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Abstract. A graph G = (V, E) is called a split graph if there exists a partition

V = I∪K such that the subgraphs G[I] and G[K] of G induced by I and K are empty

and complete graphs, respectively. In 1980, Burkard and Hammer gave a necessary

condition for a split graph G with |I| < |K| to be hamiltonian. We will call a split

graph G with |I| < |K| satisfying this condition a Burkard–Hammer graph. Further,

a split graph G is called a maximal nonhamiltonian split graph if G is nonhamiltonian

but G+uv is hamiltonian for every uv �∈ E where u ∈ I and v ∈ K. In an earlier work,

the author and Iamjaroen have asked whether every maximal nonhamiltonian Burkard–

Hammer graph G with the minimum degree δ(G) ≥ |I| − k where k ≥ 3 possesses

a vertex adjacent to all vertices of G and whether every maximal nonhamiltonian

Burkard–Hammer graph G with δ(G) = |I|−k where k > 3 and |I| > k+2 possesses

a vertex with exactly k− 1 neighbors in I. The first question and the second one have

been proved earlier to have a positive answer for k = 3 and k = 4, respectively. In

this paper, we give a negative answer both to the first question for all k ≥ 4 and to

the second question for all k ≥ 5.
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1. Introduction

All graphs considered in this paper are finite undirected graphs without loops
or multiple edges. If G is a graph, then V (G) and E(G) (or V and E in short)
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will denote its vertex-set and its edge-set, respectively. For a subset W ⊆ V (G),
the set of all neighbors of W is denoted by NG(W ) or N(W ) in short. For a
vertex v ∈ V (G), the degree of v, denoted by deg(v), is the number |N(v)|. The
minimum degree of G, denoted by δ(G), is the number min{deg(v) | v ∈ V (G)}.
By NG,W (v) or NW (v) in short we denote the set W ∩ NG(v). The subgraph
of G induced by W is denoted by G[W ]. Unless otherwise indicated, our graph-
theoretic terminology will follow [1].

A graph G = (V, E) is called a split graph if there exists a partition V = I∪K
such that the subgraphs G[I] and G[K] of G induced by I and K are empty
and complete graphs, respectively. We will denote such a graph by S(I(G) ∪
K(G), E(G)) or S(I ∪K, E) in short. Further, a split graph G = S(I ∪K, E) is
called a complete split graph if every u ∈ I is adjacent to every v ∈ K. The notion
of split graphs was introduced in 1977 by Földes and Hammer [4]. These graphs
are interesting because they are related to many problems in combinatorics (see
[3, 5, 10]) and in computer science (see [6, 7]).

In 1980, Burkard and Hammer gave a necessary condition for a split graph
G = S(I ∪K, E) with |I| < |K| to be hamiltonian [2] (see Sec. 2 for more detail).
We will call this condition the Burkard–Hammer condition. Also, we will call a
split graph G = S(I∪K, E) with |I| < |K|, which satisfies the Burkard–Hammer
condition, a Burkard–Hammer graph.

Thus, by [2] any hamiltonian split graph G = S(I ∪ K, E) with |I| < |K|
is a Burkard–Hammer graph. In general, the converse is not true. The first
nonhamiltonian Burkard–Hammer graph has been indicated in [2]. Further infi-
nite families of nonhamiltonian Burkard–Hammer graphs have been constructed
recently in [13].

A split graph G = S(I ∪ K, E) is called a maximal nonhamiltonian split
graph if G is nonhamiltonian but the graph G + uv is hamiltonian for every
uv �∈ E where u ∈ I and v ∈ K. It is known from a result in [12] that any
nonhamiltonian Burkard–Hammer graph is contained in a maximal nonhamil-
tonian Burkard–Hammer graph. So knowledge about maximal nonhamiltonian
Burkard–Hammer graphs provides us certain information about nonhamiltonian
Burkard–Hammer graphs.

It has been shown in [12] (see Theorem 2 in Sec. 2) that there are no non-
hamiltonian Burkard–Hammer graphs G = S(I ∪K, E) with δ(G) ≥ |I| − 2 and
no nonhamiltonian Burkard–Hammer graphs G = S(I∪K, E) with δ(G) = |I|−3
and |I| > 5. Therefore, without loss of generality we may assume that all con-
sidered in this paper maximal nonhamiltonian Burkard–Hammer graphs G =
S(I ∪K, E) have δ(G) = |I| − k where |I| ≥ k ≥ 3 and all considered maximal
nonhamiltonian Burkard–Hammer graphs G = S(I ∪K, E) with δ(G) = |I| − k
and |I| > k + 2 have k > 3.

It has been proved recently in [14] that a maximal nonhamiltonian Burkard–
Hammer graph G = S(I ∪ K, E) with δ(G) = |I| − k where |I| ≥ k ≥ 3
must have |I| ≥ k + 2 and no vertices with exactly k + 1, . . . , |I| − 1 neighbors
in I. Moreover, if G = S(I ∪ K, E) has δ(G) = |I| − k where k > 3 and
|I| > k + 2, then G also has no vertices with exactly k neighbors in I. However,
it is shown in [14] that for every integer k > 3 and every integer m > k +2 there
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exists a maximal nonhamiltonian Burkard–Hammer graph G = S(I ∪ K, E)
with |I| = m and δ(G) = |I| − k which possesses a vertex with exactly k − 1
neighbors in I. Ngo Dac Tan and Iamjaroen have asked in [14] whether all
maximal nonhamiltonian Burkard–Hammer graphs G = S(I∪K, E) with δ(G) =
|I| − k where k ≥ 3 possess a vertex adjacent to all vertices of G and whether
all maximal nonhamiltonian Burkard–Hammer graphs G = S(I ∪ K, E) with
δ(G) = |I| − k where k > 3 and |I| > k + 2 possess a vertex with exactly k − 1
neighbors in I. The first question has been proved in [12] to have a positive
answer for k = 3. Recently, Ngo Dac Tan and Iamjaroen have proved in [14]
that the second question also has a positive answer for k = 4. In this paper,
however, we will give a negative answer both to the first question for all k ≥ 4
and to the second question for all k ≥ 5.

