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Abstract. We introduce the notion of admissible transformations which is related to

the Hungarian method for solving assignment problems. Admissible transformations

are stated for linear, quadratic and multi-index assignment problems. Their application

to find good lower bounds and/or to solve the problem, respectively, is outlined. Finally

it is shown that admissible transformations can also be applied to so-called algebraic

objective functions whose cost elements are drawn from a totally ordered semigroup.
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1. Assignment Problems

Linear assignment problems count to the classical problems of linear and com-
binatorial programming. They deal with the question how to assign n jobs to
n machines such as to minimize the sum of all processing times. An assign-
ment can be described by either a permutation φ of the underlying index set
{1, 2, ..., n} or using linear constraints of the form

n∑

j=1

xij = 1 (i = 1, 2, . . . , n),

n∑

i=1

xij = 1 (j = 1, 2, . . . , n),
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xij ∈ {0, 1} (i, j = 1, 2, . . . , n).

Here, job i is assigned to machine j if and only if xij = 1. Thus, a linear
assignment problem can be stated in the following way. Let cij be the processing
time for job i on machine j. Given the (n × n) matrix C = (cij) of processing
times, find an assignment φ of the jobs to the machines such that

n∑

i=1

ciφ(i) (1)

is minimized. Linear assignment problems can be solved in polynomial time -
there are various possibilities for their solution. We shall recall here, in Sec. 3,
a dual method based on admissible transformations which was introduced by
Burkard, Hahn and Zimmermann [2] in 1977. A transformation T of the cost
matrix C to the new cost matrix C̄ is called admissible if for all feasible solutions
φ there is a constant z(T ) such that the equation

n∑

i=1

ciφ(i) = z(T ) +
n∑

i=1

c̄iφ(i) (2)

holds. Admissible transformations will be discussed in Sec. 2. The solution
method using admissible transformations has the advantage that it can be gen-
eralized to solve assignment problems with bottleneck and other non-standard
objectives. We shall discuss this issue in Sec. 6.

In connection with location problems, quadratic assignment problems play
an important role. Let us consider the following model: a set of n facilities
has to be allocated to a set of n possible locations. We are given two n × n
input matrices: A = (aik) and B = (bjl), where aik is the flow between facility
i and facility k and bjl is the distance between location j and location l. We
assume that the total cost depend on the flow between facilities multiplied by
their distance. Each product aikbφ(i)φ(k) represents the flow between facilities i
and k multiplied by their distance when facility i is assigned to location φ(i) and
facility k is assigned to location φ(k). The objective is to assign each facility to
a location such that the total cost is minimized. This model leads to a quadratic
assignment problem as considered by Koopmans and Beckmann [6]

min
φ

n∑

i=1

n∑

k=1

aikbφ(i)φ(k). (3)

Unlike linear assignment problems, quadratic assignment problems are NP-hard
and difficult to solve. In Sec. 4 we shall describe how to determine strong lower
bounds by means of admissible transformations.

In a time tabling problem the assignment of n courses to n time slots and to
n rooms is required. Let cijk denote the cost for assigning course i to time slot j
in room k. We want to find an assignment φ of the courses to time slots and an
assignment ψ of the courses to the rooms such that the total cost is minimum.
This leads to the so-called (axial) three-index assignment problem

min
ϕ,ψ

n∑

i=1

ciϕ(i)ψ(i). (4)
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A similar problem arises if we are looking for Latin squares, i.e., square arrays of
size n where every position is filled by one of the numbers 1, 2, . . ., n such that
every row and column of the square contains all numbers. For example, a Latin
square of size 3 may have the form

2 1 3
1 3 2
3 2 1

Latin squares are feasible solutions of so-called planar 3-index assignment prob-
lems, which can be formulated in the following way: given an (n× n× n) array
C = (cijk), find n permutations φ1, φ2, ..., φn which obey for i 6= j

φi(k) 6= φj(k) for all k = 1, 2, ..., n

such that
n∑

i=1

n∑

k=1

cikφi(k) (5)

is minimum. Both the axial and planar 3-index assignment problems are NP-
hard. In Sec. 5 we shall describe how to use admissible transformations for
finding lower bounds for these three-index assignment problems.

