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1. Introduction

Let Y be a topological vector space with a cone C. For a given subset A ⊂ Y , one
can define efficient points of A with respect to C in different senses as: Ideal,
Pareto, proper, weak,... (see Definition 2.1 below). The set of these efficient
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points is denoted by αMin(A/C) with α = I; α = P ; α = Pr ; α = W; ... for
the case of ideal, Pareto, proper, weak efficient points, respectively. Let D be a
subset of another topological vector space X. By 2D we denote the family of all
subsets in D. For a given multivalued mapping F : D → 2Y , we consider the
problem of finding x̄ ∈ D such that

F (x̄) ∩ αMin(F (D)/C) �= ∅. (GV OP )α

This is called a general vector α optimization problem corresponding to D, F
and C. The set of such points x̄ is said to be the solution set of (GV OP )α. The
elements of αMin(F (D)/C) are called α optimal values of (GV OP )α.

Now, let X, Y and Z be Hausdorff locally convex topogical vector spaces,
let D ⊂ X, K ⊂ Z be nonempty subsets and let C ⊂ Y be a cone. Given the
following multivalued mappings

S : D × K → 2D,

T : D × K → 2K ,

F : D × K × D → 2Y ,

we are interested in the problem of finding (x̄, ȳ) ∈ D × K such that

x̄ ∈ S(x̄, ȳ),
(GV QOP )α

ȳ ∈ T (ȳ, x̄),

and
F (ȳ, x̄, x̄) ∩ αMin(F (x̄, ȳ, S(x̄, ȳ)) �= ∅.

This is called a general vector α quasi-optimization problem (α is one of the
following qualifications: ideal, Pareto, proper, weak, respectively). Such a pair
(x̄, ȳ) is said to be a solution of (GV QOP )α. The above multivalued mappings
S, T, and F are said to be a constraint, a potential, and a utility mapping,
respectively. These problems play a central role in the vector optimization the-
ory concerning multivalued mappings and have many relations to the following
problems

(UIQEP), Upper Ideal Quasi-Equilibrium Problem: Find (x̄, ȳ) ∈ D×K
such that

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

F (x̄, ȳ, x) ⊂ C, for all x ∈ S(x̄, ȳ).

(LIQEP), Lower ideal quasi-equilibrium problem: Find (x̄, ȳ) ∈ D × K
such that

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

F (x̄, ȳ, x)∩ C �= ∅, for all x ∈ S(x̄, ȳ).

(UPQEP), Upper Pareto quasi-equilibrium problem: Find (x̄, ȳ) ∈ D ×
K such that
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x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

F (x̄, ȳ, x) �⊂ −(C \ l(C)), for all x ∈ S(x̄, ȳ).

(LPQEP), Lower Pareto quasi-equilibrium problem: Find (x̄, ȳ) ∈ D×K
such that

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

F (x̄, ȳ, x)∩ −(C \ l(C)) = ∅, for all x ∈ S(x̄, ȳ).

(UWQEP), Upper weak quasi-equilibrium problem: Find (x̄, ȳ) ∈ D×K
such that

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

F (x̄, ȳ, x) �⊂ -int(C), for all x ∈ S(x̄, ȳ).

(UWQEP), Lower weak quasi-equilibrium problem: Find (x̄, ȳ) ∈ D×K
such that

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

F (x̄, ȳ, x)∩ -int(C) = ∅, for all x ∈ S(x̄, ȳ).

These problems generalize many well-known problems in the optimization
theory as quasi-equilibrium problems, quasivariational inequalities, fixed point
problems, complementarity problems, saddle point problems, minimax problems
as well as different others which have been studied by many authors, for exam-
ples, Park [1], Chan and Pang [2], Parida and Sen [3], Guerraggio and Tan [4] etc.
for quasi-equilibrium problems and quasivariational inequalities; Blum and Oet-
tli [5], Tan [7], Minh and Tan [8], Ky Fan [9] etc. for equilibrium and variational
inequality problems and by some others in the references therein. If we denote
by αi, i = 1, 2, 3, 4, the relations between subsets in Y :A ⊆ B, A∩B �= ∅, A �⊆ B
and A ∩ B = ∅ as in [6], then the above problems (UIQEP), (LIQEP) can be
written as:

Find (x̄, ȳ) ∈ D × K such that

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

αi(F (x̄, ȳ, x), C), for all x ∈ S(x̄, ȳ), i = 1, 2, respectively.

The problems (UPQEP), (LPQEP) can be written as:

Find (x̄, ȳ) ∈ D × K such that
x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

αi(F (x̄, ȳ, x),−(C \ l(C))), for all x ∈ S(x̄, ȳ), i = 3, 4, respectively.

Analogously, the problems (UWQEP), (LWQEP) can be written as:
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Find (x̄, ȳ) ∈ D × K such that

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

αi(F (x̄, ȳ, x),−intC), for all x ∈ S(x̄, ȳ), i = 3, 4, respectively.

The purpose of this paper is to prove some new results on the existence of
solutions to systems concerning the following quasivariational inclusions.

(UQVIP), Upper quasivariational inclusion problem of type I: Find
(x̄, ȳ) ∈ D × K such that

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

F (ȳ, x̄, x) ⊂ F (x̄, x̄, x̄) + C, for all x ∈ S(x̄, ȳ).

(LQVIP), Lower quasivariational inclusion problem of type I: Find
(x̄, ȳ) ∈ D × K such that

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

F (ȳ, x̄, x̄) ⊂ F (ȳ, x̄, x)− C, for all x ∈ S(x̄, ȳ).