We would like to note that there is an interesting discussion about the
Burkard–Hammer condition in [9]. Concerning the hamiltonian problem for
split graphs, the readers can see also [8] and [11].

2. Preliminaries

Let G = S(I ∪K, E) be a split graph and I′ ⊆ I, K′ ⊆ K. Denote by BG(I′ ∪
K′, E′) the graph G[I′ ∪K′]−E(G[K′]). It is clear that G′ = BG(I′ ∪K′, E′) is
a bipartite graph with the bipartition subsets I′ and K′. So we will call BG(I′ ∪
K′, E′) the bipartite subgraph of G induced by I′ and K′. For a component
G′

j = BG(I′j ∪K′
j , E

′
j) of G′ = BG(I′ ∪K′, E′) we define

kG(G′
j) = kG(I′j , K

′
j) =

{ |I′j| − |K′
j | if |I′j | > |K′

j|,
0 otherwise.

If G′ = BG(I′ ∪ K′, E′) has r components G′
1 = BG(I′1 ∪ K′

1, E
′
1), . . . , G′

r =
BG(I′r ∪K′

r , E
′
r) then we define

kG(G′) = kG(I′, K′) =
r∑

j=1

kG(G′
j).

A component G′
j = BG(I′j ∪ K′

j , E
′
j) of G′ = BG(I′ ∪ K′, E′) is called a

T-component (resp., H-component, L-component) if |I′j| > |K′
j| (resp., |I′j| =

|K′
j|, |I′j| < |K′

j|). Let hG(G′) = hG(I′, K′) denote the number of H-components
of G′.

In 1980, Burkard and Hammer proved the following necessary but not suffi-
cient condition for hamiltonian split graphs [2].

Theorem 1. [2] Let G = S(I ∪K, E) be a split graph with |I| < |K|. If G is
hamiltonian, then

kG(I′, K′) + max
{

1,
hG(I′, K′)

2

}
≤ |NG(I′)| − |K′|

holds for all ∅ �= I′ ⊆ I, K′ ⊆ NG(I′) with (kG(I′, K′), hG(I′, K′)) �= (0, 0).
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We will shortly call the condition in Theorem 1 the Burkard–Hammer con-
dition. We also call a split graph G = S(I ∪ K, E) with |I| < |K|, which
satisfies the Burkard–Hammer condition, a Burkard–Hammer graph. Thus, by
Theorem 1 any hamiltonian split graph G = S(I ∪ K, E) with |I| < |K| is a
Burkard–Hammer graph. For split graphs G = S(I ∪K, E) with |I| < |K| and
δ(G) ≥ |I| − 2 the converse is true [12]. But it is not true in general. The first
example of a nonhamiltonian Burkard–Hammer graph has been indicated in [2].
Recently, Tan and Hung [12] have classified nonhamiltonian Burkard–Hammer
graphs G = S(I ∪ K, E) with δ(G) = |I| − 3. Namely, they have proved the
following result.

Theorem 2. [12] Let G = S(I ∪K, E) be a split graph with |I| < |K| and the
minimum degree δ(G) ≥ |I| − 3. Then
(i) If |I| �= 5 then G has a Hamilton cycle if and only if G satisfies the Burkard–

Hammer condition;
(ii) If |I| = 5 and G satisfies the Burkard–Hammer condition, then G has no

Hamilton cycles if and only if G is isomorphic to one of the graphs H1,n,
H2,n, H3,n or H4,n listed in Table 1.

Table 1. The graphs H1,n, H2,n, H3,n and H4,n

The graph The vertex-set The edge-set
G V (G) = I∗ ∪K∗ E(G) = E∗

1 ∪ · · · ∪ E∗
5 ∪ E∗

K∗

H1,n I∗ = {u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5}, E∗

1 = {u∗
1v

∗
1 , u

∗
1v

∗
2},

(n > 5) K∗ = {v∗1 , v∗2 , ..., v∗n}. E∗
2 = {u∗

2v
∗
2 , u

∗
2v

∗
4},

E∗
3 = {u∗

3v
∗
2 , u

∗
3v

∗
3 , u3v

∗
6},

E∗
4 = {u∗

4v
∗
1 , u

∗
4v

∗
4 , u4v

∗
6},

E∗
5 = {u∗

5v
∗
5 , u

∗
5v

∗
6},

E∗
K∗ = {v∗i v∗j | i �= j; i, j = 1, ..., n},

H2,n V (H2,n) = V (H1,n) E(H2,n) = E(H1,n) ∪ {u∗
4v

∗
2}

H3,n V (H3,n) = V (H1,n) E(H3,n) = E(H1,n) ∪ {u∗
5v

∗
2}

H4,n V (H4,n) = V (H1,n) E(H4,n) = E(H1,n) ∪ {u∗
4v

∗
2 , u∗

5v
∗
2}

Theorem 2 shows that there are only four nonhamiltonian Burkard–Hammer
graphs G = S(I ∪ K, E) with K = N(I) and δ(G) = |I| − 3, namely, the
graphs H1,6, H2,6, H3,6 and H4,6. In contrast with this result, the number of
nonhamiltonian Burkard–Hammer graphs G = S(I ∪K, E) with K = N(I) and
δ(G) = |I| − 4 is infinite. This is a recent result of Tan and Iamjaroen [13]. We
remind now one of the constructions in this work, which is needed for the next
sections.