2. Admissible Transformations

In 1971, Khoan Vo-Khac [9] introduced the notion of admissible tranformations
in connection with vehicle routing problems. He called a transformation of the
costs admissible, if it leaves unchanged the relative order of objective function
values of all feasible solution. Motivated by this idea, Burkard, Hahn and Zim-
mermann [2] introduced (special) admissible transformations for algebraic linear
assignment problems. More generally, we can proceed as follows.

Let E := {e1, e2, ..., en} be the ground set of a combinatiorial optimization
problem whose feasible solutions F ⊆ E are collected in the class F . The costs
of the ground elements e1, ..., en are denoted by c(e1), c(e2), ..., c(en) ∈ R. The
cost c(F ) of a feasible solution F is defined by

c(F ) :=
∑

e∈F

c(e). (6)

A transformation T of the costs c(e), e ∈ E, to new costs c̄(e), e ∈ E, is
called admissible with index z(T ), if

c(F ) = z(T ) + c̄(F ) for all F ∈ F . (7)

When we perform an admissible transformations T after an admissible trans-
formation S, we get again an admissible transformation. If S and T have the
indices z(S) and z(T ), respectively, their composition has index z(S) + z(T ).

Now let us consider a combinatorial minimization problem of the form

min
F∈F

c(F ). (8)
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For this problem we immediately get the following optimality criterion.

Lemma 1. Let T be an admissible transformation such that there exists a
feasible solution F ∗ with the following properties:
1. c̄(e) ≥ 0 for all e ∈ E;
2. c̄(F ∗) = 0.

Then F ∗ is an optimal solution of (8) with value z(T ).

Proof. Let F be an arbitrary feasible solution. According to the properties of
admissible transformations we get:

c(F ) = z(T ) + c̄(F ) ≥ z(T ) = z(T ) + c̄(F ∗) = c(F ∗).

Therefore F ∗ is optimal. �

This lemma leads to the following feasibility problem. Let E0 := {e | c̄(e) =
0}. The crucial question is to decide whether there exists an F ∗ ∈ F with
F ∗ ⊆ E0 or not. In the first case, an optimal solution is found. In the second
case z(T ) is at least a lower bound for the optimal objective function value. We
shall see in the next section that in the case of linear assignment problems, the
feasibility problem can be solved in polynomial time. If there is no feasible solu-
tion contained in E0, a new admissible transformation can be derived such that
after at most O(n2) admissible transformations an optimal solution is obtained.

3. Admissible Transformations and Linear Assignment Problems

We consider a linear assignment problem (1) with an (n × n) cost matrix C =
(cij). The objective function value of a permutation φ is denoted by C(φ). Basic
is the following proposition, cf. Burkard, Hahn and Zimmermann [2].

Proposition 1. (Admissible transformations for linear assignment problems)
Let I, J ⊆ {1, 2, . . . , n}, m := |I| + |J | − n ≥ 0, and let c be an arbitrary real.
Then the transformation T = T (I, J ; c) of the cost coefficients cij to new cost
coefficients c̄ij defined by

c̄ij =





cij − c , for i ∈ I, j ∈ J,

cij + c , for i 6∈ I, j 6∈ J,

cij , otherwise
(9)

is admissible with z(T ) = mc.

Proof. Let φ be an arbitrary permutation of {1, 2, . . ., n} and let n0 be the
number of pairs (i, ϕ(i)) with i ∈ I, φ(i) ∈ J . Similarly, let n1 be the number
of pairs (i, φ(i)) with i ∈ I, φ(i) /∈ J or i /∈ I, φ(i) ∈ J and let n2 be the
number of pairs (i, φ(i)) with i /∈ I, φ(i) /∈ J . Obviously, n0 + n1 + n2 = n and
2n0 + n1 = |I| + |J |. This implies

n0 − n2 = |I| + |J | − n = m. (10)
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As the right hand side in (10) is independent on the particular permutation φ,
(10) holds for all permutations on {1, 2, . . . , n}.

Let C[i ∈ I] denote the sum of all cost coefficients ciφ(i) with i ∈ I. Using
this notation, the first line in (9) yields for any permutation φ

C(φ) = C[i ∈ I] +C[i /∈ I] = n0c + C̄[i ∈ I] +C[i /∈ I].

Now, the second and third lines of (9) yield

n2c +C[i /∈ I] = C̄[i /∈ I].

