
Vietnam Journal of Mathematics 34:2 (2006) 209–239
������� 	
����



�

�����������

� ���� ���	

Hopf-Lax-Oleinik-Type Estimates
for Viscosity Solutions to Hamilton-Jacobi

Equations with Concave-Convex Data

Tran Duc Van and Nguyen Duy Thai Son

Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam

Received August 11, 2005

Abstract. We consider the Cauchy problem to Hamilton-Jacobi equations with ei-

ther concave-convex Hamiltonian or concave-convex initial data and investigate their

explicit viscosity solutions in connection with Hopf-Lax-Oleinik-type estimates.

2000 Mathematics Subject Classification: 35A05, 35F20, 35F25.

Keywords: Hopf-Lax-Oleinik-type estimates, Viscosity solutions, Concave-convex func-

tion, Hamilton-Jacobi equations.

1. Introduction

Since the early 1980s, the concept of viscosity solutions introduced by Crandall
and Lions [16] has been used in a large portion of research in a nonclassical
theory of first-order nonlinear PDEs as well as in other types of PDEs. For con-
vex Hamilton-Jacobi equations, the viscosity solution-characterized by a semi-
concave stability condition, was first introduced by Kruzkov [35]. There is an
enormous activity which is based on these studies. The primary virtues of this
theory are that it allows merely nonsmooth functions to be solutions of nonlin-
ear PDEs, it provides very general existence and uniqueness theorems, and it
yields precise formulations of general boundary conditions. Let us mention here
the names: Crandall, Lions, Evans, Ishii, Jensen, Barbu, Bardi, Barles, Barron,
Cappuzzo-Dolcetta, Dupuis, Lenhart, Osher, Perthame, Soravia, Souganidis,
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Tataru, Tomita, Yamada, and many others, whose contributions make great
progress in nonlinear PDEs. The concept of viscosity solutions is motivated by
the classical maximum principle which distinguishes it from other definitions of
generalized solutions.

In this paper we consider the Cauchy problem for Hamilton-Jacobi equation,
namely,

ut +H(u,Du) = 0 in {t > 0, x ∈ R
n}, (1)

u(0, x) = φ(x) on {t = 0, x ∈ R
n}. (2)

Bardi and Evans [7], [21] and Lions [39] showed that the formulas

u(t, x) = min
y∈Rn

{
φ(y) + t ·H∗((x− y)/t

)}
. (1*)

and
u(t, x) = max

p∈Rn
{〈p, x〉 − φ∗(p) − tH(p)} (2*)

give the unique Lipschitz viscosity solution of (1)-(2) under the assumptions
that H depends only on p := Du and is convex and φ is uniformly Lipschitz
continuous for (1*) andH is continuous and φ is convex and Lipschitz continuous
for (2*). Furthemore, Bardi and Faggian [8] proved that the formula (1*) is still
valid for unique viscosity solution whenever H is convex and φ is uniformly
continuous.

Lions and Rochet [41] studied the multi-time Hamilton-Jacobi equations and
obtained a Hopf-Lax-Oleinik type formula for these equations.

The Hopf-Lax-Oleinik type formulas for the Hamilton-Jacobi equations (1)
were found in the papers by Barron, Jensen, and Liu [13 - 15], where the first
and second conjugates for quasiconvex funcions - functions whose level set are
convex - were successfully used.

The paper by Alvarez, Barron, and Ishii [4] is concerned with finding Hopf-
Lax-Oleinik type formulas of the problem (1)-(2)with (t, x) ∈ (0,∞)×R

n , when
the initial function φ is only lower semicontinuous (l.s.c.), and possibly infinite.
If H(γ, p) is convex in p and the initial data φ is quasiconvex and l.s.c., the
Hopf-Lax-Oleinik type formula gives the l.s.c. solution of the problem (1)-(2).
If the assumption of convexity of p → H(γ, p) is dropped, it is proved that
u = (φ# + tH)# still is characterized as the minimal l.s.c. supersolution (here,
# means the second quasiconvex conjugate, see [12 - 13]).

The paper [77] is a survey of recent results on Hopf-Lax-Oleinik type formu-
las for viscosity solutions to Hamilton-Jacobi equations obtained mainly by the
author and Thanh in cooperation with Gorenflo and published in Van-Thanh-
Gorenflo [69], Van-Thanh [70], Van-Thanh [72]...

Let us mention that if H is a concave-convex function given by a D.C repre-
sentation

H(p′, p′′) := H1(p′) −H2(p′′)

and φ is uniformly continuous, Bardi and Faggian [8] have found explicit point-
wise upper and lower bounds of Hopf-Lax-Oleinik type for the viscosity solutions.
If the Hamiltonian H(γ, p), (γ, p) ∈ R × R

n, is a D.C. function in p, i.e.,
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H(γ, p) = H1(γ, p) −H2(γ, p), (γ, p) ∈ R × R
n,

Barron, Jensen and Liu [15] have given their Hopf-Lax-Oleinik type estimates
for viscosity solutions to the corresponding Cauchy problem.

We also want to mention that the Hopf-Lax-Oleinik type and explicit formu-
las have obtained in the recent papers by Adimurthi and Gowda [1 - 3], Barles
and Tourin [10], Barles [Bar1], Rockafellar and Wolenski [53], Joseph and Gowda
[24 - 25], LeFloch [38], Manfredi and Stroffolini [43], Maslov and Kolokoltsov
[44], Ngoan [47], Sachdev [58], Plaskacz and Quincampoix [51], Thai Son [55],
Subbotin [61], Melikyan A. [46], Rublev [54], Silin [59], Stromberg [60],...

This paper is a servey of results on Hopf-Lax-Oleinik type and explicit for-
mulas for the viscosity solutions of (1)-(2) with concave-convex data obtained
by the authors, Thanh and Tho in [74, 55, 71, 75]. Namely, we propose to ex-
amine a class of concave-convex functions as a more general framework where
the discussion of the global Legendre transformation still makes sense. Hopf-
Lax-Oleinik-type formulas for Hamilton-Jacobi equations with concave-convex
Hamiltonians (or with concave-convex initial data) can thereby be considered.
The method here is a development of that in Chapter 4 [76], which involves
the use of Lemmas 4.1-4.2 (and their generalizations). It is essentially different
from the methods in [27, 47]. Also, the class of concave-convex functions under
our consideration is larger than that in [47] since we do not assume the twice
continuous differentiability condition on its functions.

We shall often suppose that n := n1+n2 and that the variables x, p ∈ R
n are

separated into two as x := (x′, x′′), p := (p′, p′′) with x′, p′ ∈ R
n1 , x′′, p′′ ∈ R

n2 .
Accordingly, the zero-vector in R

n will be 0 = (0′, 0′′), where 0′ and 0′′ stand
for the zero-vectors in R

n1 and R
n2 , respectively.

Definition 1.1 [Rock, p. 349] A function H = H(p′, p′′) is called Concave-
convex function if it is a concave function of p′ ∈ R

n1 for each p′′ ∈ R
n2 and a

convex function of p′′ ∈ R
n2 for each p′ ∈ R

n1 .

In the next section, conjugate concave-convex functions and their smoothness
properties are investigated. Sec. 3 is devoted to the study of Hopf-Lax-Oleinik-
type estimates for viscosity solutions in the case either of concave-convex Hamil-
tonians H = H(p′, p”) or concave-convex initial data g = g(x′, x”). In Sec. 4 we
obtain Hopf-Lax-Oleinik-type estimates for viscosity solutions to the equations
with D.C. Hamiltonians containing u,Du.

2. Conjugate Concave-Convex Functions

Let H = H(p) be a differentiable real-valued function on an open nonempty
subset A of R

n. The Legendre conjugate of the pair (A,H) is defined to be
the pair (B,G), where B is the image of A under the gradient mapping z =
∂H(p)/∂p, and G = G(z) is the function on B given by the formula

G(z) :=
〈
z, (∂H/∂p)−1(z)

〉 −H
(
(∂H/∂p)−1(z)).
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It is not actually necessary to have z = ∂H(p)/∂p one-to-one on A in order that
G = G(z) be well-defined (i.e., single-valued). It suffices if

〈z, p1〉 −H(p1) = 〈z, p2〉 −H(p2)

whenever ∂H(p1)/∂p = ∂H(p2)/∂p = z. Then the value G(z) can be obtained
unambiguously from the formula by replacing the set (∂H/∂p)−1(z) by any of
the vectors it contains.

Passing from (A,H) to the Legendre conjugate (B,G), if the latter is well-
defined, is called the Legendre transformation. The important role played by the
Legendre transformation in the classical local theory of nonlinear equations of
first-order is well-known. The global Legendre transformation has been studied
extensively for convex functions. In the case where H = H(p) and A are convex,
we can extend H = H(p) to be a lower semicontinuous convex function on all of
R

n with A as the interior of its effective domain. If this extended H = H(p) is
proper, then the Legendre conjugate (B,G) of (A,H) is well-defined. Moreover,
B is a subset of domH∗ (namely the range of ∂H/∂p), and G = G(z) is the
restriction of the Fenchel conjugate H∗ = H∗(z) to B. (See Theorem A.9; cf.
also Lemma 4.3 in [76]).

For a class of C2-concave-convex functions, Ngoan [47] has studied the global
Legendre transformation and used it to give an explicit global Lipschitz solution
to the Cauchy problem (1)-(2) with H = H(p) = H(p′, p′′) in this class. He
shows that in his class the (Fenchel-type) upper and lower conjugates [Rock, p.
389], in symbols H̄∗ = H̄∗(z′, z′′) and H∗ = H∗(z′, z′′), are the same as the
Legendre conjugate G = G(z′, z′′) of H = H(p′, p′′).