Let G1 = S(I1 ∪K1, E1) and G2 = S(I2 ∪K2, E2) be split graphs with

V (G1) ∩ V (G2) = ∅
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and v be a vertex of K1. We say that a graph G is an expansion of G1 by G2 at
v if G is the graph obtained from (G1 − v) ∪G2 by adding the set of edges

E0 = {xivj | xi ∈ V (G1) \ {v}, vj ∈ K2 and xiv ∈ E1}.
It is clear that such a graph G is a split graph S(I ∪ K, E) with I = I1 ∪ I2,
K = (K1 \{v})∪K2 and is uniquely determined by G1, G2 and v ∈ K1. Because
of this, we will denote this graph G by G1[G2, v]. Further, a graph G is called an
expansion of G1 by G2 if it is an expansion of G1 by G2 at some vertex v ∈ K1.

The following results which have been proved in [12 - 14] are needed later.

Lemma 1. [12] Let G = S(I ∪K, E) be a Burkard–Hammer graph. Then for
any uv �∈ E where u ∈ I and v ∈ K, the graph G+uv is also a Burkard–Hammer
graph.

Theorem 3. [13] Let G1 = S(I1 ∪ K1, E1) be a Burkard–Hammer graph and
G2 = S(I2 ∪ K2, E2) be a complete split graph with |I2| < |K2|. Then any
expansion of G1 by G2 is a Burkard–Hammer graph.

Theorem 4. [13] Let G1 = S(I1 ∪ K1, E1) be an arbitrary split graph and
G2 = S(I2 ∪K2, E2) be a split graph with |K2| = |I2|+ 1. Then an expansion of
G1 by G2 is a hamiltonian graph if and only if both G1 and G2 are hamiltonian
graphs.

Let G = S(I ∪K, E) be a split graph. Set
Bi(G) = {v ∈ K | |NI(v)| = i}.
If the graph G is clear from the context then we also write Bi instead of

Bi(G).

Theorem 5. [14] Let G1 = S(I1 ∪ K1, E1) be a complete split graph with
|I1| < |K1| and G2 = S(I2 ∪ K2, E2) be a maximal nonhamiltonian Burkard–
Hammer graph with δ(G2) = |I2|−k2 such that every vertex u ∈ I2 has NG2(u) �=
K2. Then any expansion G = S(I ∪ K, E) = G1[G2, v1] where v1 ∈ K1 is a
maximal nonhamiltonian Burkard–Hammer graph with δ(G) = δ(G2) = |I| −
(k2 + |I1|). Moreover, for any x ∈ K1 \ {v1}, |NG,I(x)| = |I1| and for any
y ∈ K2, |NG,I(y)| = |NG2,I2(y)|+ |I1|.

3. Formulations of the Main Results and Discussions

By Theorem 2 in the previous section there are no nonhamiltonian Burkard–
Hammer graphs G = S(I ∪K, E) with δ(G) ≥ |I| − 2 and no nonhamiltonian
Burkard–Hammer graphs G = S(I∪K, E) with δ(G) = |I|−3 and |I| > 5. There-
fore, in further discussions without loss of generality we may assume that all
considered maximal nonhamiltonian Burkard–Hammer graphs G = S(I ∪K, E)
with δ(G) = |I|−k have |I| ≥ k ≥ 3 and all considered maximal nonhamiltonian
Burkard–Hammer graphs G = S(I ∪K, E) with δ(G) = |I| − k and |I| > k + 2
have k > 3. We start our discussions with the following result proved in [14].
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Theorem 6. [14] Let G = S(I ∪K, E) be a maximal nonhamiltonian Burkard–
Hammer graph with the minimum degree δ(G) = |I|−k where |I| ≥ k ≥ 3. Then
|I| ≥ k + 2 and Bk+1 = · · · = B|I|−1 = ∅. Furthermore, if k > 3 and |I| > k + 2
then Bk is also empty.

Two questions raised from Theorem 6 are whether a maximal nonhamiltonian
Burkard–Hammer graph G = S(I ∪K, E) with δ(G) = |I|−k where k ≥ 3 must
have B|I| = ∅ and whether a maximal nonhamiltonian Burkard–Hammer graph
G = S(I ∪K, E) with δ(G) = |I|−k where k > 3 and |I| > k +2 also must have
Bk−1 = ∅. The following results proved in [14] show that both these questions
have negative answers.

Theorem 7. [14]
(a) For every integer k ≥ 3 there exists a maximal nonhamiltonian Burkard–

Hammer graph G = S(I ∪K, E) with |I| = k + 2 and δ(G) = |I| − k, which
has Bk �= ∅ and B|I| �= ∅.

(b) For every integer k > 3 and every integer m > k + 2 there exists a maximal
nonhamiltonian Burkard–Hammer graph G = S(I ∪K, E) with |I| = m and
δ(G) = |I| − k, which has Bk−1(G) �= ∅ and B|I| �= ∅.

