which contains Ct ∩H∞ and D 4-disk neighborhood
of D0 in P2 whose boundary S := ∂D meets Ct ∪ H∞ transversally. Then
L0 := (S, (H∞ ∪ S)∩Ct) is a link which can be represented by a splice diagram
Γ as follows:
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Here K0 is the component S ∩H∞ and each ← Γi is the diagram representing
the local link of H∞ ∪Ct at the point ai.

Let NH∞ be a closed tubular neighborhood of H∞ in P2 whose boundary
S3 = ∂NH∞ is the sphere at infinity and L′ := (S3, S3 ∩ Ct) is, but for ori-
entation, the link at infinity that interests us. We may assume that NH∞ is
obtained from D by attaching a 2-handle along K0, so L′ is obtained from L0

by (+1)-Dehn surgery on K0 ⊂ S = ∂D.

As in [80], we call a weight in the splice diagram near or far according as it
is on the near or far of its edge, viewed from K0. As described in [80], the splice
diagram for L′ is

where Γ′
i is obtained from Γi by replacing each far weight bυ by bυ − λ2

υaυ
with aυ equal to the product of the near weights at vertex υ and λυ the product
of the weights adjacent to, but not on, the simple path from υ to the vertex
corresponding to K0.

Finally, we must reverse orientation to consider S3 as a large sphere in C2

rather than as ∂NH∞. The effect is to reverse the signs of all near weights. We
can then forget the leftmost vertex, which is redundant, to get a diagram Ω for
L(Ct,∞) as follows:
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The leftmost vertex of Ω is called the root vertex. Ω is an (RPI) splice diagram
in the sense of [26] (see also [80]).

We have three types of vertices: arrowheads (corresponding to components
of L(Ct,∞)), leaves (non-arrowheads of valency (number of incident edges) 1)
and nodes (non-arrowheads of valency > 2).

There are certain curves in S3 − (S3 ∩Ct) associated to the splice diagram
Ω for the link L(Ct,∞) , as follows. To a node v of Ω we associate the curve
Sv that would be added to S3 ∩Ct by adding an additional arrow 1−→ at that
node. To a leaf v of Ω we associate the curve Sv that would result by replacing
this leaf by an arrowhead. These curves Sv are called virtual components of the
link L(Ct,∞). In particular, So = K0, where o denotes the root vertex. For any
non-arrowhead vertex of Ω, the linking number

lv := link(Sv, S3 ∩Ct)

(sum of linking numbers of Sv with all components of L(Ct,∞)) is called the
(total) linking coefficient at vertex v (called “multiplicity” in [80]). The linking
coefficient lo at the root vertex is the degree d of the defining polynomial.

Definition 2.25. [80] Ω is a (RPI) regular splice diagram if lv > 0 for all
non-arrowhead vertices.

As proved in [80], the regularity or irregularity of Ω is a topological property
of L(Ct,∞), and we say the toral linkL(Ct,∞) is regular or irregular accordingly.
In [80] it also was shown that L(Ct,∞) is a regular link if t is a regular value
at infinity, and the converse was conjectured. The purpose of this section is to
give a proof of this using Puiseux expansions at infinity of the curve with the
equation P (x, y) = t. We shall prove:
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Theorem 2.26. [44, 80] (see also [81, 82]) Let P : C2 → C be a polynomial
function and let t0 ∈ C be a regular value of P. Then the following conditions
are equivalent
(i) t0 is a critical value at infinity of P.
(ii) L(P−1(t0),∞) is an irregular link at infinity.

The main idea of the proof of the implication (i) ⇒ (ii) comes out from
the observations that: (1) t0 is a critical value at infinity of P if and only if
L∞,t0(P ) < −1 (Theorem 2.15); (2) the number L∞,t0(P ) is computed in terms
of Puiseux roots at infinity of the curve Ct0 := {P (x, y) = t0} (Theorem 2.19);
and (3) the splice diagram Ω for the link at infinity L(Ct0,∞) can be constructed
from Puiseux roots at infinity of Ct0.

