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Abstract. A lacunary sequence is an increasing sequence θ=(kr) of positive integers

such that k0=0 and kr−kr−1→∞ as r→∞. A sequence x=(xk) is called q−lacunary almost

statistical convergent to ξ provided that for each ε>0, limr(kr−kr−1)−1{ the number of

k:kr−1<k�kr :q(tkm(x)−ξ)�ε}=0. The purpose of this paper is to introduce the concept

of q− lacunary strongly almost convergence with respect to an Orlicz function and

q− lacunary almost statistical convergence, and examine some properties of these se-

quence spaces. We establish some connections between q−lacunary strongly almost

convergence and q−lacunary almost statistical convergence. It is also shown that if a

sequence is q−lacunary strongly almost convergent with respect to an Orlicz function

then it is q− lacunary almost statistical convergent.
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1. Introduction

Let w denote the set of all real sequences x = (xn). By �∞ and c, we denote
the Banach spaces of bounded and convergent sequences x = (xn) normed by
‖x‖ = supn |xn|, respectively. A linear functional L on �∞ is said to be a Banach
limit [1] if it has the properties:
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i) L(x) � 0 if x � 0 (i.e. xn � 0 for all n),
ii) L(e) = 1, where e = (1, 1, . . . ),
iii) L(Dx) = L(x),
where D is the shift operator defined by (Dxn) = (xn+1).

Let B be the set of all Banach limits on �∞. A sequence x is said to be almost
convergent to a number ξ if L(x) = ξ for all L ∈B. Lorentz [12] has shown that
x is almost convergent to ξ if and only if

tkm = tkm(x) =
xm + xm+1 + . . . + xm+k

k + 1
→ ξ as k → ∞, uniformly in m.

Let f denote the set of all almost convergent sequences. We write f − limx = ξ
if x is almost convergent to ξ. Maddox [13] and (independently) Freedman et al.
[7] have defined x to be strongly almost convergent to a number ξ if

1
k + 1

k∑
i=0

|xi+m − ξ| → 0 as k → ∞, uniformly in m.

Let [f ] denote the set of all strongly almost convergent sequences. If x is
strongly almost convergent to ξ, we write [f ] − limx = ξ. It is easy to see that
[f ] ⊂ f ⊂ �∞. Das and Sahoo [4] defined the sequence space

[w(p)] =
{
x ∈ w :

1
n + 1

n∑
k=0

|tkm(x) − ξ|pk → 0 as n → ∞, uniformly in m
}

and investigated some of its properties.
The definition of statistical convergence was introduced by Fast [6] in a short

note. Schoenberg [20] studied statistical convergence as a summability method
and listed some of the elementary properties of statistical convergence. Recently,
statistical convergence has been studied by various authors (cf. [3, 8, 9, 14, 17,
18]).

The statistical convergence depends on the density of the subsets of N, the
set of natural numbers. A subset E of N is said to have density δ(E) if

δ(E) = lim
n→∞

1
n

n∑
k=1

χE(k) exists,

where χE is the characteristic function of E.
A sequence (xn) is said to be statistically convergent to ξ if for every ε >

0, δ
({k ∈ N : |xk − ξ| � ε}) = 0. In this case we write stat-limxk = ξ.
Let θ = (kr) be the sequence of positive integers such that k0 = 0, 0 < kr <

kr+1 and hr = kr − kr−1 → ∞ as r → ∞. Then θ is called a lacunary sequence.
The intervals determined by θ will be denoted by Ir = (kr−1, kr] and the ratio
kr/kr−1 will be denoted by ηr.

Lacunary sequences have been studied in [2, 5, 7, 9, 19].
An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous,

non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) → ∞
as x → ∞.
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Lindenstrauss and Tzafriri [11] used the idea of Orlicz function to construct
the sequence space

�M =
{
x ∈ w :

∞∑
k=1

M
( |xk|

ρ

)
< ∞ for some ρ > 0

}
.

The space �M with the norm

‖x‖ = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|

ρ

)
� 1

}

becomes a Banach space, called an Orlicz sequence space. The space �M is closely
related to the space �p which is an Orlicz sequence space with M(x) = |x|p for
1 � p < ∞.

Recently Orlicz sequence spaces have been studied by Mursaleen et al. [15],
Bhardwaj and Singh [2], Savaş and Rhoades [19] and many others.

A sequence space E is said to be solid (or normal) if (αkxk) ∈ E whenever
(xk) ∈ E for all sequences (αk) of scalars with |αk| � 1 for all k ∈ N.