Two natural questions raised from the results in Theorem 7 are whether every
maximal nonhamiltonian Burkard–Hammer graph G = S(I ∪K, E) with δ(G) =
|I| − k where k ≥ 3 has B|I| �= ∅ and whether every maximal nonhamiltonian
Burkard–Hammer graph G = S(I ∪K, E) with δ(G) = |I| − k where k > 3 and
|I| > k + 2 has Bk−1 �= ∅. These questions have been posed in [14]. Theorem
2 shows that the first question has a positive answer for k = 3 and Theorem 8
below proved in [14] shows that the second question has a positive answer for
k = 4. These make the questions more attractive for investigation.

Theorem 8. [14] Let G = S(I ∪K, E) be a maximal nonhamiltonian Burkard–
Hammer graph with |I| ≥ 7 and the minimum degree δ(G) = |I| − 4. Then
B4 = B5 = · · · = B|I|−1 = ∅ but B3 �= ∅.

In this paper, we get complete answers to the above two questions. Namely,
we will prove the following results.

Theorem 9.
(a) For every integer k ≥ 4 there exists a maximal nonhamiltonian Burkard–

Hammer graph G = S(I ∪K, E) with δ(G) = |I| − k, which has B|I| = ∅.
(a) For every integer k ≥ 5 and every integer m > k +2 there exists a maximal

nonhamiltonian Burkard–Hammer graph G = S(I ∪K, E) with |I| = m and
δ(G) = |I|−k, which has Bk−1 = ∅ but Bk−2 �= ∅, Bk−3 �= ∅ and Bk−4 �= ∅.

Thus, by Theorem 9 both the first question for all k ≥ 4 and the second
question for all k ≥ 5 have negative answers, although the former question has
a positive answer for k = 3 and the latter one has a positive answer for k = 4.
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4. Proof of Theorem 9

First of all we prove the following lemmas.

Lemma 2. Let L = S(I(L) ∪K(L), E(L)) be the split graph with

I(L) = {u∗
1, u

∗
2, . . . , u∗

6},
K(L) = {v∗1 , v∗2 , . . . , v∗7},
E(L) = E∗

1 ∪ E∗
2 ∪ · · · ∪ E∗

6 ∪ E∗
K ,

where

E∗
1 = {u∗

1v
∗
1 , u

∗
1v

∗
2 , u

∗
1v

∗
3},

E∗
2 = {u∗

2v
∗
2 , u

∗
2v

∗
4},

E∗
3 = {u∗

3v
∗
3 , u

∗
3v

∗
4 , u

∗
3v

∗
6},

E∗
4 = {u∗

4v
∗
1 , u

∗
4v

∗
4 , u

∗
4v

∗
7},

E∗
5 = {u∗

5v
∗
2 , u

∗
5v

∗
5 , u

∗
5v

∗
7},

E∗
6 = {u∗

6v
∗
3 , u

∗
6v

∗
7},

E∗
K = {v∗i v∗j | i �= j; i, j ∈ {1, . . . , 7}}

(see Fig. 1). Then L is a maximal nonhamiltonian Burkard–Hammer graph with
B|I(L)| = ∅.

Fig. 1. The graph L

Table 2. The Hamilton cycle for L− u∗
i

Graph L− u∗
i Hamilton cycle Cu∗

i
for L− u∗

i

L − u∗
1 Cu∗

1
= u∗

2v
∗
2u

∗
5v

∗
5v∗3u∗

6v
∗
7u

∗
4v

∗
1v∗6u

∗
3v

∗
4u∗

2

L − u∗
2 Cu∗

2
= u∗

1v
∗
1u

∗
4v

∗
4u∗

3v
∗
6v∗2v∗5u∗

5v
∗
7u

∗
6v

∗
3u∗

1

L − u∗
3 Cu∗

3
= u∗

1v
∗
2u

∗
2v

∗
4u∗

4v
∗
1v∗6v

∗
5u∗

5v
∗
7u

∗
6v

∗
3u∗

1

L − u∗
4 Cu∗

4
= u∗

1v
∗
1v

∗
3u∗

6v
∗
7u∗

5v
∗
5v

∗
6u∗

3v
∗
4u

∗
2v

∗
2u∗

1

L − u∗
5 Cu∗

5
= u∗

1v
∗
1u

∗
4v

∗
7u∗

6v
∗
3v∗5v

∗
6u∗

3v
∗
4u

∗
2v

∗
2u∗

1

L − u∗
6 Cu∗

6
= u∗

1v
∗
1u

∗
4v

∗
7u∗

5v
∗
5v∗3v∗6u∗

3v
∗
4u

∗
2v

∗
2u∗

1
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Proof. For any vertex u∗
i ∈ I(L), the graph L − u∗

i has a Hamilton cycle Cu∗
i

which is shown in Table 2. Therefore, by Theorem 1 the Burkard–Hammer
condition holds for any ∅ �= I′ ⊆ I(L) and K′ ⊆ NL(I′) with |I′| ≤ 5 and
(k(I′, K′), h(I′, K′)) �= (0, 0). For I′ = I(L) and K′ ⊆ NL(I(L)), by direct
computations we can verify that the Burkard–Hammer condition also holds. (It
is tedious to do this, but we don’t know other ways to verify the last assertion.)
Thus, L satisfies the Burkard–Hammer condition.

Now suppose that L has a Hamilton cycle C. Since deg(u∗
2) = deg(u∗

6) = 2, C
must contain the paths v∗2u∗

2v
∗
4 and v∗3u∗

6v
∗
7 . We consider separately the following

possibilities for C:

(i) v∗2u∗
1v

∗
3 is in C.

