Strong Insertion of a Contra - Continuous Function*

Majid Mirmiran
Department of Mathematics, University of Isfahan
Isfahan 81746-73441, Iran

Received February 22, 2004
Revised October 20, 2005

Abstract

Necessary and sufficient conditions in terms of lower cut sets are given for the strong insertion of a contra-continuous function between two comparable realvalued functions on such topological spaces that Λ-sets are open.

1. Introduction

A generalized class of closed sets was considered by Maki in 1986 [9]. He investigated the sets that can be represented as union of closed sets and called them V -sets. Complements of V -sets, i.e., sets that are intersection of open sets are called Λ-sets [9].

Results of Katětov [5, 6] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give necessary and sufficient conditions for the insertion of a contra-continuous function between two comparable real-valued functions on such topological spaces that Λ-sets are open [3].

A real-valued function f defined on a topological space X is called contracontinuous if the preimage of every open subset of \mathbb{R} is closed in X.

If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(X) \leq f(X)$ for all X in X.

[^0]The following definitions are modifications of conditions considered in [7].
A property \mathbf{P} defined relative to a real-valued function on a topological space is a cC-property provided that any constant function has property P and provided that the sum of a function with property P and any contra-continuous function also has property P. If P_{1} and \mathbf{P}_{2} are $\mathbb{C C}-$ properties, the following terminology is used: (i) A space X has the weak cc -insertion property for $\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)$ if and only if for any functions g and f on X such that $g \leq f, g$ has property P_{1} and f has property P_{2}, then there exists a contra-continuous function h such that $\mathrm{g} \leq \mathrm{h} \leq \mathrm{f}$. (ii) A space X has the strong cc-insertion property for $\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)$ if and only if for any functions g and f on X such that $g \leq f, g$ has property P_{1} and f has property P_{2}, then there exists a contra-continuous function h such that $\mathrm{g} \leq \mathrm{h} \leq \mathrm{f}$ and such that if $\mathrm{g}(\mathrm{x})<\mathrm{f}(\mathrm{x})$ for any x in X , then $\mathrm{g}(\mathrm{x})<\mathrm{h}(\mathrm{x})<\mathrm{f}(\mathrm{x})$.

In this paper, for a topological space that Λ-sets are open, is given a sufficient condition for the weak CC-insertion property. Also for a space with the weak CC-insertion property, we give necessary and sufficient conditions for the space to have the strong $\mathbf{C C}$-insertion property. Several insertion theorems are obtained as corollaries of these results.

2. The Main Results

Before giving a sufficient condition for insertability of a contra-continuous function, the necessary definitions and terminology are stated.

Definition 2.1. Let A be a subset of a topological space (X, τ). We define the subsets A^{Λ} and A^{\vee} as follows:
$A^{\Lambda}=\cap\{O: O \supseteq A, O \in \tau\}$ and $A^{V}=\cup\left\{F: F \subseteq A, F^{c} \in \tau\right\}$.
In $[4,8], \mathrm{A}^{\Lambda}$ is called the kernel of A .
The following first two definitions are modifications of conditions considered in $[5,6]$.

Definition 2.2. If ρ is a binary relation in a set S then ρ is defined as follows: $x \rho y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set $\mathrm{P}(\mathrm{X})$ of a topological space X is called a strong binary relation in $P(X)$ in case ρ satisfies each of the following conditions:

1) If $A_{i} \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and for any $j \in\{1, \ldots, n\}$, then there exists a set C in $P(X)$ such that $A_{i} \rho C$ and $C \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and any $\mathrm{j} \in\{1, \ldots, \mathrm{n}\}$.
2) If $A \subseteq B$, then $A \rho B$.
3) If $A \rho B$, then $A^{\Lambda} \subseteq B$ and $A \subseteq B^{V}$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X: f(x)<\} \subseteq A(f,) \subseteq\{x \in X: f(x) \leq\}$ for a real number , then $A(f$,$) is called a lower indefinite cut set in the domain of f$ at the level.

We now give the following main results:
Theorem 2.1. Let g and f be real-valued functions on a topological space X, in which Λ-sets are open, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$, then there exists a contra-continuous function h defined on X such that $\mathrm{g} \leq \mathrm{h} \leq \mathrm{f}$.

Proof. Let g and f be real-valued functions defined on X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by $F(t)=A(f, t)$ and $G(t)=A(g, t)$. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \rho F\left(t_{2}\right), G\left(t_{1}\right) \rho G\left(t_{2}\right)$, and $F\left(t_{1}\right) \rho G\left(t_{2}\right)$. By Lemmas 1 and 2 of [6] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_{1} and t_{2} are any rational numbers with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \rho H\left(t_{2}\right), H\left(t_{1}\right) \rho H\left(t_{2}\right)$ and $H\left(t_{1}\right) \rho G\left(t_{2}\right)$.