In [7] the author gave some existence theorems on the above problems and
their systems. But, he presented some rather strong conditions. For example:
The polar cone C ′ of the cone C is supposed to have weakly compact basis
in the weak∗topology, the multivalued mapping F has nonempty convex closed
values. In this paper, we shall give some weaker sufficient conditions to improve
his results by considering the existence of solutions of the systems of the above
quasivariational inclusion problems: Let X, Z, D, K, S and T be given as above.
Assume that Yi are other Hausdorff locally convex topological vector spaces with
convex closed cones Ci, i=1, 2 and F1 : K×D×D → 2Y1 , F2 : D×K×K → 2Y2

are multivalued mappings. We consider

System (A). Find (x̄, ȳ) ∈ D × K such that

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

F1(ȳ, x̄, x) ⊂ F1(ȳ, x̄, x̄) + C1, for all x ∈ S(x̄, ȳ),
F2(x̄, ȳ, y) ⊂ F2(x̄, ȳ, ȳ) + C2, for all y ∈ T (x̄, ȳ).

System (B). Find (x̄, ȳ) ∈ D × K such that

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

F1(ȳ, x̄, x) ⊂ F1(ȳ, x̄, x̄) + C1, for all x ∈ S(x̄, ȳ),
F2(x̄, ȳ, ȳ) ⊂ F2(x̄, ȳ, y) − C2, for all y ∈ T (x̄, ȳ).

System (C). Find (x̄, ȳ) ∈ D × K such that
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x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

F1(ȳ, x̄, x̄) ⊂ F1(ȳ, x̄, x) − C1, for all x ∈ S(x̄, ȳ),
F2(x̄, ȳ, y) ⊂ F2(x̄, ȳ, ȳ) + C2, for all y ∈ T (x̄, ȳ).

System (D). Find (x̄, ȳ) ∈ D × K such that

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

F1(ȳ, x̄, x̄) ⊂ F1(ȳ, x̄, x) − C1, for all x ∈ S(x̄, ȳ),
F2(x̄, ȳ, ȳ) ⊂ F2(x̄, ȳ, y) − C2, for all y ∈ T (x̄, ȳ).

We shall see that a solution of one of the above systems, under some addi-
tional conditions, is also a solution of some other systems of quasi-optimization
problems, quasi-equilibrium problems, quasivariational problems etc.

2. Preliminaries and Definitions

Throughout this paper, as in the introduction, by X, Y, Yi, i = 1, 2, and Z we
denote real Hausdorff locally convex topological vector spaces. The space of real
numbers is denoted by R. Given a subset D ⊂ X, we consider a multivalued
mapping F : D → 2Y . The definition domain and the graph of F are denoted
by

domF =
{
x ∈ D/F (x) �= ∅},

Gr(F ) =
{
(x, y) ∈ D × Y/y ∈ F (x)

}
,

respectively. We recall that F is said to be a closed mapping if the graph Gr(F )
of F is a closed subset in the product space X×Y and it is said to be a compact
mapping if the closure F (D) of its range F (D) is a compact set in Y .

Further, let Y be a Hausdorff locally convex topological vector space with a
cone C. We denote l(C) = C ∩ (−C). If l(C) = {0} , C is said to be pointed. We
recall the following definitions (see Definition 2.1, Chapter 2 in [10]).

Definition 2.1. Let A be a nonempty subset of Y . We say that:
(i) x ∈ A is an ideal efficient (or ideal minimal) point of A with respect to C

(w.r.t. C for short) if y − x ∈ C for every y ∈ A.
The set of ideal minimal points of A is denoted by IMin(A/C).

(ii) x ∈ A is an efficient (or Pareto–minimal, or nondominated) point of A
w.r.t. C if there is no y ∈ A with x− y ∈ C \ l(C).
The set of efficient points of A is denoted by PMin(A/C).

(iii) x ∈ A is a (global) proper efficient point of A w.r.t.C if there exists a convex
cone C̃ which is not the whole space and contains C \ l(C) in its interior so
that x ∈ PMin(A/C̃).
The set of proper efficient points of A is denoted by PrMin(A/C).

(iv) Supposing thatint C nempty, x ∈ A is a weak efficient point of A w.r.t. C
if x ∈ PMin(A/{0} ∪ int C).
The set of weak efficient points of A is denoted by WMin(A/C).
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We write αMin(A/C) to denote one of IMin(A/C), PMin(A/C), ....
We have the following inclusions

PrMin(A/C) ⊆ PMin(A/C) ⊆ WMin(A/C).

Now, we introduce new definitions of C-continuities.

Definition 2.2. Let F : D → 2Y be a multivalued mapping.
(i) F is said to be upper (lower) C-continuous in x̄ ∈ domF if for any neigh-

borhood V of the origin in Y there is a neighborhood U of x̄ such that:

F (x) ⊂ F (x̄) + V + C (F (x̄) ⊂ F (x) + V − C, respectively)

holds for all x ∈ U ∩ domF .
(ii) If F is upper C-continuous and lower C-continuous in x̄ simultaneously, we

say that it is C-continuous in x̄.
(iii) If F is upper, lower, . . . , C-continuous in any point of dom F , we say that

it is upper, lower,. . . , C-continuous on D.
(iv) In the case C = {0}, a trivial one in Y , we shall only say that F is upper,

lower continuous instead of upper, lower 0-continuous. And, F is continu-
ous if it is upper and lower continuous simultaneously.