A sequence space E is said to be monotone if it contains the canonical preim-
ages of its step spaces [10].

Remark. Two Orlicz functions M1 and M2 are said to be equivalent if there are
positive constants α and β, and x0 such that M1(αx) � M2(x) � M1(βx) for
all x with 0 � x � x0 [10].

It is well known that if M is a convex function and M(0) = 0, then M(λx) �
λM(x) for all λ with 0 < λ < 1.

2. Main Results

Let M be an Orlicz function, p = (pk) be a sequence of positive real numbers
and X be a seminormed space over the field C of complex numbers with the
seminorm q. w(X) denotes the space of all sequences x = (xk), where xk ∈ X .
We define the following sequence spaces:

(W, θ, M, p, q) =
{

x ∈ w(X) : lim
r

1
hr

∑
k∈Ir

[M(q(
tkm(x) − ξ

ρ
))]pk = 0,

uniformly in m for some ξ and for some ρ > 0
}
,

(W, θ, M, p, q)0 =
{

x ∈ w(X) : lim
r

1
hr

∑
k∈Ir

[M(q(
tkm(x)

ρ
))]pk = 0,

uniformly in m for some ρ > 0
}
,

(W, θ, M, p, q)∞ =
{

x ∈ w(X) : sup
r,m

1
hr

∑
k∈Ir

[M(q(
tkm(x)

ρ
))]pk < ∞,

for some ρ > 0
}
.
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We get the following sequence spaces from the above sequence spaces on
giving particular values to θ, M and p.
i) If pk = 1 for all k ∈ N, then we shall denote (W, θ, M, p, q), (W, θ, M, p, q)0 and
(W, θ, M, p, q)∞ by (W, θ, M, q), (W, θ, M, q)0 and (W, θ, M, q)∞, respectively.

If x ∈ (W, θ, M, q) we say that x is q− lacunary strongly almost convergent
with respect to the Orlicz function M .
ii) Taking pk = 1 for all k ∈ N and M(x) = x, we denote the above sequence
spaces by (W, θ, q), (W, θ, q)0 and (W, θ, q)∞, respectively.
iii) In the case θ = (2r) we shall denote the above sequence spaces by (W, M, p, q),
(W, M, p, q)0 and (W, M, p, q)∞, respectively.

Theorem 2.1. Let M be an Orlicz function.Then (W, θ, M, p, q)0⊂(W, θ, M, p, q)
⊂ (W, θ, M, p, q)∞.

Proof. Let x ∈ (W, θ, M, p, q). Then we have

1
hr

∑
k∈Ir

[
M

( tkm(x)
ρ

)]pk

� D

hr

∑
k∈Ir

[
M

(
q
( tkm(x)–ξ

ρ

))]pk

+
D

hr

∑
k∈Ir

[
M

(q(ξ)
ρ

)]pk

� D

hr

∑
k∈Ir

[
M

(
q
( tkm(x) − ξ

ρ

))]pk

+ D max
{

1, sup
[
M

(q(ξ)
ρ

)]H}
,

where supk pk = G, H = max(1, G) and D = max(1, 2G−1).
Thus we get x ∈ (W, θ, M, p, q)∞. The inclusion (W, θ, M, p, q)0 ⊂ (W, θ, M, p, q)
is obvious.

Theorem 2.2. Let the sequence (pk) be bounded, then (W, θ, M, p, q)0, (W, θ,
M, p, q) and (W, θ, M, p, q)∞ are linear spaces over the set of complex numbers.

Proof. Omitted.

Theorem 2.3. The spaces (W, θ, M, p, q)0, (W, θ, M, p, q) and (W, θ, M, p, q)∞
are paranormed spaces (not totally paranormed), paranormed by

g(x) = inf
{

ρpr/H : sup
k

M
(
q
( tkm(x)

ρ

))
� 1, ρ > 0, uniformly in m

}
,

Proof. Clearly g(x) = g(−x), and q
( tkm(θ̄)

ρ

)
= q(θ̄) = 0 where θ̄ is the zero

sequence. Nothing that M(0) = 0, from the above one gets, g(θ̄) = 0. Next let
(xk), (yk) ∈ (W, θ, M, p, q)0. Let ρ1 > 0 and ρ2 > 0 be such that

sup
k

M
(
q
( tkm(x)

ρ1

))
� 1, uniformly in m (1)

and
sup

k
M

(
q
( tkm(y)