In this case C must contain the path v∗4u∗
2v

∗
2u

∗
1v

∗
3u∗

6v
∗
7 . So both v∗2u∗

5 and
v∗3u∗

3 cannot be in C. Therefore, v∗5u∗
5v

∗
7 and v∗4u∗

3v
∗
6 must be in C because

deg(u∗
3) = deg(u∗

5) = 3. It follows that both u∗
4v

∗
4 and u∗

4v
∗
7 cannot be in C.

Hence, u∗
4 is not in C because deg(u∗

4) = 3, contradicting our assumption that
C is a Hamilton cycle of L. Thus, this case cannot occur.

(ii) v∗1u∗
1v

∗
2 is in C.

In this case, C must contain the path v∗1u∗
1v

∗
2u∗

2v
∗
4 . Therefore, v∗2u∗

5 cannot
be in C. Since deg(u∗

5) = 3, v∗5u∗
5v

∗
7 must be in C. It follows that v∗7u∗

4 cannot
be in C because v∗7u∗

5 and v∗7u∗
6 are already in C. So, v∗1u∗

4v
∗
4 must be in C

because deg(u∗
4) = 3. Thus, v∗1u∗

1v
∗
2u

∗
2v

∗
4u∗

4v
∗
1 is a proper subcycle of C, which is

impossible. This means that this case also cannot occur.

(iii) v∗1u∗
1v

∗
3 is in C.

By arguments similar to those of Case (ii), we can get a contradiction for
this case. Hence, this case also cannot occur.

Thus, the assumption that L has a Hamilton cycle is false. So L must be
nonhamiltonian.

Now we prove that L is a maximal nonhamiltonian split graph. Since L is
nonhamiltonian as we have proved above, it remains to prove that L + u∗

i v
∗
j is

hamiltonian for any u∗
i v

∗
j �∈ E(L) where u∗

i ∈ I(L) and v∗j ∈ K(L). This is done
in Table 3.

Finally, the fact that B|I(L)| = ∅ is trivial. The proof of Lemma 2 is complete.
�

Lemma 3. Let H4,6 be a graph defined in Table 1 and X = S(I(X)∪K(X), E(X))
be the complete split graph with I(X) = {ux,1} and K(X) = {vx,1, vx,2}. Then
the graph

T = S(I(T ) ∪K(T ), E(T )) = H4,6[X, v∗1 ] + ux,1v
∗
2

(see Fig. 2) is a maximal nonhamiltonian Burkard–Hammer graph with B4(T ) =
∅ but B3(T ) �= ∅, B2(T ) �= ∅ and B1(T ) �= ∅.
Proof. The following assertions (a) and (b) are true for T .
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Table 3. The Hamilton cycle for L + u∗
i v