Thus we get for all permutations φ

C(φ) = mc+ C̄(φ)

which shows that the transformation in Proposition 1 is feasible with index
z(T ) = mc. �

If we choose I := {k} and J := {1, 2, ..., n} we get a reduction of row k. In
particular, the choice c := min{cij : i ∈ I, j ∈ J} yields that all reduced elements
in row k become nonnegative and the row contains at least one reduced element
c̄kj = 0.

For solving a linear asignment problem, one can proceed as follows. By re-
ducing all rows i = 1, 2, ..., n a transformed cost matrix with nonnegative entries
is obtained. Every row contains at least one 0-element. Thus we start now with
the feasibility check: to this extent we define a bipartite graph whose vertices
correspond to the rows and columns of the given cost matrix. The graph has an
edge (i, j), iff c̄ij = 0. In this graph we determine a maximum bipartite match-
ing. If this maximum matching has cadinality n, i.e., it is perfect, this matching
defines a feasible solution for the assignment problem which is optimal accord-
ing to Lemma 1. Otherwise, the solution of the matching problem allows us to
find a new admissible transformation. According to a famous theorem of König,
the cardinality of a maximum matching equals to the cardinality of a minimum
vertex cover of the bipartite graph. This means, we get a minimum cover of all
0-elements in the transformed matrix C̄ by rows and columns, where the total
number of covering rows and columns is less than n (since the matching was
not perfect). Let I denote the index set of uncovered rows and let J denote the
index set of uncovered columns. Then |I| + |J | > n. We perform an admissible
transformation with I, J and

c := min{cij : i ∈ I, j ∈ J}.
This transformation generates at least one new 0-element in the uncovered part
of the matrix. We add the corresponding edges to the bipartite graph and de-
termine a new maximum matching. (This can be done by growing alternating
trees starting from the previous matching). As every admissible transformation
generates a new 0-element, at most O(n2) admissible transformations are neces-
sary. This leads to a total worst case complexity of O(n4) for finding an optimal
solution. This is not the best complexity known for linear assignment problems,
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but this solution strategy has its own advantages: it is very simple and it can
be used for quite general objective functions (see Sec. 6).

4. Admissible Transformations and Quadratic Assignment Problems

Given a Koopmans–Beckmann problem, we may define

dijkl := aikbjl

and get in this way a general quadratic assignment problem (QAP) as introduced
by Lawler [7]:

min
n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

dijklxijxkl

s.t.
n∑

j=1

xij = 1 (i = 1, 2, . . . , n), (11)

n∑

i=1

xij = 1 (j = 1, 2, . . ., n),

xij ∈ {0, 1} (i, j = 1, 2, . . ., n).

Let Y := X ⊗ X denote the Kronecker product of the permutation matrix
X which is an (n2 × n2) matrix with the blocks xijX. Thus, the entry yijkl lies
in row (i − 1)n + k and column (j − 1) + l. According to Lawler, the general
quadratic assignment problem can be written as

min
n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

dijklyijkl

s.t. Y := X ⊗X, (12)
n∑

j=1

xij = 1 (i = 1, 2, . . . , n),

n∑

i=1

xij = 1 (j = 1, 2, . . ., n),

xij ∈ {0, 1} (i, j = 1, 2, . . ., n).

We represent the cost coefficients dijkl as entries of an (n2 × n2) matrix D
which is composed from (n × n) blocks (Dij) where every Dij is the matrix
(dijkl) with fixed indices i and j. For n = 3, for example, the cost matrix has
the form

D =



D11 D12 D13

D21 D22 D23

D31 D32 D33


 .

Now we get
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Proposition 2. (Admissible transformations for the QAP) Let D = (Dij) be
the cost matrix of a general QAP.
1. One can set

dijkl := ∞ for i = k, j 6= l or i 6= k, j = l. (13)

This is an admissible transformation with index 0.
2. (Symmetrization) Set

dijkl :=
{
dijkl + dklij for k > i,

0 for k < i.
(14)

This is an admissible transformation with index 0.
3. (Type (I)-transformation) Consider a fixed block Dij of D. Applying an

admissible transformation T (I, J ; c) with index 0 to matrix Dij yields an
admissible transformation with index 0 for the quadratic assignment prob-
lem.