Definition 2.3. Let D be convex and F be a multivalued mapping from D to
2Y . We say that:
(i) F is upper C-quasiconvex on D if for any x1, x2 ∈ D, t ∈ [0, 1], either

F (x1) ⊂ F (tx1 + (1 − t)x2) + C

or,
F (x2) ⊂ F (tx1 + (1 − t)x2) + C,

holds.
(ii) F is lower C-quasiconvex on D if for any x1, x2 ∈ D, t ∈ [0, 1], either

F (tx1 + (1 − t)x2) ⊂ F (x1) − C

or ,
F (tx1 + (1 − t)x2) ⊂ F (x2) − C,

holds.

Now, we give some necessary and sufficient conditions on the upper and the
lower C-continuities which we shall need in the next section.

Proposition 2.4. Let F : D → 2Y and C ⊂ Y be a convex closed cone.
1) If F is upper C-continuous at xo ∈ domF with F (xo) + C closed, then for

any net xβ → xo, yβ ∈ F (xβ) + C, yβ → yo imply yo ∈ F (xo) + C.
Conversely, if F is compact and for any net xβ → xo, yβ ∈ F (xβ)+C, yβ →
yo imply yo ∈ F (xo) + C, then F is upper C-continuous at xo.

2) If F is compact and lower C-continuous at xo ∈ domF, then any net xβ →
xo, yo ∈ F (xo)+C, there is a net {yβ}, yβ ∈ F (xβ), which has a convergent
subnet {yβγ}, yβγ − yo → c ∈ C(i.e yβγ → yo + c ∈ yo + C).
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Conversely, if F (xo) is compact and for any net xβ → xo, yo ∈ F (xo) + C,
there is a net {yβ}, yβ ∈ F (xβ), which has a convergent subnet {yβγ}, yβγ −
yo → c ∈ C, then F is lower C-continuous at xo.

Proof.
1) Assume first that F is upper C-continuous at xo ∈ domF and xβ → xo, yβ ∈
F (xβ) + C, yβ → yo. We suppose on the contrary that yo /∈ F (xo) + C. We can
find a convex closed neighborhood Vo of the origin in Y such that

(yo + Vo) ∩ (F (xo) + C) = ∅,
or,

(yo + Vo/2) ∩ (F (xo) + Vo/2 + C) = ∅.
Since yβ → yo, one can find β1 ≥ 0 such that yβ − yo ∈ V/2 for all β ≥ β1 .
Therefore, yβ ∈ yo + V/2 and F is upper C-continuous at xo, this implies that
one can find a neighborhood U of xo such that

F (x) ⊂ F (xo) + Vo/2 + C for all x ∈ U ∩ domF.

Since xβ → xo, one can find β2 ≥ 0 such that xβ ∈ U and

yβ ∈ F (xβ) + C ⊂ F (xo) + V/2 + C for all x ∈ U ∩ dom F.

It follows that

yβ ∈ (yo + V/2) ∩ (F (xo) + V/2 + C) = ∅ for all β ≥ max{β1, β2}

and we have a contradiction. Thus, we conclude yo ∈ F (xo) + C. Now, assume
that F is compact and for any net xβ → xo, yβ ∈ F (xβ) + C, yβ → yo imply
yo ∈ F (xo) + C. On the contrary, we assume that F is not upper C-continuous
at xo. It follows that there is a neighborhood V of the origin in Y such that for
any neighborhood Uβ of xo one can find xβ ∈ Uβ such that

F (xβ) �⊂ F (xo) + V + C.

We can choose yβ ∈ F (xβ) with yβ /∈ F (xo)+V +C. Since F (D) is compact, we
can assume, without loss of generality, that yβ → yo, and hence yo ∈ F (xo)+C.
On the other hand, since yβ → yo, there is βo ≥ 0 such that yβ − yo ∈ V for all
β ≥ βo. Consequently,

yβ ∈ yo + V ⊂ F (xo) + V + C, for all β ≥ βo

and we have a contradiction.
2) Assume that F is compact and lower C-continuous at xo ∈ domF, and
xβ → xo, yo ∈ F (xo). For any neighborhood V of the origin in Y there is a
neighborhood U of xo such that

F (xo) ⊂ F (x) + V − C, for all x ∈ U ∩ dom F.

Since xβ → xo, there is βo ≥ 0 such that xβ ∈ U and then

F (xo) ⊂ F (xβ) + V − C, for all β ≥ βo.

For yo ∈ F (xo), we can write
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yo = yβ + vβ − cβ with yβ ∈ F (xβ) ⊂ F (D), vβ ∈ V, cβ ∈ C.

Since F (D) is compact, we can choose yβγ → y∗, vβγ → 0. Therefore, cβγ =
yβγ +vβγ −yo → y∗−yo ∈ C, or yβγ → y∗ ∈ yo +C. Thus, for any xβ → xo, yo ∈
F (xo), one can find yβγ ∈ F (xβγ) with yβγ → y∗ ∈ yo + C.

Now, we assume that F (xo) is compact and for any net xβ → xo, yo ∈
F (xo) + C, there is a net {yβ}, yβ ∈ F (xβ) which has a convergent subnet
yβγ −yo → c ∈ C. On the contrary, we suppose that F is not lower C-continuous
at xo. It follows that there is a neighborhood V of the origin in Y such that for
any neighborhood Uβ of xo one can find xβ ∈ Uβ such that

F (xo) �⊂ F (xβ) + V − C.