In fact, let x = ϕ(y) be a Puiseux root at infinity of Ct0 . Then it is well-
known (see Proposition 2.17) that ϕ′(z) := zϕ(1/z) is a Puiseux root of Ct0
(locally at a certain point on the line at infinity {z = 0}). Moreover, if

(m1, n1), (m2, n2), . . . , (mg, ng)

are the Puiseux pairs at infinity of ϕ, then the Puiseux pairs

(m′
1, n

′
1), (m

′
2, n

′
2), . . . , (m

′
g, n

′
g)

of ϕ′ are given by the formulas

n′
j = nj,

m′
j = n1n2 · · ·nj −mj , j = 1, 2, . . . , g.

Let ri, i = 1, 2, . . . , p, be the number of irreducible components of the projec-
tive curve Ct0 at the point ai. Then all roots of the equation zdP

(
x
z ,

1
z

)
− t0zd =

0 (locally at the point ai) are divided onto ri branches, or places, M ′
il, l =

1, 2, . . . , ri; two roots which differ by a change of variable of the form z 7→ εz,
with ε a root of unity, may describe the same branch (see [113, Therorem 4.1,
p. 107]).

Correspondingly, all Puiseux roots at infinity of the curve Ct0 are also divided
onto branches at infinity Mil, l = 1, 2, . . . , ri, i = 1, 2, . . . , p, say. For a Puiseux
root at infinity, ϕ, of the curve Ct0 we rewrite it so as to display its characteristic
pairs, as in Proposition 2.17,

ciy+
−k0∑

k=−1

c0ky
k+c10y

m1
n1 +

−k1∑

k=−1

c1ky
m1+k

n1 +· · ·+cg0y
mg

n1n2...ng +
−∞∑

k=−1

cgky
mg+k

n1n2...ng ,

where the symbols have the following significance: ni > 1, m1
n1

> m2
n1n2

> · · · ,
and each pair (mi, ni) relatively prime. The branch Mil, containing ϕ, consists
of the following N := n1n2 . . .ng roots

ciε
νNy +

−k0∑

k=−1

c0kε
νNyk + c10ε

νNm1
n1 y

m1
n1 + · · ·

+ cg0ε
νNmg

n1n2...ng y
mg

n1n2...ng + · · · , 0 6 ν < N,



22 Ha Huy Vui and Pham Tien Son

where ε is an N th primitive root of unity. Then the pairs (mi, ni), i = 1, 2, . . . , g,
might well be called the Puiseux pairs at infinity of the branch Mil. It is worth
noting that the number of branches at infinity is exactly the number of com-
ponents of the link at infinity L(Ct0,∞), hence there is a certain component,
say Sil, associated to a branch at infinity Mil of the link L(Ct0,∞), and vice
versa. We shall say that Sil is represented by Mil and call N the order of Sil :
O(Sil) := N.

In [26, Appendix to Chapter 1] the authors described how a splice diagram
for an algebraic link may be derived from Puiseux expansions. This method can
be adapted to Puiseux expansions at infinity. So we can get a splice diagram Ω′

as follows.

Here each Ω′
i is the splice diagram representing the branches at infinity

Mi1,Mi2, . . . ,Miri .

For example, consider the case ri = 1 (i.e., the curve Ct0 is irreducible at
the point ai). Then Ω′

i is a graph of the form

where (m1, n1), (m2, n2), . . . , (mg, ng) are the Puiseux pairs at infinity of the
branch Mil. Moreover, the numbers αi above are given by the formulas

α1 = m1,

αi+1 = mi+1 −mini+1 + nini+1αi, i > 1.

By induction, one deduces that

Lemma 2.27. We have for i > 1,

αi =mi + ni(ni−1 − 1)mi−1 + nin
2
i−1(ni−2 − 1)mi−2

+ · · ·+ nin
2
i−1 . . . n

2
2(n1 − 1)m1.
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Lemma 2.28. The above splice diagram Ω′ is the splice diagram at infinity Ω
for the link at infinity of the curve with the equation P (x, y) = t0.