ρ2

))
� 1, uniformly in m. (2)

Let ρ = ρ1 + ρ2. Then we have



Lacunary Sequences and Almost Statistical Convergence 133

sup
k

M
(
q
( tkm(x + y)

ρ

))
�

( ρ1

ρ1 + ρ2

)
sup

k
M

(
q
( tkm(x)

ρ1

))

+
( ρ2

ρ1 + ρ2

)
sup

k
M

(
q
( tkm(y)

ρ2

))
� 1, uniformly in m

by (1) and (2). Hence g(x + y) � g(x) + g(y).
The continuity of scalar multiplication follows from the following equality:

g(λx) = inf
{
ρpr/H : sup

k
M

(
q
( tkm(λx)

ρ

))
� 1, ρ > 0, uniformly in m

}

= inf
{
(|λ|s)pr/H : sup

k
M

(
q
( tkm(x)

ρ

))
� 1, ρ > 0, uniformly in m

}
,

where s = ρ
|λ| .

Theorem 2.4. Let M1 and M2 be Orlicz functions. Then we have
i) (W, θ, M1, p, q)0 ∩ (W, θ, M2, p, q)0 ⊂ (W, θ, M1 + M2, p, q)0,
ii) (W, θ, M1, p, q) ∩ (W, θ, M2, p, q) ⊂ (W, θ, M1 + M2, p, q),
iii) (W, θ, M1, p, q)∞ ∩ (W, θ, M2, p, q)∞ ⊂ (W, θ, M1 + M2, p, q)∞.

Proof. It is straightforward and hence omitted.

Theorem 2.5. Let 0 < pk � tk and
(

tk

pk

)
be bounded. Then (W, θ, M, t, q) ⊂

(W, θ, M, p, q).

Proof. If we take wk,m =
[
M

(
q
( tkm(x)

ρ

))]tk for all k, m and use the same tech-
nique of Theorem 2 of Nanda [16], the theorem is easily to be proved.

Theorem 2.6. The sequence spaces (W, θ, M, p, q)0 and (W, θ, M, p, q)∞ are
neither solid nor monotone.

Proof. We give the proof only for (W, θ, M, p, q)0. For this let pk = 1, for k ∈ N,
θ = (2r) M(x) = x and q(x) = |x|. Consider two sequences xk = (−1)k and αk =
(−1)k for all k ∈ N. Then (xk) ∈ (W, θ, M, p, q)0 but (αkxk) /∈ (W, θ, M, p, q)0.
Hence (W, θ, M, p, q)0 is not solid.

Consider the J− stepspace [(W, θ, M, p, q)0]J of (W, θ, M, p, q)0. Given a se-
quence x = (xk) ∈ (W, θ, M, p, q)0 let us define y = (yk) ∈ [(W, θ, M, p, q)0]J as
yk = xk for odd k and yk = 0, otherwise. Then (yk) /∈ (W, θ, M, p, q)0. Hence
(W, θ, M, p, q)0 is not monotone.

The other cases can be proved on considering similar examples.
The following theorem can be proved using the same techniques of Theorem

2.5 and Theorem 2.6 of Savas and Rhoades [19], therefore we give without proof.

Theorem 2.7. Let θ = (kr) be a lacunary sequence with 1 < lim infr ηr �
lim supr ηr < ∞. Then for any Orlicz function M, we have (W, M, p, q) =
(W, θ, M, p, q).
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Corollary 2.8. (W, θ, M, p, q)0 and (W, θ, M, p, q) are nowhere dense subsets of
(W, θ, M, p, q)∞.

Proof. Proof follows from Theorem 2.1.

Theorem 2.9. Let M1 and M2 be two Orlicz functions. If M1 and M2 are
equivalent then

i) (W, θ, M1, p, q)0 = (W, θ, M2, p, q)0,
ii) (W, θ, M1, p, q) = (W, θ, M2, p, q),
iii) (W, θ, M1, p, q)∞ = (W, θ, M2, p, q)∞.

Proof. Proof follows from the equivalence of M1 and M2.

3. q− Lacunary Almost Statistical Convergence

In this section we define q− lacunary almost statistical convergence and give
some relations between q−lacunary almost statistical convergence and q− lacu-
nary strongly almost convergence with respect to an Orlicz function.

Definition 3.1. Let θ be a lacunary sequence, then the sequence x = (xk) is
said to be q−lacunary almost statistically convergent to the number ξ provided
that for every ε > 0,

lim
r

1
hr

|{k ∈ Ir : q(tkm(x) − ξ) � ε
}| = 0, uniformly in m.