We can choose zβ ∈ F (xo) with zβ /∈ (F (xβ) + V −C). Since F (xo) is compact,
we can assume, without loss of generality, that zβ → zo ∈ F (xo), and hence
zo ∈ F (xo) + C. We may assume that xβ → xo. Therefore, there is a net
{yβ}, yβ ∈ F (xβ) which has a convergent subnet {yβγ}, yβγ − zo → c ∈ C .
Without loss of generality, we suppose yβ → y∗ ∈ zo + C. It follows that there
is β1 ≥ 0 such that zβ ∈ zo + V/2, yβ ∈ y∗ + V/2 and zo ∈ yβ + V/2 − C for all
β ≥ β1. Consequently,

zβ ∈ yβ + V/2 + V/2 − C ⊂ F (xβ) + V − C, for all β ≥ β1

and we have a contradiction. �

In the proof of the mains results in Sec. 3, we need the following theorem.

Theorem 2.5. [11] Let D be a nonempty convex compact subset of X and F :
D → 2D be a multivalued mapping satisfying the following conditions:
1) For all x ∈ D, x /∈ F (x) and F (x) is convex;
2) For all y ∈ D, F−1(y) is open in D.

Then there exists x̄ ∈ D such that F (x̄) = ∅.

3. Main Results

Throughout this section, unless otherwise specify, by X, Y, Yi, i = 1, 2 and Z we
denote Hausdorff locally convex topogical vector spaces. Let D ⊂ X, K ⊂ Z be
nonempty subsets, C, Ci, i = 1, 2 are convex closed cones in Y, Yi, respectively.
Given multivalued mappings S, T and F as in the introduction, we first prove
the following proposition.

Proposition 3.1. Let B ⊂ D be a nonempty convex compact subset, G : B →
2Y be an upper C-quasiconvex and lower (−C)-continuous multivalued mapping
with nonempty closed values. Then there exists z̄ ∈ B such that

G(z) ⊂ G(z̄) + C, for all z ∈ B.



Systems of Quasivariational Inclusion Problems 431

Proof. We define the multivalued mapping N : B → 2B by

N(z) = {z′ ∈ B |G(z′) �⊂ G(z) + C}.
It is clear that z /∈ N(z) for all z ∈ B. If z1, z2 ∈ N(z), then

G(z1) �⊂ G(z) + C,

G(z2) �⊂ G(z) + C.

Together with the upper C-quasiconvexity of G we conclude

G(tz1 + (1 − t)z2) �⊂ G(z) + C.

This implies tz1 + (1 − t)z2 ∈ N(z) for all t ∈ [0, 1] and hence N(z) is a convex
set for any z ∈ B.

Further, we have

N−1(z′) = {z ∈ B |G(z′) �⊂ G(z) + C}.
Take z ∈ N−1(z′), we deduce z′ ∈ N(z) and so

G(z′) �⊂ G(z) + C.

The upper C-continuity of G implies that for any neighborhood V of the origin
in Y there is a neighborhood UV of z such that

G(x) ⊂ G(z) + V + C, for some x ∈ UV ∩ B.

This implies that if for all V

G(z′) ⊂ G(x) + C, for some x ∈ UV ∩ B,

then
G(z′) ⊂ G(x) + C ⊂ G(z) + V + C

and so
G(z′) ⊂ G(z) + V + C, for all V.

Since G(z) and C are closed, the last inclusion shows that G(z′) ⊂ G(z) + C
and we have a contradiction. Therefore, there exists V0 such that

G(z′) �⊂ G(x) + C, for all x ∈ UV0 ∩ B.

This gives
UV0 ∩ B ⊂ N−1(z′)

and so N−1(z′) is an open set in B. As it has been shown: z /∈ N(z), N(z) is
convex for any z ∈ B and N−1(z′) is open in B for any z′ ∈ B. Consequently,
applying Theorem 2.5 in Sec. 2, we conclude that there exists z̄ ∈ B with N(z̄) =
∅. This implies

G(z) ⊂ G(z̄) + C, for all z ∈ B.

Thus, the proof is complete. �

Analogously, we can prove the following proposition.
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Proposition 3.2. Let B ⊂ D be a nonempty convex compact subset, G : B →
2Y be a lower C-quasiconvex and upper C-continuous multivalued mapping with
nonempty closed values. Then there exists z̄ ∈ B such that

G(z̄) ⊂ G(z) − C, for all z ∈ B.

Corollary 3.3. Assume that all assumptions of Proposition 3.1 are satisfied
and for any z ∈ B, IMin(G(z)/C) �= ∅. Then there exists z̄ ∈ B such that

G(z̄) ∩ IMin(G(B)/C) �= ∅.
(This means that the general vector ideal optimization problem concerning G, B, C
has a solution).

Proof. Proposition 3.1 implies that there exists z̄ ∈ B such that

G(z) ⊂ G(z̄) + C, for all z ∈ B. (1)

Take v∗ ∈ IMin(G(z̄)/C), we have G(z̄) ⊂ v∗ + C. Then, (1) yields

G(z) ⊂ v∗ + C, for all z ∈ B.

This shows that v∗ ∈ IMin(G(B)/C) and the proof is complete. �

Similarly, we have

Corollary 3.4. Assume that all assumptions of Proposition 3.2 are satisfied.
Then there exists z̄ ∈ B such that

G(z̄) ∩ PMin(G(B)/C) �= ∅.
(This means that the general vector Pareto optimization problem concerning
G, B, C has a solution).

Corollary 3.5. If B ⊂ D is a nonempty convex compact subset having the
following property: For any x1, x2 ∈ B, t ∈ [0, 1] either x1−(tx1 +(1− t)x2) ∈ C
or, x1 − (tx1 + (1 − t)x2) ∈ C, then there exist x∗, x∗∗ ∈ B such that

x∗∗ � x � x∗, for all x ∈ B,

where x � y denotes x − y ∈ C.