Proof. Clearly, Ω′ has the same shape as Ω. Moreover, it follows directly from
the effect of (+1)−Dehn surgery on graph links that all weights on these two
diagrams are the same (see [80]). �

We are now ready to prove the main result of this section.

Proof of Theorem 2.26. That (ii) ⇒ (i) was proved in [80]. It remains to show
that (i) ⇒ (ii). Without loss of generality, we can assume that the polynomial
P has the form (2.1). Then, by Proposition 2.17, P (x, y)− t0 can be factorized
into a product of fractional power series

P (x, y)− t0 =
d∏

i=1

(x− ϕi(y)), |y| � 1,

where ϕ1, ϕ2, . . . , ϕd are Puiseux roots at infinity of the curve Ct0 := {P (x, y) =
t0} ⊂ C2.

For each root ϕi, let

ρi := min
j 6=i

val(ϕi(y) − ϕj(y)).

Now let ψi denote ϕi with its terms of degree ρi replaced by ξyρi , ξ a generic
number (or an indeterminant), and all lower-order terms omitted.

Then, since t0 ∈ B∞(P ), it follows from Theorems 2.15 and 2.19 that

−1 > L∞,t0(P ) = min
i=1,2,... ,d

val (P (ψi(y), y) − t0)− 1.

Thus, without loss of generality, we may assume that

0 > val (P (ψ1(y), y) − t0).

For simplicity, let Mj , j = 1, 2, . . . , q, denote the branches at infinity of Ct0 ,
and for each j, let Sj be the component of link at infinity L(Ct0,∞) correspond-
ing to Mj .

By permuting the indices if necessary, we may assume ϕ1 ∈ M1. Let v1 be
the node of the splice diagram Ω for the link L(Ct0,∞) such that v1 is adjacent
to the arrowhead vertex, which represents the component S1. Let Sv1 denote the
virtual component represented by the node v1.

Assume that we have proved:

Claim 2.29. For each j = 1, 2, . . . , q, we have

link(Sv1 , Sj)
O(S1)

6
∑

ϕ∈Mj

val(ϕ(y) − ψ1(y)),
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where the (finite) sum is taken over all the elements ϕ ∈Mj .

This, of course, implies that

link(Sv1 , S
3 ∩Ct0) =

q∑

j=1

link(Sv1 , Sj)

6
q∑

j=1

∑

ϕ∈Mj

val(ϕ(y) − ψ1(y))O(S1)

= val(P (ψ1(y), y) − t0)O(S1) < 0,

which proves the theorem.

So we are left with proving Claim 2.29.

Take any j ∈ {1, 2, . . . , q}. Suppose that the branches at infinity M1 and Mj

correspond to the following two sequences of Puiseux pairs at infinity:

M1 : (m1, n1), (m2, n2), . . . , (mg, ng),

Mj : (m̃1, ñ1), (m̃2, ñ2), . . . , (m̃g̃
, ñ

g̃
).

Suppose, moreover, that the numbers αi (respectively, α̃i) are given by Lemma
2.27.

There are two possibilities:

Case 1. The branches M1 and Mj correspond to two distinct points on the line
at infinity {z = 0}.

It is easy to check, in this case, that

val(ϕ(y) − ψ1(y)) = 1 for all ϕ ∈Mj .

This gives ∑

ϕ∈Mj

val(ϕ(y) − ψ1(y)) = ñ1ñ2 . . . ñg̃ = O(Sj).

On the other hand, it follows from [80, Lemma 3.2] that

link(Sv1 , Sj) = O(S1)O(Sj).

These two equations prove the claim in Case 1.
Case 2. The branches M1 and Mj correspond to the same point on the line at
infinity {z = 0}.

If j = 1, then, by definition, the node v1 has the form
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Hence, by [80, Lemma 2.3] again,

link (Sv1 , S1) = ngαg. (2.3)

On the other hand, it follows from the definition of M1 that

• There are exactly ng elements ϕ ∈M1 such that

val (ϕ(y) − ψ1(y)) =
mg

n1n2 . . .ng
.