∗
j

Graph L + u∗
i v

∗
j Hamilton cycle Cu∗

i
v∗

j
for L + u∗

i v
∗
j

L + u∗
1v

∗
4 Cu∗

1v∗
4

= u∗
1v

∗
1u∗

4v
∗
7u

∗
6v

∗
3u∗

3v
∗
6v∗5u

∗
5v

∗
2u∗

2v
∗
4u

∗
1

L + u∗
1v

∗
5 Cu∗

1v∗
5

= u∗
1v

∗
1u∗

4v
∗
4u

∗
2v

∗
2u∗

5v
∗
7u∗

6v
∗
3u∗

3v
∗
6v∗5u∗

1

L + u∗
1v

∗
6 Cu∗

1v∗
6

= u∗
1v

∗
1u∗

4v
∗
4u

∗
2v

∗
2u∗

5v
∗
5v∗7u

∗
6v

∗
3u∗

3v
∗
6u

∗
1

L + u∗
1v

∗
7 Cu∗

1v∗
7

= u∗
1v

∗
1u∗

4v
∗
4u

∗
2v

∗
2u∗

5v
∗
5v∗6u∗

3v
∗
3u∗

6v
∗
7u

∗
1

L + u∗
2v

∗
1 Cu∗

2v∗
1

= u∗
1v

∗
1u∗

2v
∗
4u

∗
4v

∗
7u∗

6v
∗
3u∗

3v
∗
6v∗5u∗

5v
∗
2u

∗
1

L + u∗
2v

∗
3 Cu∗

2v∗
3

= u∗
1v

∗
1u∗

4v
∗
4u

∗
3v

∗
6v∗5u∗

5v
∗
7u

∗
6v

∗
3u∗

2v
∗
2u

∗
1

L + u∗
2v

∗
5 Cu∗

2v∗
5

= u∗
1v

∗
1u∗

4v
∗
4u

∗
2v

∗
5v∗6u∗

3v
∗
3u

∗
6v

∗
7u∗

5v
∗
2u

∗
1

L + u∗
2v

∗
6 Cu∗

2v∗
6

= u∗
1v

∗
1u∗

4v
∗
4u

∗
3v

∗
3u∗

6v
∗
7u∗

5v
∗
5v∗6u∗

2v
∗
2u

∗
1

L + u∗
2v

∗
7 Cu∗

2v∗
7

= u∗
1v

∗
1u∗

4v
∗
4u

∗
2v

∗
7u∗

6v
∗
3u∗

3v
∗
6v∗5u∗

5v
∗
2u

∗
1

L + u∗
3v

∗
1 Cu∗

3v∗
1

= u∗
1v

∗
2u∗

2v
∗
4u

∗
4v

∗
1u∗

3v
∗
6v∗5u

∗
5v

∗
7u∗

6v
∗
3u

∗
1

L + u∗
3v

∗
2 Cu∗

3v∗
2

= u∗
1v

∗
1u∗

4v
∗
4u

∗
2v

∗
2u∗

3v
∗
6v∗5u∗

5v
∗
7u∗

6v
∗
3u

∗
1

L + u∗
3v

∗
5 Cu∗

3v∗
5

= u∗
1v

∗
1u∗

4v
∗
4u

∗
2v

∗
2v∗6u∗

3v
∗
5u

∗
5v

∗
7u∗

6v
∗
3u

∗
1

L + u∗
3v

∗
7 Cu∗

3v∗
7

= u∗
1v

∗
1u∗

4v
∗
4u

∗
2v

∗
2u∗

5v
∗
5v∗6u∗

3v
∗
7u∗

6v
∗
3u

∗
1

L + u∗
4v

∗
2 Cu∗

4v∗
2

= u∗
1v

∗
1u∗

4v
∗
2u

∗
2v

∗
4u∗

3v
∗
6v∗5u

∗
5v

∗
7u∗

6v
∗
3u

∗
1

L + u∗
4v

∗
3 Cu∗

4v∗
3

= u∗
1v

∗
1u∗

4v
∗
3u

∗
6v

∗
7u∗

5v
∗
5v∗6u∗

3v
∗
4u∗

2v
∗
2u

∗
1

L + u∗
4v

∗
5 Cu∗

4v∗
5

= u∗
1v

∗
1u∗

4v
∗
5u

∗
5v

∗
2u∗

2v
∗
4u∗

3v
∗
6v∗7u∗

6v
∗
3u

∗
1

L + u∗
4v

∗
6 Cu∗

4v∗
6

= u∗
1v

∗
1u∗

4v
∗
6v

∗
5u∗

5v
∗
7u∗

6v
∗
3u

∗
3v

∗
4u∗

2v
∗
2u

∗
1

L + u∗
5v

∗
1 Cu∗

5v∗
1

= u∗
1v

∗
1u∗

5v
∗
5v

∗
6u∗

3v
∗
3u∗

6v
∗
7u

∗
4v

∗
4u∗

2v
∗
2u

∗
1

L + u∗
5v

∗
3 Cu∗

5v∗
3

= u∗
1v

∗
1u∗

4v
∗
7u

∗
6v

∗
3u∗

5v
∗
5v∗6u∗

3v
∗
4u∗

2v
∗
2u

∗
1

L + u∗
5v

∗
4 Cu∗

5v∗
4

= u∗
1v

∗
1u∗

4v
∗
7u

∗
6v

∗
3u∗

3v
∗
6v∗5u∗

5v
∗
4u∗

2v
∗
2u

∗
1

L + u∗
5v

∗
6 Cu∗

5v∗
6

= u∗
1v

∗
1u∗

4v
∗
7u

∗
6v

∗
3v∗5u∗

5v
∗
6u

∗
3v

∗
4u∗

2v
∗
2u

∗
1

L + u∗
6v

∗
1 Cu∗

6v∗
1

= u∗
1v

∗
1u∗

6v
∗
3u

∗
3v

∗
6v∗5u∗

5v
∗
7u

∗
4v

∗
4u∗

2v
∗
2u

∗
1

L + u∗
6v

∗
2 Cu∗

6v∗
2

= u∗
1v

∗
1u∗

4v
∗
7u

∗
5v

∗
5v∗6u∗

3v
∗
4u

∗
2v

∗
2u∗

6v
∗
3u

∗
1

L + u∗
6v

∗
4 Cu∗

6v∗
4

= u∗
1v

∗
1u∗

4v
∗
7u

∗
5v

∗
5v∗6u∗

3v
∗
3u

∗
6v

∗
4u∗

2v
∗
2u

∗
1

L + u∗
6v

∗
5 Cu∗

6v∗
5

= u∗
1v

∗
1u∗

4v
∗
4u

∗
2v

∗
2u∗

5v
∗
7u∗

6v
∗
5v∗6u∗

3v
∗
3u

∗
1

L + u∗
6v

∗
6 Cu∗

6v∗
6

= u∗
1v

∗
1u∗

4v
∗
7u

∗
6v

∗
6v∗5u∗

5v
∗
2u

∗
2v

∗
4u∗

3v
∗
3u

∗
1
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Fig. 2. The graph T

(a) T is a Burkard–Hammer graph.
In fact, since H4,6 is a Burkard–Hammer graph, by Theorem 3 the graph

H4,6[X, v∗1 ] is a Burkard–Hammer graph. Therefore, by Lemma 1 the graph T
is a Burkard–Hammer graph.

(b) T is a maximal nonhamiltonian split graph.
Since H4,6 is nonhamiltonian, by Theorem 4 the graph H4,6[X, v∗1 ] is non-

hamiltonian. Therefore, if T has a Hamilton cycle C then C must contain the
edge ux,1v