Proof. Apply Corollaries 3.3 and 3.4 with G(z) = −z and then G(z) = z. �

Theorem 3.6. Let D, K be nonempty convex closed subsets of Hausdorff locally
convex topological vector spaces X, Z, respectively. Let Ci ⊂ Yi, i = 1, 2 be
closed convex cones. Then System (A) has a solution provided that the following
conditions are satisfied:
1) The multivalued mappings S : D × K → 2D, T : D × K → 2K are compact

continuous with nonempty convex closed values.
2) The multivalued mappings F1 : K×D×D → 2Y1 and F2 : D×K×K → 2Y2

are lower (−C) and upper C-continuous with nonempty closed values.
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3) For any fixed (x, y) ∈ D×K, the multivalued mapping F1(y, x, .) : D → 2Y1

is upper C1-quasiconvex and the multivalued mapping F2(x, y, .) : K → 2Y2

is upper C2-quasiconvex.

Proof. We define the multivalued mapping M1 : D×K → 2D, M2 : D×K → 2K

by
M1(x, y) = {x′ ∈ S(x, y) |F1(y, x, z) ⊂ F1(y, x, x′) + C1, for all z ∈ S(x, y)},
M2(x, y) = {y′ ∈ T (x, y) |F2(x, y, v) ⊂ F2(x, y, y′) + C2, for all v ∈ T (x, y)}.

For any fixed (y, x) ∈ D×K we apply Proposition 3.1 with B = S(x, y) and
G(z) = F1(y, x, z) to show that there exists z̄ ∈ B with

F1(y, x, z) ⊂ F1(y, x, z̄) + C1, for all z ∈ S(x, y).

This implies z̄ ∈ M1(x, y) and therefore M1(x, y) is nonempty. Now, we prove
that M1(x, y) is convex. Indeed, for any x1, x2 ∈ M1(x, y) and t ∈ [0, 1], we have
from the convexity of S(x, y) , tx1 + (1 − t)x2 ∈ S(x, y) and

F1(y, x, z) ⊂ F1(y, x, x1) + C1, for all z ∈ S(x, y);
F1(y, x, z) ⊂ F1(y, x, x2) + C1, for all z ∈ S(x, y).

Since F1(y, x, .) is upper C1-quasiconvex, we then conclude

F1(y, x, z) ⊂ F1(y, x, tx1 + (1 − t)x2) + C1, for all t ∈ [0, 1], z ∈ S(x, y).

This shows that tx1 + (1 − t)x2 ∈ M1(x, y) and M1(x, y) is a convex set.
Further, we claim that M1 is a closed multivalued mapping. Indeed, as-

sume that xβ → x, yβ → y, x′
β ∈ M1(xβ, yβ), x′

β → x′. We have to show
x′ ∈ M1(x, y). Since x′

β ∈ S(xβ , yβ), the upper continuity of S with closed
values implies z′ ∈ S(x, y). For zβ ∈ M1(xβ , yβ), one can see

F1(yβ , xβ, z) ⊂ F1(yβ , xβ, x′
β) + C1, for all z ∈ S(xβ , yβ). (2)

The lower continuity of S and xβ → x, yβ → y imply that for any z ∈ S(x, y)
there exist zβ ∈ S(xβ , yβ), zβ → z and (2) gives

F1(yβ , xβ, zβ) ⊂ F1(yβ , xβ, x′
β) + C1, for all zβ ∈ S(xβ , yβ). (3)

Since (yβ , xβ, zβ) → (y, x, z) and F1 is lower (−C)-continuous at (y, x, z), for
any neighborhood V of the origin in Y1, there is β1 such that

F1(y, x, z) ⊂ F1(yβ , xβ, zβ) + V + C1, for all β ≥ β1. (4)

Since (yβ , xβ, x′
β) → (y, x, x′) and F1 is upper C-continuous at (y, x, x′), there

exists β2 such that

F1(yβ , xβ, x′
β) ⊂ F1(y, x, x′) + V + C1, for all β ≥ β2 . (5)

Setting β0 = max{β1, β2}, the combination of (3), (4) and (5) yields

F1(y, x, z) ⊂ F1(y, x, x′) + 2V + C1, for all z ∈ S(x, y).

The closedness of C and the closed values of F1 show that

F1(y, x, z) ⊂ F1(y, x, x′) + C1, for all z ∈ S(x, y).
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This means that x′ ∈ M1(x, y) and then M is a closed multivalued mapping.
By the same arguments we verify that M2 is also a closed multivalued mapping
with nonempty convex values.

Lastly, we define the multivalued mapping P : D × K → 2D×K by

P (x, y) = M1(x, y) × M2(x, y), (x, y) ∈ D × K.

We can easily see that P (x, y) �= ∅, P (x, y) is convex for all (x, y) ∈ D × K
and P is a closed multivalued mapping. Moreover, since P (D × K) ⊂ M1(D ×
K) × M2(D × K) ⊂ S(D × K) × T (D × K), then P is a compact multivalued
mapping. Applying the fixed point theorem of Himmelberg type (see for ex-
ample, in (Ref.1)), we conclude that there exists a point (x̄, ȳ) ∈ D × K with
(ȳ, x̄) ∈ M1(x̄, ȳ) × M2(x̄, ȳ). This implies x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ) and

F1(ȳ, x̄, x) ⊂ F1(ȳ, x̄, x̄) + C1, for all x ∈ S(x̄, ȳ),
F2(x̄, ȳ, y) ⊂ F2(x̄, ȳ, ȳ) + C2, for all x ∈ T (x̄, ȳ).