• For each i < g, there are exactly ng . . .ni+1(ni−1) elements ϕ ∈M1 such that

val (ϕ(y) − ψ1(y)) =
mi

n1n2 . . . ni
.

Thus
∑

ϕ∈M1

val(ϕ(y) − ψ1(y)) = ng
mg

n1 . . . ng
+ ng(ng−1 − 1)

mg−1

n1 . . .ng−1

+ · · ·+ ng . . .n2(n1 − 1)
m1

n1

=
ng

n1 . . .ng

[
mg + ng(ng−1 − 1)mg−1

+ · · ·+ ngn
2
g−1 . . .n

2
2(n1 − 1)m1

]

=
ngαg

n1n2 . . .ng
.

(The last relation follows from Lemma 2.27). This, together with Equation 2.3,
implies that ∑

ϕ∈M1

val(ϕ(y) − ψ1(y)) =
link(Sv1 , S1)

O(S1)
,

which prove the claim in the case j = 1.

We now suppose that j 6= 1. Let Γ1j be the splice diagram for the link at
infinity with the two components S1 and Sj . There are several cases to consider
(see [26, Appendix to Chapter 1]).
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Case 2.1. η = g̃ < g (the case η = g < g̃ is analogous) and the splice diagram
Γ1j is of the form

Here m̃i = mi, ñi = ni and α̃i = αi for i = 1, 2, . . . , η.

By [80, Lemma 2.3],

link(Sv1 , Sj) = αη+1nη+2 . . . ng. (2.4)

On the other hand, it is not hard to check that the following statements hold:

• There are at most one element ϕ ∈Mj such that

mη

n1n2 . . .nη
> val(ϕ(y) − ψ1(y)) > mη+1

n1n2 . . .nη+1
.

• There are exactly (nη − 1) elements ϕ ∈Mj such that

val(ϕ(y) − ψ1(y)) =
mη

n1n2 . . . nη
.

• For each i = 1, 2, . . . , η − 1, there are exactly nη . . .ni+1(ni − 1) elements
ϕ ∈Mj such that

val(ϕ(y) − ψ1(y)) =
mi

n1n2 . . . ni
.

These relations imply that

∑

ϕ∈Mj

val(ϕ(y) − ψ1(y)) > mη+1

n1 . . . nη+1
+ (nη − 1)

mη

n1 . . .nη

+ · · ·+ nη . . .n2(n1 − 1)
m1

n1

=
αη+1

n1n2 . . .nη+1

=
αη+1nη+2 . . .ng
n1n2 . . . ng

.

Together with the Equation 2.4, we get the claim in this case.

Case 2.2. η < g, η < g̃ and the splice diagram Γ1j is of the form
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Here m̃i = mi, ñi = ni and α̃i = αi for i = 1, 2, . . . , η. By [80, Lemma 3.2], we
have

link(Sv1 , S1) = ñ
g̃
. . . ñη+2ng . . .nη+1α̃η+1.

Then the claim follows directly from the following statements:

• There are at most ñ
g̃
. . . ñη+1 elements ϕ ∈Mj such that

m̃η

ñ1ñ2 . . . ñη
> val(ϕ(y) − ψ1(y)) >

m̃η+1

ñ1ñ2 . . . ñηñη+1
.

• For each i = 1, 2, . . . , η, there are exactly ñ
g̃
. . . ñi+1(ñi − 1) elements ϕ ∈Mj

such that

val(ϕ(y) − ψ1(y)) =
m̃i

ñ1ñ2 . . . ñi
.

Case 2.3. η < g, η < g̃ and the splice diagram Γ1j has the form

The proof is similar for Case 2.1 and we will leave to the reader to verify this
fact.

The proof of Theorem 2.26 is now complete. �
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3. n-Dimensional Case

In this section we shall study the general case of polynomials P : Cn→ C for ar-
bitrary n > 2. We shall see that in this case the “nice” properties of polynomials
from C2 to C established in Sec.2 are no longer valid.

First of all, the following example shows that the constancy of Euler-Poincaré
characteristic does not imply topological triviality.