Motivated by the above facts, we introduce in this section a wider class of
concave-convex functions and investigate regularity properties of their conju-
gates. (Applications will be taken up in Secs. 3 and 4.).

All concave-convex functions H = H(p′, p′′) under our consideration are
assumed to be finite and to satisfy the following two “growth conditions.”

lim
|p′′|→+∞

H(p′, p′′)
|p′′| = + ∞ for each p′ ∈ R

n1 . (3)

lim
|p′|→+∞

H(p′, p′′)
|p′| = −∞ for each ; p′′ ∈ R

n2 . (4)

Let H∗2 = H∗2(p′, z′′) (resp. H∗1 = H∗1(z′, p′′)) be, for each fixed p′ ∈ R
n1

(resp. p′′ ∈ R
n2), the Fenchel conjugate of a given p′′-convex (resp. p′-concave)

function H = H(p′, p′′). In other words,

H∗2(p′, z′′) := sup
p′′∈Rn2

{〈z′′, p′′〉 −H(p′, p′′)} (5)

(resp. H∗1(z′, p′′) := inf
p′∈Rn1

{〈z′, p′〉 −H(p′, p′′)}) (6)

for (p′, z′′) ∈ R
n1 ×R

n2 (resp. (z′, p′′) ∈ R
n1 ×R

n2). If H = H(p′, p′′) is concave-
convex, then the definition (5) (resp. (6)) actually implies the convexity (resp.
concavity) of H∗2 = H∗2(p′, z′′) (resp. H∗1 = H∗1(z′, p′′)) not only in the
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variable z′′ ∈ R
n2 (resp. z′ ∈ R

n1) but also in the whole variable (p′, z′′) ∈
R

n1 ×R
n2 (resp. (z′, p′′) ∈ R

n1 ×R
n2 . Moreover, under the condition (3) (resp.

(4)), the finiteness of H = H(p′, p′′) clearly yields that of H∗2 = H∗2(p′, z′′)
(resp. H∗1 = H∗1(z′, p′′)) (cf. Remark 4, Chapter 4 in [76]) with

lim
|z′′|→+∞

H∗2(p′, z′′)
|z′′| = +∞ (resp. lim

|z′|→+∞
H∗1(z′, p′′)

|z′| = −∞)

locally uniformly in p′ ∈ R
n1 (resp. p′′ ∈ R

n2). To see this, fix any 0 <
r1, r2 < +∞. As a finite concave-convex function, H = H(p′, p′′) is continuous
on R

n1 × R
n2 [52, Th. 35.1]; hence,

Cr1,r2 := sup
|p′′|≤r2
|p′|≤r1

|H(p′, p′′)| < +∞. (8)

So, with p′′ := r2z
′′/|z′′| (resp. p′ := −r1z′/|z′|), (5) (resp. (6)) together with

(8) implies

inf
|p′|≤r1

H∗2(p′, z′′)
|z′′| ≥ r2 − Cr1,r2

|z′′| → r2 as |z′′| → +∞

(resp. sup
|p′′|≤r2

H∗1(z′, p′′)
|z′| ≤ −r1 +

Cr1,r2

|z′| → −r1 as |z′| → +∞).

Since r1, r2 are arbitrary, (7) must hold locally uniformly in p′ ∈ R
n1 (resp.

p′′ ∈ R
n2) as required.

Remark 1. If (4) (resp. (3)) is satisfied, then (5) (resp. (6)) gives

H∗2(p′, z′′)
|p′| ≥ −H(p′, 0′′)

|p′| → +∞ as |p′| → +∞ (9)

(resp.
H∗1(z′, p′′)

|p′′| ≤ −H(0′, p′′)
|p′′| → −∞ as |p′′| → +∞) (10)

uniformly in z′′ ∈ R
n2 (resp. z′ ∈ R

n1).

Now let H = H(p′, p′′) be a concave-convex function on R
n1 × R

n2 . Beside
“partial conjugates”H∗2 = H∗2(p′, z′′) and H∗1 = H∗1(z′, p′′), we shall consider
the following two “total conjugates” of H = H(p′, p′′). The first one, which we
denote by H̄∗ = H̄∗(z′, z′′), is defined as the Fenchel conjugate of the concave
function R

n1 	 p′ 
→ −H∗2(p′, z′′); more precisely,

H̄∗(z′, z′′) := inf
p′∈Rn1

{〈z′, p′〉 +H∗2(p′, z′′)} (11)

for each (z′, z′′) ∈ R
n1 × R

n2 . The second, H∗ = H∗(z′, z′′), is defined as the
Fenchel conjugate of the convex function R

n2 	 p′′ 
→ −H∗1(z′, p′′); i.e.,

H∗(z′, z′′) := sup
p′′∈Rn2

{〈z′′, p′′〉 +H∗1(z′, p′′)} (12)
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for (z′, z′′) ∈ R
n1 × R

n2 . By (5)-(6) and (11)-(12), we have

H̄∗(z′, z′′) = inf
p′∈Rn1

sup
p′′∈Rn2

{〈z′, p′〉 + 〈z′′, p′′〉 −H(p′, p′′)}, (13)

H∗(z′, z′′) = sup
p′′∈Rn2

inf
p′∈Rn1

{〈z′, p′〉 + 〈z′′, p′′〉 −H(p′, p′′)}. (14)

Therefore, in accordance with [55, p. 389], H̄∗ = H̄∗(z′, z′′) andH∗ = H∗(z′, z′′)
will be called the upper and lower conjugates, respectively, of H = H(p′, p′′). (Of
course, (13)-(14) imply H̄∗(z′, z′′) ≥ H∗(z′, z′′).) For any z′ ∈ R

n1 , the function

R
n1 × R

n2 	 (p′, z′′) 
→ h(p′, z′′) := 〈z′, p′〉 +H∗2(p′, z′′)

is convex. Thus (11) shows that H̄∗ = H̄∗(z′, z′′) as a function of z′′ is the image

R
n2 	 z′′ 
→ (Ah)(z′′) := inf{h(p′, z′′) : A(p′, z′′) = z′′}

of h = h(p′, z′′) under the (linear) projection R
n1 ×R

n2 	 (p′, z′′) 
→ A(p′, z′′) :=
z′′. It follows that H̄∗ = H̄∗(z′, z′′) is convex in z′′ ∈ R

n2 [Theorem A.4] in [76].
On the other hand, by definition, H̄∗ = H̄∗(z′, z′′) is necessarily concave in z′ ∈
R

n1 . This upper conjugate is hence a concave-convex function on R
n1×R

n2 . The
same conclusion may dually be drawn for the lower conjugate H∗ = H∗(z′, z′′).

We have previously seen that if the concave-convex function H = H(p′, p′′)
is finite on the whole R

n1 × R
n2 and satisfies (3)-(4), its partial conjugates

H∗2 = H∗2(p′, z′′) and H∗1 = H∗1(z′, p′′) must both be finite with (9)-(10)
holding. Therefore, Remarks 8-9 in Chapter 4 [76] show that H̄∗ = H̄∗(z′, z′′)
and H∗ = H∗(z′, z′′) are then also finite, and hence coincide by [53, Corollary
37.1.2]. In this situation, the conjugate

H∗ = H∗(z′, z′′) := H̄∗(z′, z′′) = H∗(z′, z′′) (15)

of H = H(p′, p′′) will simultaneously have the properties:

lim
|z′′|→+∞

H∗(z′, z′′)
|z′′| = +∞ for each z′ ∈ R

n1 , (16)

lim
|z′|→+∞

H∗(z′, z′′)
|z′| = −∞ for each z′′ ∈ R

n2 . (17)

For the next discussions, the following technical preparations will be needed.

Lemma 2.1. Let H = H(p′, p′′) be a finite concave-convex function on R
n1×R

n2

with the property (3) (resp. (4)) holding. Then

lim
|p′′|→+∞

H(p′, p′′)
|p′′| = +∞ locally uniformly in p′ ∈ R

n1 (18)

(resp. lim
|p′|→+∞

H(p′, p′′)
|p′| = −∞ locally uniformly in p′′ ∈ R

n2).
(19)
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Proof. First, assume (3). According to the above discussions, (5) determines
a finite convex function H∗2 = H∗2(p′, z′′). Further, Theorems A.6-A.7 in [76]
shows that

H(p′, p′′) = sup
z′′∈Rn2

{〈z′′, p′′〉 −H∗2(p′, z′′)} (20)

for any (p′, p′′) ∈ R
n1 × R

n2 . Let 0 < r,M < +∞ be arbitrarily fixed. As a
finite convex function, H∗2 = H∗2(p′, z′′) is continuous (Theorem A.6 in [76]),
and hence locally bounded. It follows that

C∗2
r,M := sup

|z′′|≤M

|p′|≤r

|H∗2(p′, z′′)| < +∞. (21)

So, with z′′ := Mp′′/|p′′|, (20)-(21) imply that

inf
|p′|≤r

H(p′, p′′)
|p′′| ≥M − C∗2

r,M

|p′′| →M

as |p′′| → +∞. Since M > 0 is arbitrary, we have

lim
|p′′|→+∞

inf
|p′|≤r

H(p′, p′′)
|p′′| = +∞

for any r ∈ (0,+∞). Thus (18) holds. Analogously, (19) can be deduced from
(4). �

Definition 2.2. A finite concave-convex function H = H(p′, p′′) on R
n1 × R

n2

is said to be strict if its concavity in p′ ∈ R
n1 and convexity in p′′ ∈ R

n2 are both
strict. It will then also be called a strictly concave-convex function on R

n1 ×R
n2 .