∗
2 . So C must contain the path ux,1v

∗
2u∗

2v
∗
4 because NT (u∗

2) = {v∗2 , v∗4}.
It follows that the edges u∗

1v
∗
2 , u∗

3v
∗
2 , u∗

5v
∗
2 are not in C. Hence, C must contain

the paths vx,1u
∗
1vx,2 and v∗3u∗

3v
∗
6u∗

5v
∗
5 because u∗

1, u
∗
3 and u∗

5 have degree 3 in
T . From these facts we see that both u∗

4v
∗
2 and u∗

4v
∗
6 cannot be in C. Now if

ux,1vx,1 is in C then u∗
4vx,1 also cannot be in C because the edges ux,1vx,1 and

u∗
1vx,1 are already in C. Therefore C1 = ux,1v

∗
2u

∗
2v

∗
4u∗

4vx,2u
∗
1vx,1ux,1 is a proper

subcycle of C, a contradiction. Similarly, if ux,1vx,2 is in C then u∗
4vx,2 cannot

be in C and therefore C2 = ux,1v
∗
2u

∗
2v

∗
4u∗

4vx,1u
∗
1vx,2ux,1 is a proper subcycle of

C, a contradiction again. Thus, T must be nonhamiltonian.
To prove Assertion (b) it remains to prove that T + uv is hamiltonian for

every uv �∈ E(T ) where u ∈ I(T ) and v ∈ K(T ).
First suppose that u ∈ I∗ and v ∈ K∗ \ {v∗1}. Then uv also is not an edge

of H4,6. Since H4,6 is a maximal nonhamiltonian split graph by Theorem 2, the
graph H4,6 +uv is hamiltonian. Therefore, (H4,6 +uv)[X, v∗1 ] is hamiltonian by
Theorem 4 because the graph X trivially has a Hamilton cycle. It is clear that
in this case T + uv = (H4,6 + uv)[X, v∗1 ] + ux,1v

∗
2 . Hence, T + uv is hamiltonian

if u ∈ I∗ and v ∈ K∗ \ {v∗1}.
Next suppose that u ∈ I∗ and v ∈ {vx,1, vx,2}. Then u is not adjacent to v∗1

in H4,6. Since H4,6 is a maximal nonhamiltonian split graph, H4,6 + uv∗1 has
a Hamilton cycle C containing the edge uv∗1 . Now it is not difficult to see that
if v = vx,1 (resp., v = vx,2) then we can get a Hamilton cycle for T + uv by
replacing the vertex v∗1 in C with the path vx,1ux,1vx,2 (resp., vx,2ux,1vx,1).

Finally suppose that u = ux,1 and v is one of the vertices v∗3 , v
∗
4 , v∗5 or v∗6 .

Then

C3 = ux,1v
∗
3u∗

3v
∗
6u∗

5v
∗
5v∗2u∗

2v
∗
4u

∗
4vx,2u

∗
1vx,1ux,1,

C4 = ux,1v
∗
4u∗

2v
∗
2u∗

3v
∗
3v∗5u∗

5v
∗
6u

∗
4vx,2u

∗
1vx,1ux,1,
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C5 = ux,1v
∗
5u∗

5v
∗
6u

∗
3v

∗
3v∗2u∗

2v
∗
4u∗

4vx,2u
∗
1vx,1ux,1

and
C6 = ux,1v

∗
6u∗

5v
∗
5v

∗
3u∗

3v
∗
2u∗

2v
∗
4u∗

4vx,2u
∗
1vx,1ux,1

are Hamilton cycles of T +ux,1v
∗
3 , T +ux,1v

∗
4 , T +ux,1v

∗
5 and T +ux,1v

∗
6 , respec-

tively.
Thus, T is a maximal nonhamiltonian split graph.
By Assertions (a) and (b) the graph T = S(I(T )∪K(T ), E(T )) = H4,6[X, v∗1 ]

+ux,1v
∗
2 is a maximal nonhamiltonian Burkard–Hammer graph. Furthermore, it

is clear that B4(T ) = ∅ but B3(T ) �= ∅, B2(T ) �= ∅ and B1(T ) �= ∅.
The proof of Lemma 12 is complete. �

Lemma 4. Let T = S(I(T ) ∪ K(T ), E(T )) be the maximal nonhamiltonian
Burkard–Hammer graph constructed in Lemma 3 and Yt = S(I(Yt)∪K(Yt), E(Yt))
be a complete split graph with I(Yt)= {uy,1, uy,2, ..., uy,t} and K(Yt) = {vy,1,
vy,2, ..., vy,t, vy,t+1} where t ≥ 1 is an integer. Then the graph Ht = S(I(Ht) ∪
K(Ht), E(Ht)) = T [Yt, v

∗
2 ] is a maximal nonhamiltonian Burkard–Hammer graph

with |I(Ht)| = 6 + t, δ(Ht) = t + 1 = |I(Ht)| − 5. Moreover, B4(Ht) = ∅ but
B3(Ht) �= ∅, B2(Ht) �= ∅ and B1(Ht) �= ∅.
Proof. By Lemma 3, graph T is a nonhamiltonian Burkard–Hammer graph.
Therefore, by Theorems 3 and 4, the graph Ht is a nonhamiltonian Burkard–
Hammer graph. We prove now that Ht +uv is hamiltonian for every uv �∈ E(Ht)
where u ∈ I(Ht) and v ∈ K(Ht). There are two separate cases to consider.
Case 1: u ∈ I(T ), v ∈ K(T ) \ {v∗2}.

In this case, uv �∈ E(T ) and Ht + uv = (T + uv)[Yt, v
∗
2 ]. Since T is a

maximal nonhamiltonian Burkard–Hammer graph by Lemma 3, the graph T+uv
is hamiltonian. The graph Yt = S(I(Yt) ∪ K(Yt), E(Yt)) is also hamiltonian
because it is a complete split graph with |K(Yt)| = |I(Yt)|+ 1. By Theorem 4,
the graph (T + uv)[Yt, v

∗
2 ] has a Hamilton cycle. Hence, the graph Ht + uv is

hamiltonian.
Case 2: u ∈ I(Yt), v ∈ K(T ) \ {v∗2}.