Example 3.1. [5, 107] Let P := x + x2yz. The polynomial function P : C3 → C
has no critical points. Moreover, homotopically, the fiber P−1(0) is the disjoint
union of C2 with a torus C∗×C∗, whereas the fiber P−1(t), for t 6= 0, is the union
of the torus C∗ ×C∗ with {1} ×C. Therefore, the Euler-Poincaré characteristic
of all fibers is equal to one. On the other hand, it is clear that the fiber P−1(0)
is not topologically equivalent to any other fiber.

Let P : Cn→ C be a polynomial function. In order to examine the set B∞(P ),
one often constructs larger sets in which it is easier to study. There is a relation
between such sets and the asymptotic growth at infinity of the gradient of P.
For instance, let

K̃∞(P ) := {t ∈ C|there exists a sequence xk →∞ such that
P (xk)→ t and ‖gradP (xk)‖ → 0}.

If t 6∈ K̃∞(P ), then we say that P satisfies Fedoryuk’s condition at t (see [27]).
If one looks for a weaker condition then it is natural to consider the set

K∞(P ) := {t ∈ C|there exists a sequence xk →∞ such that
P (xk)→ t and ‖xk‖‖gradP (xk)‖ → 0}.

If t 6∈ K∞(P ) then it is usual to say that P satisfies Malgrange’s condition at t
(see [62, 89]).

It is well-known (see, for example, [60]) that the set K∞(P ) is always finite.
However, the set K̃∞(P ) may be equal to C, see the example below

Example 3.2. (see also, [60, 86]) Consider the homogeneous polynomialP (x, y, z)
:= x2y − xz2 ∈ C[x, y, z] and the curve

ϕ: (0, 1)→ C3, τ 7→ (τ2,
1
2
τ−4, τ−1).

By an easy computation, we get

lim
τ→0
‖ϕ(τ )‖ =∞, lim

τ→0
P (ϕ(τ )) = −1

2
and lim

τ→0
‖gradP (ϕ(τ ))‖ = 0.

Hence, −1
2
∈ K̃∞(P ). Then, by virtue of the homogeneity of the polynomial P,

we find that K̃∞(P ) = C. Moreover, it is not difficult to see that K∞(P ) = {0}.
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The next result seems to be well-known, see [79]. Its proof can be easily
obtained, by assuming the contrary.

Proposition 3.3. For n > 2, let P : Cn → C be a polynomial function. If
P satisfies Malgrange’s condition for any t ∈ C, then P is M-tame, and, in
particular, B∞(P ) = ∅.

Let us pass to characterizations of the sets K̃∞(P ) and K∞(P ) in terms of
the Lojasiewicz number at infinity of the fiber L∞,t(P ) :

Proposition 3.4. [20, 43, 95] The following relations hold

K̃∞(P ) = {t ∈ C | L∞,t(P ) < 0},

K∞(P ) = {t ∈ C | L∞,t(P ) < −1}.

Proof. It is an immediate consequence of definitions. �

As an application, Theorem 2.15 can be translated in the following way:

Corollary 3.5. Let P : C2→ C be a polynomial in two complex variables. Then

B∞(P ) = K∞(P ) = K̃∞(P ).

In the general case, by standard arguments, we obtain

Theorem 3.6. [55, 60, 78, 85] Let P : Cn→ C be a polynomial function. Then

B∞(P ) ⊂ K∞(P ) ⊂ K̃∞(P ).

Remark 3.7. It may happen that the above inclusions are strict for n > 2 (see,
for instance, Examples 3.2, 3.8 and 3.9).

The following example shows that the characterization of critical values at
infinity of polynomials in two variables in terms of the Lojasiewicz numbers is
no longer valid in dimensions n > 2.

Example 3.8. [87] For p, q ∈ N− {0} we consider the polynomial functions

Pp,q: C3 → C, (x, y, z) 7→ x− 3x2p+1y2q + 2x3p+1y3q + yz.