Lemma 2.3. Let H = H(p′, p′′) be a strictly concave-convex function on R
n1 ×

R
n2 with (3) (resp. (4)) holding. Then its partial conjugate H∗2 = H∗2(p′, z′′)

(resp. H∗1 = H∗1(z′, p′′)) defined by (5)(resp. (6)) is strictly convex (resp.
concave) in p′ ∈ R

n1 (resp. p′′ ∈ R
n2) and everywhere differentiable in z′′ ∈ R

n2

(resp. z′ ∈ R
n1). Beside that, the gradient mapping R

n1 × R
n2 	 (p′, z′′) 
→

∂H∗2(p′, z′′)/∂z′′ (resp. R
n1 ×R

n2 	 (z′, p′′) 
→ ∂H∗1(z′, p′′)/∂z′) is continuous
and satisfies the identity

H∗2(p′, z′′) ≡ 〈
z′′, ∂H∗2(p′, z′′)/∂z′′

〉 −H
(
p′, ∂H∗2(p′, z′′)/∂z′′

)
(resp. H∗1(z′, p′′) ≡ 〈

z′, ∂H∗1(z′, p′′)/∂z′
〉 −H

(
∂H∗1(z′, p′′)/∂z′, p′′

)
).

(22)

Proof. For any finite concave-convex function H = H(p′, p′′) satisfying the
property (3) (resp. (4)), the partial conjugate H∗2 = H∗2(p′, z′′) (resp. H∗1 =
H∗1(z′, p′′)) is finite and convex (resp. concave) as has previously been proved.

Now, assume that H = H(p′, p′′) is a strictly concave-convex function on
R

n1 × R
n2 with (3) holding. Then Lemma 4.3 in [76] shows that H∗2 =

H∗2(p′, z′′) must be differentiable in z′′ ∈ R
n2 and satisfy (22). To obtain the

continuity of the gradient mapping R
n1 × R

n2 	 (p′, z′′) 
→ ∂H∗2(p′, z′′)/∂z′′,
let us go to Lemmas 4.1-4.2 [76] and introduce the temporary notations: n :=
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n2, E := R
n2 , m := n1 +n2, O := R

n1+n2 , ξ := (p′, z′′), and p := p′′. It follows
from (18) that the continuous function

χ = χ(ξ, p) = χ(p′, z′′, p′′) := 〈z′′, p′′〉 −H(p′, p′′) (23)

meets Condition (i) of Lemma 4.1[76]. Therefore, by Lemma 4.2 and Remark 4
in Chapter 4 in [76], the nonempty-valued multifunction

L = L(ξ) = L(p′, z′′) := {p′′ ∈ R
n2 : χ(p′, z′′, p′′) = H∗2(p′, z′′)}

should be upper semicontinuous. However, since H = H(p′, p′′) is strictly convex
in the variable p′′ ∈ R

n2 , (23) implies that L = L(p′, z′′) is single-valued, and
hence continuous in R

n1 × R
n2 . But L(p′, z′′) = {∂H∗2(p′, z′′)/∂z′′}, which

may be handled by the same method as in the proof of Lemma 4.3 in [76] (we
use Lemma 4.1[76], ignoring the variable p′). The continuity of R

n1 × R
n2 	

(p′, z′′) 
→ ∂H∗2(p′, z′′)/∂z′′ has accordingly been established.
Next, let us claim that the convexity in p′ ∈ R

n1 of H∗2 = H∗2(p′, z′′) is
strict. To this end, fix 0 < λ < 1, z′′ ∈ R

n2 and p′, q′ ∈ R
n1 . Of course, (5) and

(23) yield

H∗2(λp′ + (1 − λ)q′, z′′)
= max

p′′∈Rn2
χ(λp′ + (1 − λ)q′, z′′, p′′)

≤ max
p′′∈Rn2

{λχ(p′, z′′, p′′) + (1 − λ)χ(q′, z′′, p′′)}
≤ λ max

p′′∈Rn2
χ(p′, z′′, p′′) + (1 − λ) max

p′′∈Rn2
χ(q′, z′′, p′′)

= λH∗2(p′, z′′) + (1 − λ)H∗2(q′, z′′).

If all the equalities simultaneously occur, then there must exist a point

p′′ ∈ L(λp′ + (1 − λ)q′, z′′) ∩ L(p′, z′′) ∩ L(q′, z′′)

with
χ(λp′ + (1 − λ)q′, z′′, p′′) = λχ(p′, z′′, p′′) + (1 − λ)χ(q′, z′′, p′′);

hence (23) implies

H(λp′ + (1 − λ)q′, p′′) = λH(p′, p′′) + (1 − λ)H(q′, p′′).

This would give p′ = q′, and the convexity in p′ ∈ R
n1 of H∗2 = H∗2(p′, z′′) is

thereby strict.
By duality, one easily proves the remainder of the lemma. �

We are now in a position to extend Lemma 4.3 in [76] to the case of conjugate
concave-convex functions.

Proposition 2.4. Let H = H(p′, p′′) be a strictly concave-convex function on
R

n1 × R
n2 with both (3) and (4) holding. Then its conjugate H∗ = H∗(z′, z′′)

defined by (11)-(15) is also a concave-convex function satisfying (16)-(17). More-
over, H∗ = H∗(z′, z′′) is everywhere continuously differentiable with
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H∗(z′, z′′) ≡
〈
z′,

∂H∗

∂z′
(z′, z′′)

〉
+

〈
z′′,

∂H∗

∂z′′
(z′, z′′)

〉
−H

(∂H∗

∂z′
(z′, z′′),

∂H∗

∂z′′
(z′, z′′)

)
.

(24)

Proof. For reasons explained just prior to Lemma 2.1, we see that H̄∗(z′, z′′) ≡
H∗(z′, z′′), hence that (11)-(15) compatibly determine the conjugate H∗ =
H∗(z′, z′′), which is a (finite) concave-convex function on R

n1 × R
n2 with (16)-

(17) holding.
We now claim that H∗ = H∗(z′, z′′) = H∗(z′, z′′) is continuously differen-

tiable everywhere. For this, let us again go to Lemmas 4.1- 4.2 in [76] and
introduce the temporary notations: n := n2, E := R

n2 , m := n1 + n2, O :=
R

n1+n2 , ξ := (z′, z′′), and p := p′′. Since (10) has previously been deduced from
(3), we can verify that the function

χ = χ(ξ, p) = χ(z′, z′′, p′′) := 〈z′′, p′′〉 +H∗1(z′, p′′) (25)

meets Condition (i) of Lemma 4.1 in [76], while the other conditions are almost
ready. In fact, as a finite concave function, H∗1 = H∗1(z′, p′′) is continuous (cf.
Theorem A.6, in [76]) and so is χ = χ(z′, z′′, p′′) (cf. (25)); moreover, Condition
(ii) follows from (25) and Lemma 2.3. Therefore, by (2) and (15), this Lemma
shows that H∗ = H∗(z′, z′′) = H∗(z′, z′′) should be directionally differentiable
in R

n1 × R
n2 with

∂(e′,e′′)H
∗(z′, z′′) = max

p′′∈L(z′,z′′)

{
〈p′′, e′′〉 +

〈∂H∗1

∂z′
(z′, p′′), e′

〉}
(26)

for (z′, z′′) ∈ R
n1 × R

n2 , (e′, e′′) ∈ R
n1 × R

n2 , where

L = L(ξ) = L(z′, z′′) := {p′′ ∈ R
n2 : χ(z′, z′′, p′′) = H∗(z′, z′′) = H∗(z′, z′′)}

(27)
is an upper semicontinuous multifunction (see Lemma 4.2 and Remark 4 in
Chapter 4 [76]). However, because H∗1 = H∗1(z′, p′′) is strictly concave in
p′′ ∈ R

n2 (Lemma 2.3), it may be concluded from (25) and (27) that L =
L(z′, z′′) is single-valued, and thus continuous in R

n1 × R
n2 . Consequently,

according to (26) and the continuity of the gradient mapping R
n1 × R

n2 	
(z′, p′′) 
→ ∂H∗1(z′, p′′)/∂z′ (Lemma 2.3), the maximum theorem [6, Theorem
1.4.16] implies that all the first-order partial derivatives of H∗ = H∗(z′, z′′) exist
and are continuous in R

n1 × R
n2 (cf. also [63, Corollary 2.2]). The conjugate

H∗ = H∗(z′, z′′) is hence everywhere continuously differentiable. In particular,
since L = L(z′, z′′) is single-valued, it follows from (26) that

L(z′, z′′) ≡
{∂H∗

∂z′′
(z′, z′′)

}
,

and therefore that
∂H∗

∂z′
(z′, z′′) ≡ ∂H∗1

∂z′
(
z′,

∂H∗

∂z′′
(z′, z′′)

)
.

Thus, (25) and (27) combined give
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H∗(z′, z′′) ≡
〈
z′′,

∂H∗

∂z′′
(z′, z′′)

〉
+H∗1

(
z′,

∂H∗

∂z′′
(z′, z′′)

)
.

Finally, we can invoke (22) to deduce that

H∗(z′, z′′) ≡
〈
z′′,

∂H∗

∂z′′
(z′, z′′)

〉
+

〈
z′,

∂H∗1

∂z′
(
z′,

∂H∗

∂z′′
(z′, z′′)

)〉
−H

(∂H∗1

∂z′
(
z′,

∂H∗

∂z′′
(z′, z′′)

)
,
∂H∗

∂z′′
(z′, z′′)

)
≡

〈
z′′,

∂H∗

∂z′′
(z′, z′′)

〉
+

〈
z′,

∂H∗

∂z′
(z′, z′′)

〉
−H

(∂H∗

∂z′
(z′, z′′),

∂H∗

∂z′′
(z′, z′′)

)
.