4. (Type (II)-transformation) Applying an admissible transformation T (I, J ; c)
with index z(T ) to the (n2 × n2) matrix D yields an admissible transforma-
tion with index z(T ) for the quadratic assignment problem.

Before proving this proposition, let us introduce the notation

〈C,X〉 :=
n∑

i=1

n∑

j=1

cijxij.

Thus we have

〈Dij , X〉 :=
n∑

k=1

n∑

l=1

dijklxkl

which allows us to rewrite the objective function of a general QAP as
n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

dijklxijxkl =
n∑

i=1

n∑

j=1

〈Dij , X〉xij. (15)

Proof. The first transformation follows from the fact that the coefficients dijil
with j 6= l and dijkj with i 6= k can never occur in the objective function, since
φ is a one-to-one mapping.
The symmetrization follows from

yijkl = xijxkl = xklxij = yklij.

The transformation Dij to D
ij

of Type (I) is admissible, since for every permu-
tation matrix X we get

〈Dij , X〉 = 〈Dij
, X〉.

The result follows now immediately from (15).
Finally, note that the Kronecker product matrix Y = X⊗X is again a permuta-
tion matrix. But a Type (II)-transformation of D yields 〈D,Y 〉 = z(T )+ 〈D̄, Y 〉
for all permutation matrices Y . �
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For computing strong lower bounds for the QAP, we shall apply special
transformations of Type (I) and Type (II). Note that after applying the first
transformation of the above proposition all matrices Dij have a special form: in
their i-th row and j-th column there is only one finite element dijij which we
call the leader of the matrix Dij . Let D̂ij be the matrix obtained from Dij by
deleting the i-th row and j-th column in Dij .
In the bounding procedure we use two different kinds of Type (I)-transformations
of a block Dij . In both transformations T (I, J ; c) we have i /∈ I, j /∈ J and
|I| + |J | = n. In the reduction case we define c to be the smallest uncovered
element, i.e.,

c := min{dijkl | k ∈ I, l ∈ J}.

By these reductions we can achieve that every row and column of D̂ij has at
least one 0-element. In the redistribution case we set dijij := 0 and add the
amount of 1

(n−1)
dijij to every element of D̂ij . This is the result of n − 1 ad-

missible transformations T ({k}, J ;−dijij/(n − 1)) for k = 1, ..., n; k 6= i and
J := {1, 2, ..., j− 1, j + 1, ..., n}.

Concerning Type (II)-transformations we have the following corollary.

Corollary 1. Let L := (dijij) be the (n × n) matrix whose entries are the
leaders of D. Any admissible transformation of L corresponds to an admissible
Type (II)-transformation of D with the same index.

Proof. Consider an admissible transformation T (I, J ; c) of L. The index sets I
and J denote the uncovered rows and columns of L, respectively. We construct
an admissible Type (II) - transformation T (Ī, J̄ ; c) of D as follows. Recall that
D has rows ik and columns jl, i, j, k, l = 1, ..., n.
• Ī := {ii | i ∈ I}, that is, only rows ii, i ∈ I, are uncovered.
• J̄ contains all columns of D except the columns jj with j /∈ J .

Thus the uncovered rows and columns of D contain only the leaders or ∞-
entries. All entries of any D̂ij are covered by a row, but not by a column.
Moreover, |Ī| = |I| and |J̄ | = n(n− 1) + |J |. Therefore

|Ī| + |J̄ | − n2 = |I| + |J | − n = m.

�

For finding a good lower bound of the quadratic assignment problem, one
can now proceed as follows. In a prepocessing step, the first transformation of
Proposition 2 is applied. Then the following steps are performed:
1. Apply the symmetrization.
2. Solve for all i, j := 1, 2, ..., n the linear assignment problem with cost matrix
D̂ij (by admissible transformations) and add the objective function value
to the leader dijij.

3. Collect the leaders in an (n×n)-matrix L. Solve the linear assignment prob-
lem with cost matrix L. Let φ∗ be an optimal solution (the corresponding
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permutation matrix is denoted by Xφ∗ ) and let z∗ be the corresponding op-
timal objective function value. D̄ is the transformed matrix obtained after
applying the foregoing admissible transformations to D.