Then we have
(i) There exists a polynomial automorphism Φ: C3 → C3 such that Pp,q◦Φ(x, y, z) =

x. In particular, the fibers P−1(t) are smooth and B∞(Pp,q) = ∅.
(ii) L∞(Pp,q) = −p

q
.

(iii) Suppose that p > q. Then L∞(Pp,q) < −1. This shows that Theorem
2.23 cannot be extended to the case of a polynomial function P : Cn → C,
when n > 3. Moreover, by Proposition 2.22, there exists t0 ∈ C such that
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L∞,t0(Pp,q) = L∞(Pp,q) < −1. Hence, Theorem 2.15 is also no longer true
for polynomials in n > 3 variables.

(iv) If p = q then L∞(Pp,q) = −1. (Compare Remark 2.24).
(v) K∞(P ) 6= ∅ if and only if p > q. (Compare Corollary 3.5) .

The next example shows that the property of being M -tame depends on
the algebraic coordinate system of Cn. This contrasts deeply to the case n = 2,
where, by Theorem 2.23, being M -tame is independent of the coordinate system.

Example 3.9. [88] Let P : C4→ C be defined by

P (x, y, z, u) = x+ y − 2x2y3 + x3y6 + zy3 − z2y5 + uy5.

Then the following statements hold (compare Theorem 2.23)
(i) The polynomial P is a fibration over C; that is K0(P ) = B∞(P ) = ∅.
(ii) The polynomial P is not M -tame, and thus K∞(P ) 6= ∅; in fact K∞(P ) =
{0}.

As we shall see below that the results of Sec.2 are valid in any dimension for
polynomials which have only “isolated singularities at infinity”. We first need
some preliminaries.

Let P : Cn→ C be a polynomial of degree d and let P = Pd+Pd−1+ · · ·+P0,
where Pj is homogeneous of degree j. Consider the homogenization of P :

P (x0, x1, . . . , xn) := xd0P

(
x1

x0
,
x2

x0
, . . . ,

xn
x0

)

and the hypersurface in Pn ×C defined by

X := {(x, t) ∈ Pn ×C | P (x)− txd0 = 0}.

Let H∞ be the hyperplane at infinity of Pn defined by {x0 = 0}. Recall after
[23] or [85] that the singular locus of X is precisely A× C, where

A := {x ∈ H∞ |
∂Pd
∂x1

= · · · = ∂Pd
∂xn

= Pd−1 = 0}.

The class of polynomials on which we want to mention is defined as follows:

Definition 3.10. [85, 86, 96] We say that P has isolated singularities at infinity
if A is a finite set.

Remark 3.11. If P is a non-constant polynomial function of two variables, then
P has always isolated singularities at infinity.

We have the following generalization of main results in Sec.2:
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Theorem 3.12. [85, 86, 96] Let P : Cn → C be a polynomial function with
isolated singularities A at infinity. Let t0 be a regular value of P. Then the
following conditions are equivalent
(i) The value t0 is a critical value at infinity of P.
(ii) χ(P−1(t0)) 6= χ(P−1(t)), where P−1(t) is a generic fiber of P.
(iii) There exists a point a ∈ A such that the family of isolated singularities

(P−1(t), a × t) is not µ-constant for t sufficiently close to t0; here P−1(t)
denotes the compactification of the fiber P−1(t) in the complex projective
space Pn.

(iv) The polynomial P does not satisfy Malgrange’s condition at t0, i.e., L∞,t0(P )
< −1.

From the above theorem, Proposition 3.3 and Remark 2.24 (ii) we obtain a
generalization of Theorem 2.23:

Corollary 3.13. Let P : Cn → C be a polynomial function with isolated singu-
larities at infinity. Then the following are equivalent
(i) B∞(P ) = ∅;
(ii) P is M-tame;
(iii) L∞(P ) > −1.

4. Final Remarks

The study of singularities at infinity might be useful while approaching the
following:

4.1. Jacobian Conjecture

Let P,Q ∈ C[x, y] be such that the Jacobian

J(P,Q) :=

∣∣∣∣∣∣∣∣

∂P

∂x

∂P

∂y

∂Q

∂x

∂Q

∂y

∣∣∣∣∣∣∣∣

is a nonzero constant. Then the map (P,Q): C2→ C2 is a polynomial automor-
phism, i.e., invertible with polynomial inverse.