The identity (24) has thereby been proved. This completes the proof. �

3. Hopf-Lax-Oleinik-Type Estimates for Viscosity Solutions

This Section is directly continuation of the Chapter 5 in [76], where we study
the concave-convex Hamilton-Jacobi equations. Consider the Cauchy problem
for the simplest Hamilton-Jacobi equation, namely,

ut +H(Du) = 0 in U := {t > 0, x ∈ R
n}, (28)

u(0, x) = φ(x) on {t = 0, x ∈ R
n}. (29)

Let us use the notations from Chapter 5 [76]: Lip(Ū) := Lip(U) ∩ C(Ū), where
Lip(U) is the set of all locally Lipschitz continuous functions u = u(t, x) de-
fined on U . A function u ∈ Lip(Ū) will be called a global Lipschitz solution of
the Cauchy problem (28)-(29) if it satisfies (28) almost everywhere in U , with
u(0, ·) = φ. In [76, Chapter 5] we have got the Hopf-Lax-Oleinik- type formulas
for global Lipschitz solutions of (28)-(29).

3.1. Estimates for Concave-Convex Hamiltonians

We still consider the Cauchy problem (28)-(29), but throughout this subsection
φ is uniformly continuous, and H = H(p′, p′′) is a general finite concave-convex
function. Then this Hamiltonian H is continuous by [52, Theorem 35.1]. There-
fore, it is known (see [22]) that the problem under consideration has a unique
viscosity solution u = u(t, x) in the space UCx

(
[0,+∞)×R

n
)

of the continuous
functions which are uniformly continuous in x uniformly in t.

Without (3) (resp. (4)), the partial conjugate H∗2 (resp. H∗1) defined in
(5) (resp. (6)) is still, of course, convex (resp. concave), but might be infinite
somewhere. One can claim only that

H∗2(p′, z′′) > −∞ ∀ (p′, z′′) ∈ R
n1 × R

n2

(resp. H∗1(z′, p′′) < +∞ ∀ (z′, p′′) ∈ R
n1 × R

n2).
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Now, let

D1 :={z′ ∈ R
n1 : H∗1(z′, p′′) > −∞ ∀ p′′ ∈ R

n2}
={z′ ∈ R

n1 : domH∗1(z′, ·) = R
n2} = ∩

p′′∈Rn2
domH∗1(·, p′′), (30)

D2 :={z′′ ∈ R
n2 : H∗2(p′, z′′) < +∞ ∀ p′ ∈ R

n1}
={z′′ ∈ R

n2 : domH∗2(·, z′′) = R
n1} = ∩

p′∈Rn1
domH∗2(p′, ·),

(31)

and, for (t, x) ∈ Ū , set

u−(t, x) := sup
z′∈D1

min
z′′∈Rn2

{φ(x− tz) + t ·H∗(z)}, (32)

u+(t, x) := inf
z′′∈D2

max
z′∈Rn1

{φ(x − tz) + t · H̄∗(z)}, (33)

where the lower and upper conjugates, H∗ and H̄∗, of the Hamiltonian H are
the concave-convex functions (with possibly infinite values) defined by (11)-(14).
Clearly, if (t, x) ∈ U , we also have

u−(t, x) = sup
y′∈x′−t·D1

min
y′′∈Rn2

{φ(y) + t ·H∗((x − y)/t)},

u+(t, x) = inf
y′′∈x′′−t·D2

s max
y′∈Rn1

{φ(y) + t · H̄∗((x − y)/t)},

cf. (5.30)-(5.31) in [76]. Our estimates for viscosity solutions in the case of
general concave-convex Hamiltonians read as follows:

Theorem 3.1. Let H be a (finite) concave-convex function, and φ be uniformly
continuous. Then the unique viscosity solution u ∈ UCx

(
[0,+∞) × R

n
)

of the
Cauchy problem (28)-(29) satisfies on Ū the inequalities

u−(t, x) ≤ u(t, x) ≤ u+(t, x),

where u− and u+ are defined by (32)-(33).

Proof. For each z
¯
′ ∈ D1, let F (p, z

¯
′) = F (p′, p′′, z

¯
′) := 〈z

¯
′, p′〉−H∗1(z

¯
′, p′′). Then

F (·, z
¯
′) is a (finite) convex function on R

n with its (Fenchel) conjugate F ∗(·, z
¯
′)

given (cf. (12)) by

F ∗(z, z
¯
′) = sup

p∈Rn

{〈z, p〉 − 〈z
¯
′, p′〉 +H∗1(z

¯
′, p′′)}

=
{

+∞ if z = (z′, z′′) �= (z
¯
′, z′′),

H∗(z
¯
′, z′′) if z = (z

¯
′, z′′).

(34)

Next, consider the Cauchy problem

∂ψ/∂t+ F (∂∂ψ/∂x, z
¯
′) = 0 in {t > 0, x ∈ R

n},
ψ(0, x, z

¯
′) = φ(x) on {t = 0, x ∈ R

n}.



220 Tran Duc Van and Nguyen Duy Thai Son

This is the Cauchy problem for a convex Hamilton-Jacobi equation (with uni-
formly continuous initial data). In view of (34), its (unique) viscosity solution
ψ(·, z

¯
′) can be represented [8, Th. 2.1] as

ψ(t, x, z
¯
′) = min

z∈Rn
{φ(x− tz) + t · F ∗(z, z

¯
′)}

= min
z′′∈Rn2

{φ(x′ − tz
¯
′, x′′ − tz′′) + t ·H∗(z

¯
′, z′′)}. (35)

Since H(p′, p′′) ≤ 〈z
¯
′, p′〉 −H∗1(z

¯
′, p′′) = F (p′, p′′, z

¯
′), we may prove that ψ(·, z

¯
′)

is a viscosity subsolution of (28)-(29). (In fact, let ϕ ∈ C1(U) be a test function
such that ψ(·, z

¯
′) − ϕ has a local maximum at some (t, x) ∈ U . Then

∂ϕ/∂t+H(∂ϕ/∂x) ≤ ∂ϕ/∂t+ F (∂ϕ/∂x, z
¯
′) ≤ 0 at (t, x),

as claimed.)
Now, a standard comparison theorem for unbounded viscosity solutions (see

[16]) gives

ψ(t, x, z′) ≤ u(t, x) ∀ z′ ∈ D1.

Hence, by (32) and (35), u−(t, x) = supz′∈D1
ψ(t, x, z′) ≤ u(t, x) for all (t, x) ∈

Ū . Dually, we have u+(t, x) ≥ u(t, x) on Ū . �

Remark 1. It can be shown that u− (resp. u+) is a subsolution (resp. superso-
lution) of (28)-(29) in the generalized sense of Ishii [22], provided D1 �= ∅ (resp.
D2 �= ∅), cf. (30)-(31). Further, let H(p′, p′′) ≡ H1(p′) + H2(p′′), with H1 con-
cave, H2 convex (both finite). As a consequence of Theorem 3.1, we then see
that the (unique) viscosity solution u of the Cauchy problem (28)-(29) satisfies
on Ū the inequalities

max
z′∈Rn1

min
z′′∈Rn2

{φ(x− tz) + t · (H∗
1 (z′) +H∗

2 (z′′))} ≤ u(t, x)

≤ min
z′′∈Rn2

max
z′∈Rn1

{φ(x− tz) + t · (H∗
1 (z′) +H∗

2 (z′′))}.

These are essentially Bardi – Faggian’s estimates [8, (3.7)] (with only differences
in notation). Here, we follow Rockafellar [52, §30] to take

H∗
1 (z′) := inf

p′∈Rn1
{〈z′, p′〉 −H1(p′)},

while
H∗

2 (z′′) := sup
p′′∈Rn2

{〈z′′, p′′〉 −H2(p′′)}.

(Caution: in general, H∗
1 �= −(−H1)∗. For the convex function G := −H1, one

has, not H∗
1 (z′) = −G∗(z′), but H∗

1 (z′) = −G∗(−z′).)
Of course, for t·(H∗

1 (z′)+H∗
2 (z′′)) not to be vague (and the desired estimates

to hold), we adopt the convention that 0 · (±∞) = 0, and we may set H∗
1 (z′) +

H∗
2 (z′′) = −∞ + ∞ to be any value in [−∞,+∞] if z′ �∈ domH∗

1 , z′′ �∈ domH∗
2 .

However, “max” and “min” in the above Bardi – Faggian estimates are actually
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attained on D1 ≡ domH∗
1 := {z′ ∈ R

n1 : H∗
1 (z′) > −∞} and D2 ≡ domH∗

2 :=
{z′′ ∈ R

n2 : H∗
2 (z′′) < +∞}, respectively.

Going to Theorem 5.1 in [76], we now have:

Corollary 3.2. Assume (G.I)-(G.III) (see §5.3), with φ uniformly continuous.
Then (5.31) determines the (unique) viscosity solution of the Cauchy problem
(28)-(29).

Remark 2. Since φ is uniformly continuous, the inequalities in Corollary 5.1
(Chapter 5 in [76]) are satisfied. This implies that the viscosity solution is
locally Lipschitz continuous and solves (28) almost everywhere. Notice also that
here we have D1 ≡ R

n1 and D2 ≡ R
n2 (cf. (30)-(31)).

If φ is Lipschitz continuous, then “min” and “max” in (32) and (33) can be
computed on particular compact subsets of R

n2 and R
n1 , respectively. In fact,

we have the following, where Lip(φ) stands for the Lipschitz constant of φ.