4. (Feasibility check). If
n∑

i=1

〈D̄iφ∗(i), Xφ∗〉 = 0, (16)

then φ∗ is an optimal solution of the quadratic assignment problem with
value z∗. Otherwise, z∗ is a lower bound for the optimum value of the
quadratic assignment problem.

Remarks.
1. The linear assignment problems in Step 2 can be solved by any algorithm

which yields the dual variables uk, k 6= i, and vl, l 6= j. By setting

dijij := dijij +
n∑

k=1

uk +
n∑

l=1

vl,

dijkl := dijkl − uk − vl for k 6= i and l 6= j

we obtain the transformed cost coefficients.
2. The problem to check whether there exists an optimal solution φ∗ which

fulfills (16) is an NP-hard problem.
3. In the case that φ∗ is not an optimal solution of the quadratic assignment

problem, Hahn and Grant [5] suggest to redistribute the transformed leaders in
the matrix D̄ and reapply the Steps 1–4 above beginning with the symmetriza-
tion. They report very good results with such a procedure.

5. Admissible Transformations and Multi-index Assignment Prob-
lems

Both the axial three-index assignment problem as well as the planar three-index
assignment problem can be described as an intersection problem for partition
matroids. This offers a possibility to consider both problems from a unique point
of view which easily allows to generalize the ideas for multi-index assignment
problems. This section is partially based on the master thesis of Fröhlich [4], see
also the extended abstract by Burkard and Fröhlich [1].

We start with the ground set E = {(i, j, k) | i, j, k = 1, 2, ..., n}. In the case
of an axial three-index assignment problem we consider the partitions Pi :=
{P i | i = 1, 2, ..., n}, Pj := {P j | j = 1, 2, ..., n} and Pk := {P k | k = 1, 2, ..., n},
where for fixed index i the set P i is defined by P i := {(i, j, k) | j, k = 1, 2, ..., n}.
The sets P j and P k are defined in an analogue way. A subset F ⊆ E is defined
to be a basis of (E,Pi), if for all i = 1, 2, ..., n

|F ∩ P i| = 1.

In particular, |F | = n. It is well-known that the bases with respect to a partition
of E lead to a matroid. Thus, we get three partition matroids on the ground set
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E, namely (E,Pi), (E,Pj) and (E,Pk). The min cost three matroid intersection
problem may be stated as follows: Let cijk be a real cost for every element (i, j, k)
of the ground set. The cost of a set F is defined by c(F ) :=

∑
(i,j,k)∈F cijk. We

want to find a set F ⊂ E with minimum weight which is a basis in every of the
three matroids (E,Pi), (E,Pj) and (E,Pk).

Obviously, every common basis of the three matroids defined above corre-
sponds to a feasible solution of an axial three-index assignment problem and vice
versa.

In the case of planar three-index assignment problems we choose other par-
titions of the same ground set E, namely Pij := {P ij | i, j = 1, 2, ..., n}, Pik :=
{P ik | i, k = 1, 2, ..., n} and Pjk := {P jk | j, k = 1, 2, ..., n}, where for fixed in-
dices i and j the set P ij is defined by P ij := {(i, j, k) | k = 1, 2, ..., n}. The sets
P ik and P jk are defined in an analogue way. A subset F ⊆ E is defined to be a
basis of (E,Pij), if for all i, j = 1, 2, ..., n

|F ∩ P ij| = 1.

In particular, |F | = n2 holds. We get again three partition matroids on the
ground set E, namely (E,Pij), (E,Pik) and (E,Pjk). A common basis of these
three matroids corresponds in a unique way to a feasible solution of a planar
three-index assignment problem (Latin square) and vice versa. Thus the planar
three index assignment problem can again be written as min cost three matroid
intersection problem.

So, let us consider the following general matroid intersection problem: Let E
be a finite ground set and let PA := {P a | a ∈ A}, PB and PC three partitions
of E. A basis F ⊆ E of the partition matroid (E,PA) ((E,PB), (E,PC),
respectively) is defined by

|F ∩ P a| = 1 for all a ∈ A.

Since we require that F is a basis of all three partition matroids, we have

|A| = |B| = |C| =: ν.

In particular, every common basis F has the cardinality |F | = ν.
Before we state admissible transformations for the three matroid intersection

problem, let us introduce some notation. We shall consider sets I ⊆ A, J ⊆ B
and K ⊆ C. Moreover, I := A \ I. J and K are defined analoguously. Finally,

P (I, J,K) :=

{
e ∈ E | e ∈

(⋃

a∈I
P a

)
∩

(⋃

b∈J

P b

)
∩

(⋃

c∈K
P c

)}
.