This question, in a somewhat restricted form, was first formulated by Keller
[56] in 1939, and has yet to receive a definite answer despite substantial amount
of work that has been devoted to its solution.

The following is a characterization of the polynomial automorphisms of C2,
in terms of singularities at infinity:

Proposition 4.1. Let P,Q ∈ C[x, y]. The map (P,Q): C2→ C2 is a polynomial
automorphism if and only if
(i) the Jacobian J(P,Q) is a nonzero constant; and
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(ii) the polynomial P has no critical values at infinity3.
Proof. Indeed, the condition λ := J(P,Q) ∈ C∗ implies that P has no criti-
cal points. This, together with the condition (ii), implies that the polynomial
function P is a locally trivial fibration on C; so that the generic fibers of P are
isomorphic to the complex line. Therefore, in this situation, the Embedding
Theorem of Abhyankar and Moh [1] shows that we can choose coordinates on
C2 such that P (x, y) ≡ x. For this choice,

J(P,Q) =

∣∣∣∣∣
1 0
∂Q

∂x

∂Q

∂y

∣∣∣∣∣ =
∂Q

∂y
= λ.

By integration, hence Q(x, y) = λy + R(x), where R is a complex polynomial
function. This implies that the map (P,Q): C2→ C2 defined as (x, y) 7→ (x, λy+
R(x)) is an automorphism of the complex plane, as announced. �

The Jacobian Conjecture speculates that the condition (i) suffices in Propo-
sition 4.1, or, equivalently, that it implies the condition (ii). This suggests yet
another approach to proving or disproving the Jacobian Conjecture. One may
consult, for example, [18, 19, 21, 40, 51, 52, 70, 71, 83, 84, 96] for more details.
More importantly, Proposition 4.1 and the results in Sec.2 provide a fairly simple
and verifiable characterization of polynomial automorphisms irrespective of the
truth of the Jacobian Conjecture.

Let us end this paper by posing some open questions.

Question 1. Let X ⊂ Cn be an affine algebraic surface and let P :X → C be
a polynomial function. Find a criterion to decide whether a noncritical value is
critical value of singularities at infinity or not.

Question 2. Let P : Cn → Cn−1 be a polynomial map and t ∈ Cn−1. Give
necessary and sufficient conditions on t for it to be a critical value at infinity of
P.

It should be noticed, in the above two problems, that the fibers P−1(t)
are of dimension 1; hence, we think that all results mentioned in this paper
for polynomial maps in two complex variables could extend correspondingly for
these cases.

Remark 4.2. Recently, Theorem 2.1 has been extended by the first author and
Nguyen Tat Thang for complex polynomial functions on smooth affine algebraic
surfaces, under the assumption that there is a so-called “very good projection”.

We next denote by Aut(Cn) the set of algebraic automorphisms of the affine
space Cn of dimension n and let P : Cn→ C be a complex polynomial function.

——————————
3Or, of course Q.
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Then, it is well-known that if B∞(P ) 6= ∅ then B∞(P ◦ Φ) 6= ∅ for all Φ ∈
Aut(Cn); and conversely, if B∞(P ) = ∅ then B∞(P ◦Φ) = ∅ for all Φ ∈ Aut(Cn).
On the other hand, the Lojasiewicz number at infinity L∞(P ) of P behaves only
well relative to a fixed linear structure on Cn; changing the polynomial P by
a non-linear automorphism of Cn generally changes the Lojasiewicz number at
infinity. These lead us to the following definition. Set

L∞,int(P ) := sup
Φ∈Aut(Cn)

L∞(P ◦Φ),

and we call it the intrinsic Lojasiewicz number at infinity for P after [80] and
[15].

Question 3. Let P be a complex polynomial function. Are the following state-
ments equivalent?
(i) B∞(P ) = ∅.
(ii) L∞,int(P ) > −1.
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