Thus, the proof of the theorem is complete. �

Theorem 3.7. Let D, K, S, T, Ci, Yi, i = 1, 2 be as the same in Theorem 3.6.
Then System (B) has a solution provided that the following conditions are sat-
isfied.
1) The multivalued mapping F1 : K ×D × D → 2Y1 is lower (−C1) and upper

C1-continuous with nonempty closed values and the multivalued mapping
F2 : D×K ×K → 2Y2 is lower C2-continuous and upper (−C2)-continuous
with nonempty closed values;

2) For any fixed (x, y) ∈ D×K, the multivalued mapping F1(y, x, .) : D → 2Y1

is upper C1-quasiconvex and the multivalued mapping F2(x, y, .) : K → 2Y2

is lower C2-quasiconvex.

Proof. We define the multivalued mappings M1 : D × K → 2D, M2 : D × K →
2K by

M1(x, y) = {x′ ∈ S(x, y) | F1(y, x, z) ⊂ F1(y, x, x′) + C1, for all z ∈ S(x, y)},
M2(x, y) = {y′ ∈ T (x, y) | F2(x, y, y′) ⊂ F2(x, y, v) − C2, for all v ∈ T (x, y)}
and use the same proof as in Theorem 3.6. �

Theorem 3.8. Let D, K, S, T, Ci, Yi, i = 1, 2 be the same as in Theorem 3.6.
Then System (C) has a solution provided that the following conditions are sat-
isfied.
1) The multivalued mappings F1 : K × D × D → 2Y1 is lower C1 and upper

(−C1)-continuous with nonempty closed values and the multivalued mapping
F2 : D×K ×K → 2Y2 is lower (−C2)-continuous and upper C2-continuous
with nonempty closed values;

2) For any fixed (x, y) ∈ D×K, the multivalued mapping F1(y, x, .) : D → 2Y1

is lower C1-quasiconvex and the multivalued mapping F2(x, y, .) : K → 2Y2

is upper C2-quasiconvex.

Proof. We define the multivalued mappings M1 : D×K → 2D, M2 : D×K → 2K

by
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M1(x, y) = {x′ ∈ S(x, y) | F1(y, x, x′) ⊂ F1(y, x, z) − C1, for all z ∈ S(x, y)},
M2(x, y) = {y′ ∈ T (x, y) | F2(x, y, v) ⊂ F2(x, y, y′) + C2, for all v ∈ T (x, y)}

and use the same proof as in Theorem 3.6. �

Theorem 3.9. Let D, K, S, T, Ci, Yi, i = 1, 2 be the same as in Theorem 3.6.
Then System (D) has a solution provided that the following conditions are sat-
isfied.
1) The multivalued mapping F1 : K × D × D → 2Y1 is lower C1 and upper

(−C1)-continuous with nonempty closed values and the multivalued mapping
F2 : D×K ×K → 2Y2 is lower C2-continuous and upper (−C2)-continuous
with nonempty closed values;

2) For any fixed (x, y) ∈ D×K, the multivalued mapping F1(y, x, .) : D → 2Y1

is lower C1-quasiconvex and the multivalued mapping F2(x, y, .) : K → 2Y2

is lower C2-quasiconvex.

Proof. We define the multivalued mappings M1 : D×K → 2D, M2 : D×K → 2K

by

M1(x, y) = {x′ ∈ S(x, y) | F1(y, x, x′) ⊂ F1(y, x, z) − C1, for all z ∈ S(x, y)},
M2(x, y) = {y′ ∈ T (x, y) | F2(x, y, y′) ⊂ F2(x, y, v) − C2, for all v ∈ T (x, y)}

and use the same proof as in Theorem 3.6. �

The following corollaries are special cases of Theorems 3.6, 3.7, 3.8, and 3.9.
Their proofs follow immediately from the above theorems.

Corollary 3.10. Let D be a nonempty convex closed subset of Hausdorff locally
convex topological vector space X. Let C ⊂ Y be a closed convex cone. Let
S : D×K → 2D, T : D×K → 2K be compact continuous multivalued mappings
with nonempty convex closed values. Let F : K ×D×D → 2Y be a lower (−C)-
continuous and upper C-continuous mapping with nonempty closed values such
that for any fixed (x, y) ∈ D × K, the multivalued mapping F (y, x, .) : D → 2Y

is upper C-quasiconvex.
Then there exists (x̄, ȳ) ∈ D × K such that x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ) and

F (ȳ, x̄, x) ⊂ F (ȳ, x̄, x̄) + C, for all x ∈ S(x̄, ȳ).

Corollary 3.11. Let D, K, Y, C be as in Corollary 3.10. Let F : K×D×D → 2Y

be a lower C-continuous and upper (−C)-continuous mapping with nonempty
closed values such that for any fixed (x, y) ∈ D × K, the multivalued mapping
F (y, x, .) : D → 2Y is lower C-quasiconvex.

Then there exists (x̄, ȳ) ∈ D × K such that x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ) and

F (ȳ, x̄, x̄) ⊂ F (ȳ, x̄, x)− C, for all x ∈ S(x̄, ȳ).

Corollary 3.12. Let D, K, C, S, T and Fi, i = 1, 2, be as in Theorem 3.6. In
addition, assume that F1(y, x, x) ⊂ C1, F2(x, y, y) ⊂ C2 for all (x, y) ∈ D × K.
Then there exists (x̄, ȳ) ∈ D × K such that x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ) and
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F1(ȳ, x̄, x) ⊂ C1, for all x ∈ S(x̄, ȳ),
F2(x̄, ȳ, y) ⊂ C1, for all y ∈ T (x̄, ȳ).