The sets P (I, J,K), ..., P (I, J,K) are defined in the same way. Now we can state
admissible transformations for three matroid partitioning problems:

Theorem 1. (Admissible transformations for three matroid intersection prob-
lem) Let I ⊆ A, J ⊆ B and K ⊆ C with m := (|I| + |J | + |K|) − 2ν ≥ 0, and
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let c be an arbitrary real. Then the transformation T = T (I, J,K; c) of the cost
coefficients cijk to new cost coefficients cijk defined by

c̄ijk =





cijk − c , for (i, j, k) ∈ P (I, J,K),

cijk , for P (I, J,K)∪ P (I, J,K) ∪ P (I, J,K),

cijk + c , for P (I, J,K) ∪ P (I, J,K) ∪ P (I, J,K),

cijk + 2c , for (i, j, k) ∈ P (I, J,K)

(17)

is admissible with z(T ) = mc.

Proof. Let F be any common basis of the three matroids (E,PA), (E,PB) and
(E,PC). We define

F0 := F ∩ P (I, J,K),

F1 := F ∩
(
P (I, J,K) ∪ P (I, J,K) ∪ P (I, J,K)

)
,

F2 := F ∩
(
P (I, J,K) ∪ P (I, J,K) ∪ P (I, J,K)

)
,

F3 := F ∩ P (I, J,K).

Since {F0, F1, F2, F3} is a partition of the basis F , we have

|F0|+ |F1| + |F2| + |F3| = ν. (18)

Every element cijk in the basis F with just one index in I , J or K lies in F1

and, with two indices in these sets, it lies in F2. Finally a basis element cijk
with (i, j, k) ∈ I × J ×K lies in F3. Therefore we get

|F1| + 2|F2| + 3|F3| = |I| + |J | + |K| = 3ν − (|I| + |J |+ |K|).

By subtracting equation (18) we get

|F2| + 2|F3| − |F0| = 2ν − (|I| + |J |+ |K|) = −m

and hence

|F0| = m + |F2| + 2|F3|. (19)

For any feasible solution F we can write the objective function

∑

(i,j,k)∈F

cijk =
∑

(i,j,k)∈F0

cijk +
∑

(i,j,k)∈F1

cijk +
∑

(i,j,k)∈F2

cijk +
∑

(i,j,k)∈F3

cijk.

Using the transformation rules (17) of Theorem 1 we get
∑

(i,j,k)∈F

cijk =
∑

(i,j,k)∈F0

c̄ijk + c|F0| +
∑

(i,j,k)∈F1

c̄ijk +
∑

(i,j,k)∈F2

c̄ijk − c|F2|

+
∑

(i,j,k)∈F3

c̄ijk − 2c|F3|

=
∑

(i,j,k)∈F

c̄ijk − (|F2|+ 2|F3| − |F0|)c

=
∑

(i,j,k)∈F

c̄ijk +mc.
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�

Note that this theorem can easily be generalized to the case that we look for
a common basis of more than three intersection matroids.

For solving 3-index assignment problems, the value c is chosen as minimum
of the elements cijk with i ∈ I, j ∈ J and k ∈ K. By reductions of the form
I := {a}, J := B, K := C can be achieved that all transformed entries c̄ijk are
nonnegative. The problem of finding a feasible solution F with c(F ) = 0 is in
both cases (axial and planar problems) NP-hard (and corresponds to checking
whether the hypergraph defined by the 0-entries has the stability number ν). In
case of axial 3-index assignment problems we get the transformation index

z(T ) = ((|I| + |J |+ |K|) − 2n)c, (20)

in case of planar 3-index assignment problems we get the transformation index

z(T ) = ((|I| + |J | + |K|) − 2n2)c. (21)

Proposition 1 and the reduction rules of Vlach [8] can be viewed as special
cases of Theorem 1.

6. Algebraic Objective Functions

Sometimes applications require to consider other objective function than sums.
An important case, for example, are bottleneck objective functions of the form

min
F∈F

max
e∈F

c(e).