In this case we write [Sθ]q − limx = ξ or xk → ξ([Sθ]q) and we define

[Sθ]q =
{
x ∈ w(X) : [Sθ]q − limx = ξ, for some ξ

}
.

In the case θ = (2r), we shall write [S]q instead of [Sθ]q.

Definition 3.2. Let θ be a lacunary sequence and 0 < p < ∞. Then the
sequence x = (xk) is said to be q−lacunary strongly almost convergent to the
number ξ provided that

lim
r

1
hr

∑
k∈Ir

(q(tkm(x) − ξ))p = 0, uniformly in m.

In this case we write [wθ]q − lim x = ξ or xk → ξ([wθ ]q) and we define

[wθ]q =
{
x ∈ w(X) : [wθ]q − limx = ξ, for some ξ

}
.

Theorem 3.3. Let θ be a lacunary sequence.
i) If a sequence (xk) is q−lacunary strongly almost convergent to ξ, then it is

q−lacunary almost statistically convergent to ξ.
ii) If a q−bounded sequence x (that is x ∈ �∞(q)) is q−lacunary almost statis-

tically convergent to ξ, then it is q−lacunary strongly almost convergent to
ξ.

iii) �∞(q) ∩ [Sθ]q = �∞(q) ∩ [wθ]q,
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where, �∞(q) = {x ∈ w(X) : supk q(x) < ∞}.
Proof.
(i) Let ε > 0 and xk → ξ([wθ]q). Then we can write

∑
k∈Ir

(q(tkm(x)−ξ))p �
∑
k∈Ir

|tkm(x)−ξ|�ε

(q(tkm(x)−ξ))p � εp
∣∣{k ∈ Ir : q(tkm(x)−ξ) � ε

}∣∣.

Hence xk → ξ([Sθ]q).
ii) Suppose that xk → ξ([Sθ]q) and let x ∈ �∞(q). Let ε > 0 be given and select
Nε such that

1
hr

∣∣∣∣∣
{

k ∈ Ir : q(tkm(x) − ξ) �
(ε

2

) 1
p

}∣∣∣∣∣ � ε

2Kp

for all m and r > Nε and set Lrm = {k ∈ Ir : q(tkm(x) − ξ) �
(

ε
2

) 1
p }, where

K = supk,m(q(tkm(x) − ξ))p. Now for all m and r > Nε we have

1
hr

∑
k∈Ir

q(tkm(x) − ξ)p =
1
hr

∑
k∈Ir

k∈Lrm

q(tkm(x) − ξ)p +
1
hr

∑
k∈Ir

k/∈Lrm

q(tkm(x) − ξ)p

� 1
hr

( hrε

2Kp

)
Kp +

ε

2hr
hr = ε.

Thus (xk) ∈ [wθ]q. This completes the proof.
The proof of (iii) follows from (i) and (ii). �

Theorem 3.4. For any lacunary sequence θ, if lim inf
r→∞ ηr > 1, then [S]q ⊂ [Sθ]q.

Proof. If lim inf
r→∞ ηr > 1, then there exists a δ > 0 such that 1 + δ � ηr for

sufficiently large r. Since hr = kr − kr−1, we have kr

hr
� 1+δ

δ . Let xk → ξ([Sθ]q).
Then for every ε > 0 and for all m we have

1
kr

∣∣{k � kr : q(tkm(x) − ξ) � ε
}∣∣ � 1

kr

∣∣{k ∈ Ir : q(tkm(x) − ξ) � ε
}∣∣

� δ

1 + δ

1
hr

∣∣{k ∈ Ir : q(tkm(x) − ξ) � ε
}∣∣.

Hence [S]q ⊂ [Sθ]q.

Theorem 3.5. For any lacunary sequence θ, if lim supr qr < ∞, then [Sθ]q ⊂
[S]q.