Lemma 3.3. Let φ be (globally) Lipschitz continuous, H be (finite and) concave-
convex, L ≥ 0 be such that, for some r > Lip(φ),

|H(p′, p′′) −H(p′, p̄′′)| ≤ L|p′′ − p̄′′| ∀ p′ ∈ R
n1 ; p′′, p̄′′ ∈ R

n2 , |p′′|, |p̄′′| ≤ r

(resp. |H(p′, p′′) −H(p̄′, p′′)| ≤ L|p′ − p̄′| ∀ p′′ ∈ R
n2 ; p′, p̄′ ∈ R

n1 , |p′|, |p̄′| ≤ r).

Then (32)(resp. (33)) becomes

u−(t, x) = sup
z′∈D1

min
|z′′|≤L

{φ(x − tz) + t ·H∗(z)}

(resp. u+(t, x) = inf
z′′∈D2

max
|z′|≤L

{φ(x − tz) + t · H̄∗(z)}).

To prove Lemma 3.3, we need the following preparations. Given any convex
Hamiltonian H = H(q), and any uniformly continuous initial data v0 = v0(α)
(α, q ∈ R

N ), as was already mentioned, the Hopf-Lax formula

v(t, α) := min
ω∈RN

{v0(α − tω) + t ·H∗(ω)} (t ≥ 0, α ∈ R
N) (36)

determines the unique viscosity solution v = v(t, α) in the space UCα([0,+∞)×
R

N ) of the Cauchy problem

vt +H(∂v/∂α) = 0 in {t > 0, α ∈ R
N},

v(0, α) = v0(α) on {t = 0, α ∈ R
N}.

The next technical lemma is somehow related to the so-called “cone of depen-
dence” for viscosity solutions.

Lemma 3.4. Let H be convex, v0 be (globally) Lipschitz continuous. Assume
that

|H(q) −H(q̄)| ≤ L|q − q̄| ∀ q, q̄ ∈ R
N , |q|, |q̄| ≤ r
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for some L ≥ 0, r > Lip(v0). Then (36) becomes

v(t, α) = min
|ω|≤L

{v0(α− tω) + t ·H∗(ω)} (t ≥ 0, α ∈ R
N ).

Proof. We may suppose t > 0. Choose ω0 = ω0(t, α) ∈ R
N so that the value at

(t, α) of the viscosity solution v, determined by (36), is

v0(α− tω0) + t ·H∗(ω0).

It suffices to prove |ω0| ≤ L. To this end, we first notice that

v0(α− tω0) + t ·H∗(ω0) ≤ v0(α− tω) + t ·H∗(ω)

for any ω ∈ R
N . Hence,

H∗(ω0) ≤ t−1[v0(α− tω) − v0(α− tω0)] +H∗(ω)

≤ R|ω − ω0| +H∗(ω) ∀ ω ∈ R
N ,

(37)

where R := Lip(v0). Now, define

h(q) :=
{

+∞ if |q| > R,

〈ω0, q〉 if |q| ≤ R.

Then h is a lower semicontinuous proper convex function on R
N , with h∗(ω) ≡

R|ω − ω0|. So (37) implies

H(q) ≥ 〈ω0, q〉 −H∗(ω0) ≥ 〈ω0, q〉 − (h∗ +H∗)(ω)

for all ω ∈ R
N . Therefore,

H(q) ≥ 〈ω0, q〉 + sup
ω∈RN

{−(h∗ +H∗)(ω)} = 〈ω0, q〉 + (h∗ +H∗)∗(0) (38)

for any q ∈ R
N . Next, consider the “infimum convolute” h

⊗
H given by the

formula

(h
⊗

H)(q) := inf
q+q̄=q

{h(q
¯
) +H(q̄)} ≡ min

|q|≤R
{〈ω0, q

¯
〉 +H(q − q

¯
)}.

This infimum convolute [52, Theorem 16.4] is a (finite) convex function with
(h

⊗
H)∗ = h∗ +H∗. It follows from (38) that

H(q) ≥ 〈ω0, q〉 + (h
⊗

H)∗∗(0) = 〈ω0, q〉 + (h
⊗

H)(0),

i.e. that

H(q) ≥ 〈ω0, q〉 + min
|q̄|≤R

{H(q̄) − 〈ω0, q̄〉},

for all q ∈ R
N . Thus, there exists a q̄ ∈ R

N , |q̄| ≤ R, such that

H(q) ≥ H(q̄) + 〈ω0, q − q̄〉 ∀ q ∈ R
N . (39)
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Finally, assume, contrary to our claim, that |ω0| > L. Then, for any fixed ε with
0 < ε < (r −R)/|ω0|, take q := q̄ + εω0. Of course, 0 < |q − q̄| = ε|ω0| < r −R.
Hence |q|, |q̄| < r. But, by (39), this q would satisfy

H(q) −H(q̄) ≥ |ω0| · |q − q̄| > L|q − q̄|,
which contradicts the assumption of the lemma. The proof is thereby complete.
�

Proof of Lemma 3.3. For any temporarily fixed z′ ∈ D1, t ≥ 0, x′ ∈ R
n1 , let

F = F (p′′) := −H∗1(z′, p′′) and v0 = v0(x′′) := φ(x′ − tz′, x′′).

Obviously, F is a (finite) convex function on R
n2 , with F ∗(z′′) ≡ H∗(z′, z′′) (in

view of (12)). For definiteness, suppose that

|H(p′, p′′)−H(p′, p̄′′)| ≤ L|p′′− p̄′′| ∀p′ ∈ R
n1 ; p′′, p̄′′ ∈ R

n2 , |p′′|, |p̄′′| ≤ r (40)

for some L ≥ 0, r > Lip(φ) (≥ Lip(v0)). Then it can be shown that

|F (p′′) − F (p̄′′)| ≤ L|p′′ − p̄′′| ∀ p′′, p̄′′ ∈ R
n2 , |p′′|, |p̄′′| ≤ r. (41)

In fact, given arbitrary ε ∈ (0,+∞) and p′′, p̄′′ ∈ R
n2 , with |p′′|, |p̄′′| ≤ r, since

z′ ∈ D1, we could find (using (6) and (30)) a p′ ∈ R
n1 such that

+∞ > H∗1(z′, p̄′′) > 〈z′, p′〉 −H(p′, p̄′′) − ε.

So, (6) together with (40) implies

H∗1(z′, p′′) −H∗1(z′, p̄′′) ≤ H∗1(z′, p′′) − 〈z′, p′〉 +H(p′, p̄′′) + ε

≤ 〈z′, p′〉 −H(p′, p′′) − 〈z′, p′〉 +H(p′, p̄′′) + ε

≤ |H(p′, p′′) −H(p′, p̄′′)| + ε ≤ L|p′′ − p̄′′| + ε.

Because ε ∈ (0,+∞) is arbitrarily chosen, we get

F (p̄′′) − F (p′′) = H∗1(z′, p′′) −H∗1(z′, p̄′′) ≤ L|p′′ − p̄′′|.
Similarly,

F (p′′) − F (p̄′′) ≤ L|p̄′′ − p′′| = L|p′′ − p̄′′|.
Thus (41) has been proved. Therefore, we may apply Lemma 3.4 to these F
and φ instead of H and v0. (Here, N := n2, while x′′ and z′′ stand for α and ω,
respectively.) It follows that (for an arbitrary x′′ ∈ R

n2)

min
z′′∈Rn2

{φ(x′ − tz′, x′′ − tz′′) + t ·H∗(z′, z′′)}
= min

z′′∈Rn2
{v0(x′′ − tz′′) + t ·H∗(z′′)} = min

|z′′|≤L
{v0(x′′ − tz′′) + t ·H∗(z′′)}

= min
|z′′|≤L

{φ(x′ − tz′, x′′ − tz′′) + t ·H∗(z′, z′′)}.
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Hence, (32) gives us

u−(t, x) = sup
z′∈D1

min
|z′′|≤L

{φ(x− tz) + t ·H∗(z)}

for any (t, x) ∈ Ū . Dually in the other case corresponding to (33). �

As an immediate consequence of Lemma 3.3, we have:

Corollary 3.5. Let φ be (globally) Lipschitz continuous, H(p′, p′′) ≡ H1(p′) +
H2(p′′), with H1 concave, H2 convex (both finite). Let L1, L2 ≥ 0 be such that,
for some r > Lip(φ),

|H1(p′) −H1(p̄′)| ≤ L1|p′ − p̄′| ∀ p′, p̄′ ∈ R
n1 , |p′|, |p̄′| ≤ r,

|H2(p′′) −H2(p̄′′)| ≤ L2|p′′ − p̄′′| ∀ p′′, p̄′′ ∈ R
n2 , |p′′|, |p̄′′| ≤ r.

Then the unique viscosity solution u ∈ UCx ([0,+∞) × R
n) of the Cauchy prob-

lem (28)-(29) satisfies on Ū the inequalities

max
|z′|≤L1

min
|z′′|≤L2

{φ(x− tz) + t · (H∗
1 (z′) +H∗

2 (z′′))} ≤ u(t, x)

≤ min
|z′′|≤L2

max
|z′|≤L1

{φ(x− tz) + t · (H∗
1 (z′) +H∗

2 (z′′))}.

Remark 3. The strict inequality in the hypothesis “r > Lip(φ)” of Lemma 3.3
and Corollary 3.5 (or that in “r > Lip(v0)” of Lemma 3.4) is essential for the
proofs. In this connection, Corollary 3.5 corrects a result by Bardi and Faggian
(cf. [8, Lemma 3.3]), where they take r := Lip(φ), but this is impossible, as the
following example shows.