Since v ∈ K(T ) \ {v∗2}, we have |NI(T )(v)| ≤ 3. Therefore, there exists a
vertex w ∈ I(T ) such that wv �∈ E(T ). By Case 1, the graph Ht + wv has a
Hamilton cycle C which must contain the edge wv because Ht is nonhamiltonian.
Let
−→
C be the cycle C with an orientation. By

←−
C we denote the cycle C with the

reverse orientation. If x, y ∈ V (C), then x
−→
C y denotes the consecutive vertices of

C from x to y in the direction specified by
−→
C . The same vertices in the reverse

order are given by y
←−
C x. If x ∈ V (C) then x+ denotes the successor of x on−→

C , and x− denotes its predecessor. Without loss of generality, we may assume
that w+ = v in

−→
C . By the definitions of T and T [Yt, v

∗
2 ], vertex w is adjacent to

both u+ and u−. Therefore, C ′ = v
−→
C u−w

−→
C uv is a Hamilton cycle in Ht + uv.

Thus, Ht + uv is hamiltonian for every uv �∈ E(Ht) where u ∈ I(Ht) and
v ∈ K(Ht). Therefore, Ht is a maximal nonhamiltonian split graph. Further,
we have

|I(Ht)| = |I(T )|+ |I(Yt)| = 6 + t,
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δ(Ht) = |K(Yt)| = t + 1 = |I(Ht)| − 5.

It is also clear that B4(Ht) = ∅ but B3(Ht) �= ∅, B2(Ht) �= ∅ and B1(Ht) �= ∅.
The proof of Lemma 4 is complete. �

Proof of Theorem 9.
(a) Let k = 4. Then the graph L = S(I(L) ∪ K(L), E(L)) of Lemma 2 is a
maximal nonhamiltonian Burkard–Hammer graph with δ(L) = 2 = |I(L)| − 4
and B|I(L)| = ∅. Thus, Assertion (a) is true for k = 4.

Now suppose that k > 4. Let G1 = S(I1 ∪K1, E1) be a complete split graph
with |K1| > |I1| = k−4 and v be a vertex of K1. Since the graph L of Lemma 2 is
a maximal nonhamiltonian Burkard–Hammer graph which has NL(u) �= K(L)
for every u ∈ I(L), by Theorem 6 the graph G = S(I ∪ K, E) = G1[L, v]
is a maximal nonhamiltonian Burkard–Hammer graph with δ(G) = δ(L) =
|I|−(4+ |I1 |) = |I|−k. Moreover, by Theorem 5 and Lemma 2, B|I| = ∅. Thus,
Assertion (a) is also true for k > 4.
(b) Let k = 5 and m be an integer with m > 7. Further, let Ht = T [Yt, v

∗
2 ] be a

graph constructed from T and Yt with |I(Yt)| = t = m−6 as in Lemma 4. Then
by this lemma, the graph Ht is a maximal nonhamiltonian Burkard–Hammer
graph with |I(Ht)| = |I(T )|+ |I(Yt)| = 6+(m−6) = m and δ(Ht) = |I(Ht)|−5.
Also by Lemma 4, B4(Ht) = ∅ but B3(Ht) �= ∅, B2(Ht) �= ∅ and B1(Ht) �= ∅.
Thus, Assertion (b) is true for k = 5 and any integer m > 7.

Now suppose that k and m are integers with k ≥ 6 and m > k + 2. Let
G1 = S(I1 ∪K1, E1) be a complete split graph with |K1| > |I1| = k − 5 and v
be a vertex of K1. Further, let G2 = S(I2 ∪K2, E2) be the graph Hl = T [Yl, v

∗
2 ]

defined in Lemma 4 where l = m − k − 1. Then by Lemma 4, the graph
G2 is a maximal nonhamiltonian Burkard–Hammer graph with |I2| = |I(Hl)| =
m−k+5, δ(G2) = δ(Hl) = |I(G2)|−5 and B4(G2) = ∅ but B3(G2) �= ∅, B2(G2) �=
∅, B1(G2) �= ∅. Moreover, it is clear that for every vertex u ∈ I2, NG2(u) �= K2.
Therefore, by Theorem 6 the graph G = S(I ∪K, E) = G1[G2, v] is a maximal
nonhamiltonian Burkard–Hammer graph. Further, we have |I| = |I1| + |I2| =
(k − 5) + (m− k + 5) = m and by Theorem 5 and Lemma 4

δ(G) = δ(G2) = |I| − (5 + |I1|) = |I| − k,

Bk−1(G) = B4+|I1|(G) = ∅,
Bk−2(G) = B3+|I1|(G) �= ∅,
Bk−2(G) = B2+|I1|(G) �= ∅ and
Bk−4(G) = B1+|I1|(G) �= ∅.

Thus, Assertion (b) is also true for any k ≥ 6 and m > k + 2.
The proof of Theorem 10 is complete. �
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5. S. Földes and P. L. Hammer, On a class of matroid-producing graphs, In: Combi-

natorics (Proc. Fifth Hungarian Colloq., Keszthely (1976), Vol. 1, 331–352, Col-

loq. Math. Soc. Janós Bolyai 18, North-Holland, Amsterdam-NewYork, 1978.

6. P.B. Henderson and Y. Zalcstein, A graph-theoretic characterization of the

PVchunk class of synchronizing primitive, SIAM J. Computing 6 (1977) 88–108.

7. A.H. Hesham and El.R. Hesham, Task allocation in distributed systems: a split

graph model, J. Combin. Math. Combin. Comput. 14 (1993) 15–32.

8. D. Kratsch, J. Lehel, and H. Müller, Toughness, hamiltonicity and split graphs,

Discrete Math. 150 (1996) 231–245.
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