Proof. Suppose that lim supr qr < ∞. Then there exists a β > 0 such that
ηr < β for all r. Let xk → ξ([Sθ]q), and for each m � 1 set Erm = |{k ∈ Ir :
q(tkm(x)−ξ) � ε}|. Then there exists an r0 ∈ N such that Erm

hr
< ε for all r > r0
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and for each m � 1. Let K = max{Erm : 1 � r � r0} and choose n such that
kr−1 < n � kr, then for each m � 1 we have

1
n

∣∣{k � n : q(tkm(x) − ξ) � ε
}∣∣ � 1

kr−1

∣∣{k � kr : q(tkm(x) − ξ) � ε
}∣∣

� 1
kr−1

{
E1m + E2m + · · · + Er0m + E(r0+1)m + · · · + Erm

}
� K

kr−1
r0 +

1
kr−1

{E(r0+1)m

hr0+1
hr0+1 + · · · + Erm

hr
hr

}

� K

kr−1
r0 +

1
kr−1

(
sup
r>r0

Erm

hr

)
{hr0+1 + · · · + hr}

� K

kr−1
r0 + ε

kr − kr0

kr−1

� K

kr−1
r0 + εqr

� K

kr−1
r0 + εβ.

This completes the proof. �

Theorem 3.6. Let M be an Orlicz function. Then (W, θ, M, p, q) ⊂ [Sθ]q.

Proof. Let x ∈ (W, θ, M, p, q). Then there exists a number ρ > 0 such that
1
hr

∑
k∈Ir

[
M

(
q
( tkm(x) − ξ

ρ

))]pk → 0, as r → ∞.

Then given ε > 0 we have

1
hr

∑
k∈Ir

[
M

(
q
( tkm(x) − ξ

ρ

))]pk

� 1
hr

∑
k∈Ir

q(tkm(x)−ξ)�ε

[
M

(
q
( tkm(x) − ξ

ρ

))]pk

� 1
hr

∑
k∈Ir

q(tkm(x)−ξ)�ε

[M(ε1)]pk , where ε/ρ = ε1

� 1
hr

∑
min

{[
M

(
ε1

)]inf pk , [M(ε1)]G
}

� 1
hr

∣∣{k ∈ Ir : q(tkm(x) − ξ) � ε
}∣∣. min

{[
M(ε1)

]inf pk , [M(ε1)]G
}
.

Hence x ∈ [Sθ]q.

Theorem 3.7. [Sθ]q ∩ �∞(q) = (W, θ, M, q) ∩ �∞(q).

Proof. By Theorem 3.6, we need only show that

[Sθ]q ∩ �∞(q) ⊂ (W, θ, M, q) ∩ �∞(q).
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For each m � 1, let ykm = (tkm(x) − ξ) → 0(Sθ). Since (xk) ∈ �∞(q), for each
m � 1 there exists K > 0 such that

M
[
q
(ykm

ρ

)]
� K

for all ykm. Then given ε > 0 and for each m ∈ N, we have

1
hr

∑
k∈Ir

M
[
q
(ykm

ρ

)]
=

1
hr

∑
k∈Ir

q(tkm(x)−L)�ε

M
[
q
(ykm

ρ
)] +

1
hr

∑
k∈Ir

q(tkm(x)−L)<ε

M [q(
ykm

ρ

)]

� K

hr
|{k ∈ Ir : q(ykm) � ερ

}| + M(
ε

ρ
).

Hence x ∈ (W, θ, M, q) ∩ �∞(q).
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ysis 8 (1988) 47–63.

4. G. Das and S.K. Sahoo, On some sequence spaces, J. Math. Anal. Appl. 164

(1992) 381–398.

5. G. Das and S.K. Mishra, Banach limits and lacunary strong almost convegence,

J. Orissa Math. Soc. 2 (1983) 61–70.

6. H. Fast, Sur la convergence statistique, Colloq. Math.2 (1951) 241–244.

7. A.R. Freedman, J. J. Sember, and M. Raphael, Some Cesaro-type summability

spaces, Proc. Lond. Math. Soc. 37 (1978) 508–520.

8. J. A. Fridy, On the statistical convergence, Analysis 5 (1985) 301–313.

9. J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160

(1993) 43–51.

10. P.K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, Inc.

New York, 1981.

11. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10

(1971) 379–390.

12. G. G. Lorentz, A contribution to the theory of divergent series, Acta Math. 80

(1948) 167–190.

13. I. J. Maddox, A new type of convergence, Math. Proc. Camb. Phil. Soc. 83

(1978) 61–64.

14. I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc.

Camb. Phil. Soc. 104 (1988) 141–145.

15. Mursaleen, Q.A. Khan, and T.A. Chishti, Some new convergent sequences spaces

defined by Orlicz functions and statistical convergence, Ital. J. Pure Appl. Math.

9 (2001) 25–32.

16. S. Nanda, Strongly almost summable and strongly almost convergent sequences,

Acta. Math. Hung. 49 (1987) 71–76.
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