Example 1. Let n1 := 1 =: n2, φ ≡ 0, H1 ≡ −(p′)2/2, and H2 ≡ p′′. In this
case, Lip(φ) = 0. Then any L1, L2 > 0 surely satisfy all the hypotheses of [8,
Lemma 3.3], but the desired estimates become

max
|z′|≤L1

min
|z′′|≤L2

{t · (δ(z′′|1) − (z′)2/2)} ≤ u(t, x)

≤ min
|z′′|≤L2

max
|z′|≤L1

{t · (δ(z′′|1) − (z′)2/2)}

that would not be true if t > 0 and L2 < 1.

Example 2. Let n1 = n2 := k > 0, and f1(p) := 〈p′, p′′〉 for p = (p′, p′′) ∈ R
k×R

k.
Then f1 is trivially a concave-convex function. (One can also check directly that
it is neither convex nor concave.) There could not be any functions g1 = g1(p′),
g2 = g2(p′′), with f1(p) ≡ g1(p′) + g2(p′′). To find a (finite) concave-convex
function H on R

n1 × R
n2 with (5.3)-(5.4) in Chapter 5 holding, for which there

do not exist any (concave) H1 = H1(p′) and (convex) H2 = H2(p′′) such that
H(p) ≡ H1(p′) +H2(p′′), we can now take, for example,

H(p) := −|p′|
√

2 + 〈p′, p′′〉 + |p′′|3/2 for p = (p′, p′′) ∈ R
n1 × R

n2 .
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3.2. Estimates for Concave-Convex Initial Data

We now consider the Cauchy problem (28)-(29) with the following hypothesis:
(IV) Hamiltonian H = H(p) is continuous and the initial function φ = φ(x′, x′′)
is concave-convex and Lipschitz continuous (without (3)-(4)).
For (t, x) ∈ U , set

u−(t, x) := sup
p′′∈V2

inf
p′∈Rn1

{< p, x > − φ̄∗(p) − tH(p)} (32a)

u+(t, x) := inf
p′∈V1

sup
p′′∈Rn2

{< p, x > − φ∗(p) − tH(p)}, (33a)

where let

V1 := {p′ ∈ R
n1 : φ∗1(p′, x′′) > −∞, ∀x′′ ∈ R

n2},
V2 := {p′′ ∈ R

n2 : φ∗2(x′, p′′) < +∞, ∀x′ ∈ R
n1},

hence

for all x′′ ∈ R
n2 , φ∗1(p′, x′′) is finite on V1

for all x′ ∈ R
n1 , φ∗2(x′, p′′) is finite on V2.

Remark 4. The concave-convex function φ = φ(x′, x′′) is Lipschitz continuous in
the sense: φ(x′, x′′) is Lipschitz continuous in x′ ∈ R

n1 for each x′′ ∈ R
n2 and

in x′′ ∈ R
n2 for each x′ ∈ R

n1 .

Our estimates for viscosity solutions in this subsection read as follows:

Theorem 3.6. Assume (IV). Then the unique viscosity solution u = u(t, x) ∈
UCx

(
[0,+∞)×R

n
)

of the Cauchy problem (28)-(29) satisfies on Ū the inequal-
ities

u−(t, x) ≤ u(t, x) ≤ u+(t, x),

where u−(t, x) and u+(t, x) are defined by (32a) and (33a) respectively.

Proof. For each p′ ∈ V1, let

Φ(x; p′) = Φ(x′, x′′; p′) := < x′, p′ > − φ∗1(p′, x′′)

= < x′, p′ > − inf
x′∈Rn1

{
< x′, p′ > − φ(x′, x′′)

}
≥ φ(x′, x′′) for all (x′, x′′) ∈ R

n1 × R
n2 .

Since φ∗1(p′, .) is a concave and Lipschitz continuous function so Φ(x; p′) is
convex and Lipschitz continuous with its Fenchel conjugate given by

Φ∗(p; p′) = Φ∗(p′, p′′; p′) = sup
x∈Rn

{
< x, p > −Φ(x, p′)

}
= sup

x∈Rn

{
< x′, p′ > + < x′′, p′′ > − < x′, p′ > +φ∗1(p′, x′′)

}

=
{ +∞ if (p′, p′′) �= (p′, p′′)

φ∗(p′, p′′) if (p′, p′′) = (p′, p′′).
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Next, consider the Cauchy problem

∂v

∂t
+H

(∂v
∂x

)
= 0 in U = {t > 0, x ∈ R

n},
v(0, x) = Φ(x; p′) on {t = 0, x ∈ R

n}.

This is the Cauchy problem with the continuous Hamiltonian H = H(p) and the
convex and Lipschitz continuous initial function Φ = Φ(x; p′) for each p′ ∈ V1,

its unique viscosity solution v = v(t, x) ∈ UCx

(
[0,+∞)× R

n
)

is given by

v(t, x) = sup
p∈Rn

{< p, x > −Φ∗(p; p′) − tH(p)}

= sup
p′′∈Rn2

{< p′, x′ > + < p′′, x′′ > −φ∗(p′, p′′) − tH(p′, p′′)}

with the initial condition

v(0, x) = Φ(x; p′) ≥ φ(x) = u(0, x)

for each p′ ∈ V1. Hence, for each p′ ∈ V1, v = v(t, x) is a (continuous) super-
solution of the problem (28)-(29) (according to a standard comparison theorem
for unbounded viscosity solutions (see [22])), that means

u(t, x) ≤ v(t, x) for each p′ ∈ V1,

and then

u(t, x) ≤ inf
p′∈V1

sup
p′′∈Rn2

{< p, x > −φ∗(p) − tH(p)}

u(t, x) ≤ u+(t, x) on Ū .

Dually, we also obtain

u(t, x) ≥ u−(t, x) on Ū .

Theorem 3.6 has been proved completely. �

Corollary 3.7. Assume (M.I)-(M.II) in chapter 5[76]. Moreover, φ = φ(x′, x′′)
is Lipschitz continuous on R

n1 ×R
n2 . Then the formula (5.53) in Chapter 5[76]

determines the unique viscosity solution u(t, x) ∈ UCx

(
[0,+∞) × R

n
)

of the
Cauchy problem (28)-(29).

Proof. Since φ = φ(x′, x′′) is a concave-convex and Lipschitz continuous function
so domφ∗ is a bounded and nonempty set. Independently of (t, x) ∈ Ū , it follows
that

ϕ(t, x, p′, p′′) −→ −∞ whenever | p′′ | is large enough

and
ϕ(t, x, p′, p′′) −→ +∞ whenever | p′ | is large enough.

Remark 5 in Section 5.3 [76] implies that hypothesis (M.III) in Chapter 5 [76]
holds. Then the conclusion is straightforward from Theorem 3.6. �
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4. D. C. Hamiltonians Containing u and Du

We now study viscosity solutions of the Cauchy problem for Hamilton-Jacobi
equations of the form

ut +H(u,Dxu) = 0 in (0, T ) × R
n, (42)

u(0, x) = u0(x) in R
n, (43)

where H,u0 are continuous functions in R
n+1 and R

n, respectively.
We aim here to consider Problem (42)-(43) when the Hamiltonian H(γ, p) is

a function to be the sum of a convex and a concave function.
The following hypotheses are assumed in this section:

A. The Hamiltonian H(γ, p), (γ, p) ∈ R × R
n, is a nonconvex-nonconcave func-

tion in p, i.e.,

H(γ, p) = H1(γ, p) +H2(γ, p), (γ, p) ∈ R × R
n,

where H1, H2 are continuous on R
n+1, and for each fixed γ ∈ R, H1(γ, .) is con-

vex, H2(γ, .) is concave, H1(γ, .), H2(γ, .) are positively homogeneous of degree
one in R

n; for each fixed p ∈ R
n, H1(., p), H2(., p) are nondecreasing in R;

B. The initial function u0 is continuous in R
n.

The expected solutions of the problem (42)-(43) are now defined:

u−(t, x) := sup
z

inf
y

{
[H#

1 (y) ∨ u0(x − t(y + z))] ∧H2#(z)
}
, (t, x) ∈ (0, T ) × R

n,

(44)
and

u+(t, x) := inf
y

sup)z
{
H#

1 (y) ∨ [u0(x− t(y + z)) ∧H2#(z)]
}
, (t, x) ∈ (0, T )× R

n,

(45)
where the operations “∨”, “#” are defined as

H#(q) := inf{γ ∈ R : H(γ, p) ≥ (p, q), ∀p ∈ R
n},

the notation (., .) stands for the ordinary scalar product on R
n, and

a ∨ b := max{a, b}
and the operations “∧”, “#” act as

a ∧ b := min{a, b}, and H#(q) = sup{γ ∈ R : H(γ, p) ≤ (p, q), ∀p ∈ R
n}.

The following theorem is the main result of this section.

Theorem 4.1.
i) The function u− determined by (44) is a viscosity subsolution of the equation

(42) and satisfies (43), i.e.,
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lim
(t,x′)→(0,x)

u−(t, x′) = u0(x), ∀x ∈ R
n. (46)

ii) The function u+ determined by (45) is a viscosity supersolution of the equa-
tion (42) and satisfies (43), i.e.,

lim
(t,x′)→(0,x)

u+(t, x′) = u0(x), ∀x ∈ R
n. (47)

Relying on the results of Theorem 4.1, one can obtain the upper and lower
bounds for the unique viscosity solution of the problem (42)-(43).