Proof. It is obvious. �

Corollary 3.13. Let D, K, S, T and Fi, i = 1, 2, be as in Theorem 3.6 and
IMin(F1(y, x, x)/C1) �= ∅, IMin(F2(x, y, y)/C2) �= ∅ for all (x, y) ∈ D × K. Then
(x̄, ȳ) satisfies

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

F1(ȳ, x̄, x) ⊂ F1(ȳ, x̄, x̄) + C1, for all x ∈ S(x̄, ȳ),
F2(x̄, ȳ, y) ⊂ F2(x̄, ȳ, ȳ) + C2, for all y ∈ T (x̄, ȳ) (7)

if and only if
x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

such that

F1(ȳ, x̄, x̄) ∩ IMin(F1(ȳ, x̄, S(x̄, ȳ))/C1) �= ∅,
F2(x̄, ȳ, ȳ) ∩ IMin (F2(x̄, ȳ, T (x̄, ȳ))/C2) �= ∅. (8)

Proof. First we assume that (x̄, ȳ) satisfies (7). Take v∗ ∈ IMin(F1(ȳ, x̄, x̄)/C1).
It is clear that F1(ȳ, x̄, ȳ, x̄) ⊂ v∗ + C1. Together with (7) we have

F1(x̄, ȳ, x) ⊂ F1(ȳ, x̄, x̄) + C1 ⊂ v∗ + C1 for all x ∈ S(x̄, ȳ).

This implies v∗ ∈ IMin(F1(x̄, ȳ, S(x̄, ȳ)/C1) and hence

F1(ȳ, x̄, x̄) ∩ IMin(F1(ȳ, x̄, S(x̄, ȳ))/C1) �= ∅.

Analogously, we get

F2(x̄, ȳ, ȳ) ∩ IMin(F2(x̄, ȳ, T (x̄, ȳ))/C2).

Now, assume that (8) holds. Take v∗ ∈ F1(ȳ, x̄, x̄) ∩ IMin(F1(ȳ, x̄, S(x̄, ȳ))/C1),
we have

F1(ȳ, x̄, x) ⊂ v∗ + C1 ⊂ F1(ȳ, x̄, x̄) + C1 for all x ∈ S(x̄, ȳ).

Similarly, we have

F2(x̄, ȳ, y) ⊂ F2(x̄, ȳ, ȳ) + C2 for all y ∈ T (x̄, ȳ).

This completes the proof of the corollary. �

Corollary 3.14. Let D, K, Ci, S, T and Fi, i = 1, 2 be as in Theorem 3.6. In
addition, assume that there exists a convex cone C̃i which is not the whole space
and contains Ci \ {0} in its interior. Then the there exists (x̄, ȳ) ∈ D × K with
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x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

such that
F1(ȳ, x̄, x̄) ∩ PrMin(F1(ȳ, x̄, S(x̄, ȳ))/C1) �= ∅,
F2(x̄, ȳ, ȳ) ∩ PrMin(F2(x̄, ȳ, T (x̄, ȳ))/C2) �= ∅.

Proof. Since Ci has the property as above, then any compact set Ai in Yi

has PrMin(Ai/Ci) �= ∅ (by using the cone Ci
∗ = {0} ∪ intC̃i one can verify

PMin(Ai/Ci
∗) �= ∅, see, for example, Corollary 3.15, Chapter 2 in Ref. 10). We

then apply Theorem 3.6 to obtain (x̄, ȳ) ∈ D × K such that:

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (ȳ, x̄)

and
F1(ȳ, x̄, x) ⊂ F1(ȳ, x̄, x̄) + C1, for all x ∈ S(x̄, ȳ). (9)

Since F1(ȳ, x̄, x̄) is a compact set, it follows that PrMin(F1(ȳ, x̄, x̄)/C1) �= ∅.
Take v̄ ∈ PrMin(F1(ȳ, x̄, x̄)/C1), we show that v̄ ∈ PrMin(F1(ȳ, x̄, S(x̄, ȳ))/C1).
On the contrary, we suppose that v̄ /∈ PrMin(F1(ȳ, x̄, S(x̄, ȳ))/C1). Then, there
is v∗ ∈ F1(ȳ, x̄, S(x̄, ȳ)) such that

v̄ − v∗ ∈ C1
∗ \ l(C1

∗). (10)

Assume that v∗ ∈ F1(ȳ, x̄, x∗) for some x∗ ∈ S(x̄, ȳ). We can conclude from (7)
that there exists vo ∈ F1(ȳ, x̄, x̄) such that v∗ − vo = c ∈ C1. If c = 0, then
v∗ = vo and then v̄ − vo ∈ C1

∗ \ l(C1
∗). If c �= 0, using (10), we conclude

v̄ − vo = v̄ − v∗ + v∗ − vo ∈ C1
∗ \ l(C1

∗) + C1 \ {0} ⊂ C1
∗ \ l(C1

∗).

Therefore, we obtain v̄ − vo ∈ C1
∗ \ l(C1

∗). Due to v̄ ∈ PrMin(F1(ȳ, x̄, x̄)/C1)
and vo ∈ F1(ȳ, x̄, x̄), we then have a contradiction. Consequently,

F1(ȳ, x̄, x̄) ∩ PrMin(F1(ȳ, x̄, S(x̄, ȳ))/C1) �= ∅
By the same arguments, we conclude

F2(x̄, ȳ, ȳ) ∩ PrMin(F2(x̄, ȳ, T (x̄, ȳ))/C2) �= ∅ �

Corollary 3.15. If D, K, C, S, T, Fi, i = 1, 2, are as in Theorem 3.6, then the
there exists (x̄, ȳ) ∈ D × K with

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

such that
F1(ȳ, x̄, x̄) ∩ PMin(F1(ȳ, x̄, S(x̄, ȳ))/C1) �= ∅,
F2(x̄, ȳ, ȳ) ∩PMin(F2(x̄, ȳ, T (x̄, ȳ))/C2) �= ∅.