Those bottleneck functions occur whenever a time is to be minimized. The
theorems of the preceding chapter can easily be turned over to admissible trans-
formations for bottleneck problems by a proper choice of the constant c and by
replacing the set of 0-elements by the so-called dominated set.

First of all, we can always replace a summation by taking the maximum, i.e.,
a+ b is replaced by max(a, b). In Proposition 1 and Theorem 1, however, we use
subtractions, namely c̄(e) = c(e)−c, which can we written as c̄(e)+c = c(e). The
last equation reads for bottleneck problems max(c̄(e), c) = c(e) which is always
true, if c 6 c(e). We say that, a cost c̄(e) is dominated by c, if max(c̄(e), c) = c.
The set of zero’s is such replaced by the set of elements which are currently
dominated by the index of the transformation.

To be more general, let us consider a totally ordered, associative and com-
mutative semigroup (S, ∗,�) with semigroup operation ∗ and order relation �.
The semigroup operation ∗ and the order relation � should be compatible which
means

a � b implies a ∗ c � b ∗ c for all a, b, c ∈ S. (22)

Moreover, we require the additional axiom

For any a and b with a � b there exists c ∈ S : a ∗ c = b. (23)
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A semigroup obeying these axioms is sometimes called a d-monoid. Examples
for d-monoids are
• (R,+,6). This system leads to the classical sum objectives.
• (R ∪ {−∞},max,6). This system leads to bottleneck problems.
• (Rk,+,�) with the lexicographical order �. This system leads to vector

optimization problems with a lexicographic objective.
For further examples, see the survey paper of Burkard and Zimmermann [3].

Now let us consider the following combinatorial optimization problem with
a general objective function: Let E := {e1, e2, ..., en} be the ground set of a
combinatorial optimization problem whose feasible solutions F ⊆ E are col-
lected in the class F . The costs of the ground elements e1, ..., en are denoted by
c(e1), c(e2), ..., c(en) ∈ S. The cost c(F ) of a feasible solutionF = (er1 , er2 , ..., erk)
is defined by

c(F ) := c(er1 ) ∗ c(er2 ) ∗ ... ∗ c(erk ). (24)

A transformation T of the costs c(e), e ∈ E, to new costs c̄(e), e ∈ E, is called
admissible with index z(T ), if

c(F ) = z(T ) ∗ c̄(F ) for all F ∈ F . (25)

For this problem we immediately get as optimality criterion the analogue of
Lemma 1.

Lemma 2. Let T be an admissible transformation with index z(T ) such that
there exists a feasible solution F ∗ with the following properties:
1. c̄(e) ∗ z(T ) ≥ z(T ) for all e ∈ E.
2. c̄(F ∗) ∗ z(T ) = z(T ).

Then F ∗ is an optimal solution of with value z(T ).

Proof. Let F be an arbitrary feasible solution. According to the properties of
admissible transformations we get:

c(F ) = z(T ) ∗ c̄(F ) ≥ z(T ) = z(T ) ∗ c̄(F ∗) = c(F ∗).

Therefore F ∗ is optimal. �

As an example we state Proposition 1 for algebraic objective functions. It
takes the form

Proposition 3. (Admissible transformations for linear assignment problems
with general objective) Let I, J ⊆ {1, 2, . . . , n}, m := |I| + |J | − n ≥ 0, and let

c := min{cij | i ∈ I, j ∈ J}.
Then the transformation T = T (I, J ; c) of the cost coefficients cij to new cost
coefficients c̄ij defined by

c̄ij ∗ c = cij for i ∈ I, j ∈ J

and
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c̄ij =
{
cij ∗ c , for i 6∈ I, j 6∈ J,

cij , otherwise

is admissible with z(T ) = c ∗ c ∗ ... ∗ c (m-times).
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1. R.E. Burkard and K. Fröhlich, Some remarks on 3-dimensional assignment prob-

lems, Methods of Operations Research 36 (1980) 31–36.

2. R.E. Burkard, W. Hahn, and U. Zimmermann, An algebraic approach to assign-

ment problems, Mathematical Programming 12 (1977) 318–327.

3. R.E. Burkard and U. Zimmermann, Combinatorial Optimization in linearly or-

dered semimodules: a survey, In: Modern Applied Mathematics, ed. by B. Korte,

North-Holland: Amsterdam, 1982, pp. 392–436.
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