Corollary 4.2. If, in addition, u0 ∈ BUC(Rn), then Problem (42)-(43) admits
a unique viscosity solution u in BUC([0, T ] × R

n) such that

u− ≤ u ≤ u+, in [0, T ]× R
n, (48)

where u− and u+ are defined in (44) and (45) respectively.

Note that two expressions under the brackets “{.}” in (44) and (45) are, in
general, not the same since the operations “∧” and“∨” are not “commutative”.
However, for every fixed (t, x) ∈ (0, T )×R

n, the supremum in z and the infimum
in y may be taken over the convex sets in which these two expressions coincide.
The min-max theorems then yield the coincidence of u+ and u− in many cases
(see [57], for example). In those cases, the unique viscosity solution of Problem
(42)-(43) is easily computed.

By means of the above results, we can deduce several admired conclusions:
if H2 = 0, then u+ = u− = u, u is a viscosity solution for the initial data u0 to
be just continuous in R

n (not necessarily bounded and Lipschitz continuous as
in [13]). If H1 = 0, then u− = u+ and we get a formula for viscosity solutions
with a concave Hamiltonian. Actually, for instance if H2 = 0, then a direct
calculation gives

H2#(z) =
{

+∞ if z = 0
−∞ if z �= 0.

The formulas (44) and (45) then yield

u(t, x) = u−(t, x) = u+(t, x), ∀(t, x) ∈ (0, T ) × R
n.

In order to prove Theorem 4.1, we need some properties of the quasiconvex
duality [13]. Let a continuous function H = H(γ, p), (γ, p) ∈ R ×R

n, be given.
Using the operations “(.)#”, “(.)#”, “∧” and “∨” defined as in Appendix

[76], we set

H#∗(γ, p) := sup{(p, q) : q ∈ R
n, H#(q) ≤ γ}, (γ, p) ∈ R × R

n,

and

H#∗(γ, p) := inf{(p, q) : q ∈ R
n, H#(q) ≥ γ}, (γ, p) ∈ R × R

n.
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Some basic features of this dual can be summarized in the following lemma.

Lemma 4.3.
i) Let H be nondecreasing in γ, convex and positively homogeneous of degree

one in p. Then H# is quasiconvex, lower semicontinuous and

H#(z) → +∞ as |z| → ∞, and H#∗ = H.

Moreover, there exists p∗ ∈ R
n such that

H#(p∗) = −∞.

ii) Let H be nondecreasing in γ, concave and positively homogeneous of degree
one in p. Then H# is quasiconcave, upper semicontinuous and

H#(z) → −∞ as |z| → ∞, and H#∗ = H.

Moreover, there exists q∗ ∈ R
n such that

H#(q∗) = +∞.

Proof.
i) The first assertion of i) was proved by Barron, Jensen and Liu [13]. Let
us verify that there exists a p∗ ∈ R

n such that H#(p∗) = −∞. Assume the
contrary, that

H#(z) > −∞, ∀z ∈ R
n.

Since H# → +∞ as |z| → ∞, there exists N > 0 so that H#(z) > 0, for all
|z| > N. Thus, we get

−∞ = inf
z∈Rn

H#(z) = inf
|z|≤N

H#(z). (49)

Since H# is lower semicontinuous, H#(z) > −∞, ∀z ∈ R
n, the function

h(z) := min{H#(z), 0}, z ∈ R
n

is clearly finite and lower semicontinuous on R
n. Hence,

inf
|z|≤N

H#(z) ≥ inf
|z|≤N

h(z) := M > −∞,

which contradicts (49). This contradiction proved the second part of i).
ii) Using [−H(−γ,−p)]#(z) = −[H#(γ, p)](z) we symmetrically obtain ii) �

In order to investigate the functions u−, u+ we need two auxiliary functions
to be determined by

v(t, x) := inf
y∈Rn

{
H#

1

(x− y

t

) ∨ u0(y)
}
, (t, x) ∈ (0, T ] × R

n, (50)

w(t, x) := sup
y∈Rn

{
H2#

(x− y

t

) ∧ u0(y)
}
, (t, x) ∈ (0, T ]× R

n. (51)
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The continuity of v, w can be certified by the following lemma.

Lemma 4.4. The functions v, w are continuous on [0, T ]× R
n with

v(0, x) := u0(x), w(0, x) := u0(x), x ∈ R
n.

Proof. We need only show that v is continuous on [0, T ] × R
n. The argument

for w would be similar.
It is convenient to rewrite the function v in (50) as

v(t, x) = inf
z∈Rn

{
H#

1 (z) ∨ u0(x− tz)
}
, ∀(t, x) ∈ (0, T ]× R

n. (52)

By virtue of Lemma 4.3 i), we can take a point p∗ ∈ R
n such thatH#

1 (p∗) = −∞
and keep it fixed. Let r > 0 be arbitrarily selected. Then for each (t, x) ∈
(0, T ]×B(0; r),

v(t, x) ≤ H#
1 (p∗) ∨ u0(x− tp∗) = u0(x− tp∗) ≤ max

|y|≤r+T |p∗|
u0(y) := K < +∞.

Since H#
1 (z) → +∞ as |z| → ∞, there exists a constant N > 0 such that

H#
1 (z) > K, ∀|z| ≥ N.

Hence, the infimum in (52) has to be taken over the ball B(0;N) for all (t, x) ∈
(0, T ]×B(0; r). Since the function z 
→ (H#

1 (z) ∨ u0(x− tz))∧K, z ∈ B̄(0;N)
is finite (bounded) and lower semicontinuous on a compact set, it holds for any
(t, x) ∈ (0, T ]×B(0; r),

v(t, x) = inf
|z|≤N

{
H#

1 (z) ∨ u0(x− tz)
}
∧K

= inf
|z|≤N

{[
H#

1 (z) ∨ u0(x− tz)
] ∧K}

= min
|z|≤N

{[
H#

1 (z) ∨ u0(x− tz)
] ∧K}

= min
|z|≤N

{H#
1 (z) ∨ u0(x− tz)}.

Thus, for every (t, x) ∈ (0, T ]×B(0; r), the set

k(t, x) :=
{
y0 ∈ R

n : H#
1 (y0) ∨ u0(x− ty0) = inf

z∈Rn
{H#

1 (z) ∨ u0(x − tz)}}
is not empty. Since r is arbitrary, we can extend the definition of k(t, x) to the
whole domain (0, T ]× R

n. The above arguments enable us to say

‖k(t, x)‖ := sup{|y0| : y0 ∈ k(t, x)} ≤ N, (t, x) ∈ (0, T ]×B(0; r). (53)

For any (t, x), (t′, x′) ∈ (0, T ]×B(0; r), choosing ξ ∈ k(t, x), |ξ| ≤ N (by virtue
of (52)), we get
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v(t′, x′) − v(t, x) = inf
z∈Rn

{
H#

1 (z) ∨ u0(x′ − t′z)
}

−H#
1 (ξ) ∨ u0(x− tξ)

≤ H#
1 (ξ) ∨ u0(x′ − t′ξ) −H#

1 (ξ) ∨ u0(x− tξ)
≤ |u0(x′ − t′ξ) − u0(x− tξ)|.

(54)

Exchanging (t, x) and (t′, x′), we can select ξ′ ∈ k(t′, x′), |ξ′| ≤ N so that

v(t, x) − v(t′, x′) ≤ |u0(x′ − t′ξ′) − u0(x− tξ′)|. (55)

The estimates (54) and (55) yield

lim
(t′,x′)→(t,x)

v(t′, x′) = v(t, x), ∀(t, x) ∈ (0, T ]×B(0, r).

Since r is arbitrary, it follows that u ∈ C((0, T ]× R
n).

Next, let us verify that the function v is continuous until the boundary
{0} × R

n, i.e.,

lim
(t,x)→(0,x0)

v(t, x) = u0(x0), ∀x0 ∈ R
n. (56)

Indeed, by what was shown above one has for some fixed p∗ ∈ R
n at which

H#
1 (p∗) = −∞, that

v(t, x) ≤ H#
1 (p∗) ∨ u0(x − tp∗) = u0(x − tp∗), ∀(t, x) ∈ (0, T ]× R

n.

Consequently,
lim sup

(t,x)→(0,x0)

v(t, x) ≤ lim
(t,x)→(0,x0)

u0(x − tp∗) = u0(x0). (57)

On the other hand, in view of (52) where r > 0 is arbitrarily given, it holds
true that

v(t, x) = H#
1 (ξ) ∨ u0(x− tξ) ≥ u0(x− tξ),

for every (t, x) ∈ (0, T ] × B(0; r) with some fixed ξ ∈ k(t, x), |ξ| ≤ N. Sending
(t, x) → (0, x0), we have

lim inf
(t,x)→(0,x0)

v(t, x) ≥ lim
(t,x)→(0,x0)

u0(x − tξ) = u0(x0). (58)

The combination of (57) and (58) yields (56). The proof of Lemma 4.4 is
complete. �

Proof of Theorem 4.1.
i) First, we will show that u− is continuous in (0, T ) × R

n. Indeed, u− can be
rewritten as

u−(t, x) = sup
z
{v(t, x− tz) ∧H2#(z)},

where v(t, x) is defined by (50). By virtue of Lemma 4.3, there is q∗ ∈ R
n,

H2#(q∗) = +∞. Hence, if |x| ≤M for some constant M > 0 then
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u−(t, x) ≥ v(t, x− tq∗) ∧H2#(q∗) = v(t, x− tq∗)
≥ min

s∈[0,T ],|y|≤M+T |q∗|
v(s, y) := K > −∞.

Also, there is N > 0, H2#(z) < K, ∀|z| > N . Therefore,

u−(t, x) = sup
|z|≤N

{v(t, x− tz) ∧H2#(z)}, ∀t ∈ [0, T ], |x| ≤M.