Proof. By Theorem 3.6, there is (x̄, ȳ) ∈ D × K such that:

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ)
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and
F1(ȳ, x̄, x) ⊂ F1(ȳ, x̄, x̄) + C1, for all x ∈ S(x̄, ȳ). (11)

We claim that
F1(ȳ, x̄, x̄) ∩ PMin(F1(x̄, ȳ, S(x̄, ȳ))/C1) �= ∅.

The compactness of F1(ȳ, x̄, x̄) shows that PMin(F1(ȳ, x̄, x̄)/C1) �= ∅. Assume
v̄ ∈ PMin(F1(ȳ, x̄, x̄)/C1) and v̄ /∈ PMin(F1(x̄, ȳ, S(x̄, ȳ))/C1). It follows that
there is v ∈ F1(x̄, ȳ, S(x̄, ȳ)), say v ∈ F1(x̄, ȳ, x) with some x ∈ S(x̄, ȳ), such
that

v̄ − v ∈ C1 \ l(C1). (12)

(11) implies that v ∈ F1(ȳ, x̄, x̄) + C1 and so

v = v∗ + c, with some v∗ ∈ F1(ȳ, x̄, x̄), c ∈ C1,

or
v − v∗ ∈ C1. (13)

A combination of (12) and (13) gives

v̄ − v∗ = v̄ − v + v − v∗ ∈ C1 \ l(C1) + C1 ⊂ C1 \ l(C1).

This contradicts v̄ ∈ PMin(F1(ȳ, x̄, x̄)/C1). Therefore, we obtain

F1(ȳ, x̄, x̄) ∩ PMin(F1(x̄, ȳ, S(x̄, ȳ))/C1) �= ∅.
By the same arguments we verify

F2(ȳ, x̄, x̄) ∩ PMin(F2(x̄, ȳ, S(x̄, ȳ))/C2) �= ∅.
This completes the proof of the corollary. �

Similarly, we can also obtain several results for systems of the other quasi-
equilibrium and quasi-optimization problems.

Corollary 3.16. Let D, K, C, S, T and Fi, i = 1, 2, be as in Theorem 3.9 with
F1(y, x, x) ⊂ C1, F2(x, y, y) ⊂ C2, for any (x, y) ∈ D ×K. If (x̄, ȳ) is a solution
of the System (D), then it is also a solution of the following system of Pareto
quasi-equilibrium problems: Find (x̄, ȳ) ∈ D × K such that

x̄ ∈ S(x̄),
ȳ ∈ T (x̄, ȳ),

F1(ȳ, x̄, x) �⊂ −(C1 \ l(C1)), for all x ∈ S(x̄, ȳ),
F2(x̄, ȳ, y) �⊂ −(C2 \ l(C2)), for all x ∈ T (x̄, ȳ).

Proof. Indeed, on the contrary we assume that there is x∗ ∈ S(x̄, ȳ) such that
F1(ȳ, x̄, x∗) ⊂ −(C1 \ l(C1)). Since F1(ȳ, x̄, x∗) ∩ C1 �= ∅, we can take v∗ ∈
F1(ȳ, x̄, x∗)∩C1. This yields v∗ ∈ C1∩(−(C1\l(C)) ⊂ −l(C1), v∗ ∈ F (1ȳ, x̄, x∗) ⊂
−(C1 \ l(C1)). It is impossible, because v∗ ∈ −l(C1). Analogously, if there is y∗ ∈
T (x̄, ȳ) such that F2(x̄, ȳ, y∗) ⊂ −(C2 \ l(C2)), we then also have a contradiction.
This completes the proof of the corollary. �
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To conclude the paper, we give a corollary of Theorem 3.6 on saddle point
problems of vector functions. We have

Corollary 3.17. Let D, K, C, S, T, be as in Theorem 3.6. Let F : D×K → Y be
a (−C)- and C-continuous singlevalued mapping such that for any fixed y ∈ K,
the mapping F (., y) : D → Y is C-quasiconvex and for any fixed x ∈ D, the
mapping F (x, .) : K → Y is (−C)-quasiconvex. Then there exists (x̄, ȳ) ∈ D×K
with

x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ),

such that
F (ȳ, x) ∈ F (ȳ, x̄) + C, for all x ∈ S(x̄, ȳ),
F (x̄, ȳ) ∈ F (y, x̄) + C, for all y ∈ T (x̄, ȳ).

Proof. The proof of this corollary follows immediately from Theorem 3.6 with
F1 : K × D × D → Y, F2 : D × K × K → Y defined by

F1(y, x, x′) = F (x′, y) − F (x, y), (y, x, x′) ∈ K × D × D,

F2(x, y, y′) = F (x, y) − F (x, y′), (x, y, y′) ∈ D × K × K.

Applying this theorem, we obtain the proof of the corollary. �

Remark. For u, v ∈ Y, we define u � v if u − v ∈ C, then in the conclusion of
Corollary 3.17 we can write x̄ ∈ S(x̄), ȳ ∈ T (x̄, ȳ), and

F (ȳ, x) � F (ȳ, x̄) � F (y, x̄), for all x ∈ S(x̄, ȳ) and y ∈ T (x̄, ȳ).

Such a point (x̄, ȳ) is said to be a saddle point of F with respect to S, T and C.
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