Since both v and H2# are upper semicontinuous in the variable z ∈ R
n, so is

their minimum. Hence, the last expression becomes

u−(t, x) = max
|z|≤N

{v(t, x− tz) ∧H2#(z)}, ∀t ∈ [0, T ], |x| ≤M. (59)

By virtue of (59), let |x| ≤ M, |x′| ≤ M , and let for some fixed z0 ∈ R
n, |z0| ≤

N ,

u−(t, x) = v(t, x− tz0) ∧H2#(z0).

Then
u−(t, x) − u−(t′, x′) = v(t, x − tz0) ∧H2#(z0)

− max
|z|≤N

{v(t′, x′ − t′z) ∧H2#(z)}

≤ v(t, x − tz0) ∧H2#(z0)
− v(t′, x′ − t′z0) ∧H2#(z0)
≤ |v(t′, x′ − t′z0) − v(t, x− tz0)|.

(60)

Interchanging (t′, x′) and (t, x) we get for some z1, |z1| ≤ N ,

u−(t′, x′) − u−(t, x) ≤ |v(t′, x′ − t′z1) − v(t, x− tz1)|. (61)

The estimates (60), (61) and the continuity of v imply that u− is continuous
on (0, T ) × {x : |x| ≤ M}. Since M is arbitrarily chosen, the continuity in
(0, T )× R

n of u− follows.
Next we claim that for every (t, x) ∈ (0, T )× R

n, 0 < s < t,

u−(t, x) ≤ inf
z
{H#

1

(x− z

t− s
− z0

) ∨ u−(s, z)},

where z0 ∈ R
n such that

u−(t, x) = v(t, x− tz0) ∧H2#(z0). (62)

Actually, in view of (59), it holds

u−(t, x) = v(t, x− tz0) ∧H2#(z0)

≤ [
H#

1

(x− y

t
− z0

) ∨ u0(y)
] ∧H2#(z0), ∀y ∈ R

n.
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Since H#
1 is quasiconvex, we have for each fixed z ∈ R

n,

H#
1

(x− y

t
− z0

)
≤ H#

1

(x− z

t− s
− z0

)
∨H#

1

(z − y

s
− z0

)
, ∀y ∈ R

n.

Thus,

u−(t, x) ≤
[
H#

1

(x− z

t− s
− z0

)
∨H#

1

(z − y

s
− z0

)
∨u0(y)

]
∧H2#(z0), ∀y ∈ R

n.

By changing variable p := (z − y)/s − z0, ∀y ∈ R
n, we obtain from the last

estimate that

u−(t, x) ≤
[
H#

1

(x− z

t− s
−z0

)
∨(
H#

1 (p)∨u0(z−s(p+z0))
)]∧H2#(z0), ∀p ∈ R

n.

Taking infimum both sides in p ∈ R
n, we obtain

u−(t, x) ≤
[
H#

1

(x− z

t− s
− z0

)
∨ v(s, z − sz0)

]
∧H2#(z0)

≤ H#
1

(x− z

t− s
− z0

)
∨ [

v(s, z − sz0) ∧H2#(z0)
]

≤ H#
1

(x− z

t− s
− z0

)
∨ u−(s, z).

Since z is arbitrary, the last inequality verified (62).
Now, the fact that u− is a viscosity subsolution of the equation (42) will

be proved as follows. We have known that it is not restrictive to suppose
that the maximum and the minimum in the definition of viscosity sub- and
supersolutions are zero and global. Assume the contrary that u− is not a
viscosity subsolution. Then there exist a constant ε0 > 0, a point (t0, x0) ∈
(0, T )×R

n, a function ϕ ∈ C1, such that u−−ϕ has zero as its maximum value
at (t0, x0) and

ϕt(t0, x0) +H(u−(t0, x0), Dxϕ(t0, x0)) > ε0.

Set γ0 := u−(t0, x0). Since H is continuous, there exists a number δ > 0 such
that

ϕt(t0, x0) +H(γ0 − δ,Dxϕ(t0, x0)) > ε0.

Using H#∗
1 = H1, H2#∗ = H2 from Lemma 4.3, we have

ϕt(t0, x0)+ sup
{p:H#

1 (p)≤γ0−δ}
(p,Dxϕ(t0, x0))+ inf

{q:H2#(q)≥γ0−δ}
(q,Dxϕ(t0, x0)) > ε0.

Thus there exists p0 ∈ R
n, H#

1 (p0) ≤ γ0 − δ such that
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ϕt(t0, x0) + (p0 + q,Dxϕ(t0, x0)) > ε0, ∀q ∈ R
n, H2#(q) ≥ γ0 − δ. (63)

On the other hand, let z0 be selected and fixed at which the maximum in (59)
corresponding to (t0, x0) is attained, i.e.,

γ0 = u−(t0, x0) = v(t0, x0 − t0z0) ∧H2#(z0) ≤ H2#(z0).

By virtue of (62) for every 0 < s < t0, μ := t0 − s > 0,

γ0 = u−(t0, x0) ≤ inf
z
{H#

1

(x0 − z

t0 − s
− z0

) ∨ u−(s, z)}.

Changing variable p := (x0 − z)/(t0 − s) − z0, ∀z ∈ R
n, and then replacing

s = t0 − μ in the right-hand side of the last inequality, we obtain

u−(t0, x0) ≤ inf
p
{H#

1 (p) ∨ u−(t0 − μ, x0 − μ(p+ z0)}

≤ H#
1 (p0) ∨ u−(t0 − μ, x0 − μ(p0 + z0)).

(64)

Besides, since u−(t0, x0) − δ ≥ H#
1 (p0) and u− is continuous in (0, T ) × R

n,
there exists μ0 > 0 such that

H#
1 (p0) < u−(t0 − μ, x0 − μ(p0 + z0)), 0 < ∀μ < μ0.

This coupled with (64) gives

ϕ(t0, x0) = γ0 ≤ u−(t0 − μ, x0 − μ(p0 + z0)) ≤ ϕ(t0 − μ, x0 − μ(p0 + z0)),

0 < ∀μ < μ0. Consequently,

ϕ(t0 − μ, x0 − μ(p0 + z0)) − ϕ(t0, x0)
−μ ≤ 0, 0 < ∀μ < μ0.

Letting μ→ 0 in the last inequality, we see that

ϕt(t0, x0) + (p0 + z0, Dxϕ(t0, x0)) ≤ 0,

which contradicts (63) where z0 plays the role of a q ∈ R
n. This contradiction

proved that u− is a viscosity subsolution of the equation (42). We remain to
prove (46). By Lemma 4.3, let q∗ ∈ R

n be taken so that H2#(q∗) = +∞. Then

u−(t, x) ≥ H2#(q∗) ∧ v(t, x− tq∗) = v(t, x − tq∗). (65)

Besides, it follows from (59) that for every |x| < M , there exists z0 ∈ R
n, |z0| ≤

N at which

u−(t, x) = v(t, x− tz0) ∧H2#(z0) ≤ v(t, x − tz0). (66)

From (65) and (66), letting t → 0 and using the continuity of v on [0, T ]× R
n

with v(0, x) = u0(x), we obtain

u−(0, x) = u0(x), |x| ≤M.
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Since M is arbitrary, (46) follows. The part i) of Theorem 4.1 is thus completely
proved.

ii) By a similar argument, we also get ii). Instead of (62), the following estimate
is invoked

u+(t, x) ≥ sup
z

{
H2#

(x− y

t− s
− y0

)
∧ u+(s, y)

}
,

where y0 ∈ R
n is arbitrary so that

u+(t, x) = w(t, x − ty0) ∨H#
1 (y0). �

Proof of Corollary 4.2. If u0 ∈ BUC(Rn), then we can choose the constant
N in (60) and (61) independent of (t, x), (t′, x′) ∈ [0, T ] × R

n so that these
estimates still hold true. This implies that u−, u+ ∈ BUC([0, T ]×R

n). Hence,
the conclusion follows from Theorem IV.1 of Barles [9]. �

Example 3. Consider the following Cauchy problem

ut + |Dxu|shu = 0 in (0, T )× R
n, (67)

u(0, x) = u0(x), in R
n, (68)

where shx is the hyperbolic sine function

shx =
ex − e−x

2
, x ∈ R.

The Hamiltonian H(γ, p) = |p|shγ can be written as

H = H1 +H2, H1(γ, p) :=
eγ |p|

2
, H2(γ, p) := −e−γ |p|

2
, (γ, p) ∈ R × R

n,

meetting the assumption (A). A direct calculation yields

H#
1 (q) = log 2|q|, H2#(q) = − log 2|q|, q ∈ R

n.

Hence, it is derived from the formulas (44) and (45) that

u−(t, x) = sup
z

inf
y
{[log 2|y| ∨ u0(x− t(y + z))] ∧ (− log 2|z|)},

u+(t, x) = inf
y

sup
z
{log 2|y| ∨ [u0(x− t(y + z)) ∧ (− log 2|z|)]}, (t, x) ∈ (0, T )× R

n.

are subsolution and supersolution of (67)-(68)

Example 4. Let f(γ), γ ∈ R, be an any continuous nondecreasing function. Our
results can be applied to a Hamiltonian of the form

H(γ, p) := f(γ)|p|, (γ, p) ∈ R × R
n.
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Actually, we need only to determine

H1(γ, p) := max{f(γ), 0}|p|,
H2(γ, p) := min{f(γ), 0}|p|, (γ, p) ∈ R × R

n.

Clearly, these functions satisfy the hypothesis (A).
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