For any \mathbf{x} in \mathbf{X}, let $h(\mathbf{x})=\inf \{\mathbf{t} \in \mathbb{Q}: \mathbf{x} \in \mathbf{H}(\mathrm{t})\}$.
We first verify that $\mathrm{g} \leq \mathrm{h} \leq \mathrm{f}$: If x is in $\mathrm{H}(\mathrm{t})$ then x is in $\mathrm{G}\left(\mathrm{t}^{\prime}\right)$ for any $\mathrm{t}^{\prime}>\mathrm{t}$; since x is in $\mathrm{G}\left(\mathrm{t}^{\prime}\right)=\mathrm{A}\left(\mathrm{g}, \mathrm{t}^{\prime}\right)$ implies that $\mathrm{g}(\mathrm{x}) \leq \mathrm{t}^{\prime}$, it follows that $\mathrm{g}(\mathrm{x}) \leq \mathrm{t}$. Hence $g \leq h$. If x is not in $H(t)$, then X is not in $F\left(t^{\prime}\right)$ for any $t^{\prime}<t$; since x is not in $F\left(t^{\prime}\right)=A\left(f, t^{\prime}\right)$ implies that $f(x)>t^{\prime}$, it follows that $f(x) \geq t$. Hence $\mathrm{h} \leq \mathrm{f}$.

Also, for any rational numbers t_{1} and t_{2} with $t_{1}<t_{2}$, we have $h^{-1}\left(t_{1}, t_{2}\right)=$ $\mathrm{H}\left(\mathrm{t}_{2}\right)^{\mathrm{V}} \backslash \mathrm{H}\left(\mathrm{t}_{1}\right)^{\Lambda}$. Hence $\mathrm{h}^{-1}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$ is closed in X , i.e., h is a contra-continuous function on X.

The above proof used the technique of proof of Theorem 1 of [5].
If a space has the strong CC-insertion property for $\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)$, then it has the weak CC-insertion property for ($\mathrm{P}_{1}, \mathrm{P}_{2}$). The following results use lower cut sets and gives a necessary and sufficient condition for a space satisfying the weak CC-insertion property to satisfy the strong CC-insertion property.

Theorem 2.2. Let P_{1} and P_{2} be cc-properties and X be a space satisfying the weak cc-insertion property for $\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)$. Also assume that g and f are functions on X such that $g \leq f, g$ has property P_{1} and f has property P_{2}. The space X has the strong CC-insertion property for $\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)$ if and only if there exist lower cut sets $A\left(f-g, 2^{-n}\right)$ and there exists a sequence $\left\{F_{n}\right\}$ of subsets of X such that (i) for each n, F_{n} and $A\left(f-g, 2^{-n}\right)$ are completely separated by contra-continuous functions, and (ii) $\{x \in X:(f-g)(x)>0\}=\underset{n=1}{\infty} F_{n}$.

Proof. Theorem 3.1 of [11].
Theorem 2.3. Let P_{1} and P_{2} be cc-properties and assume that a space X satisfies the weak cc-insertion property for $\left(P_{1}, P_{2}\right)$. The space X satisfies the strong cc-insertion property for ($\mathrm{P}_{1}, \mathrm{P}_{2}$) if and only if X satisfies the strong cc -insertion property for ($\mathrm{P}_{1}, \mathrm{Cc}$) and for ($\mathrm{Cc}, \mathrm{P}_{2}$).

Proof. Theorem 3.2 of [11].

3. Applications

Definition 3.1. A real-valued function f defined on a space X is called upper semi-contra-continuous (resp. lower semi-contra-continuous) if $\mathrm{f}^{-1}(-\infty, \mathrm{t})$ (resp. $\mathrm{f}^{-1}(\mathrm{t},+\infty)$) is closed for any real number t .

The abbreviations USC, ISC, USCC, ISCC, and CC are used for upper semicontinuous, lower semicontinuous, upper semi-contra-continuous, lower semi-contracontinuous, and contra-continuous, respectively.

Before stating the consequences of Theorems 2.1, 2.2, and 2.3 we suppose that X is a topological space that Λ-sets are open.

Corollary 3.1. X is an extremally disconnected space if and only if X has the weak Cc-insertion property for (uscc, IScc).

Proof. Let X be an extremally disconnected space and let g and f be real-valued functions defined on the X, such that f is ISCC, g is USCC, and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $A^{\Lambda} \subseteq B^{\vee}$, then by hypothesis ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $\mathrm{t}_{1}<\mathrm{t}_{2}$, then

$$
\mathrm{A}\left(\mathrm{f}, \mathrm{t}_{1}\right) \subseteq\left\{\mathrm{x} \in \mathrm{X}: \mathrm{f}(\mathrm{x}) \leq \mathrm{t}_{1}\right\} \subseteq\left\{\mathrm{x} \in \mathrm{X}: \mathrm{g}(\mathrm{x})<\mathrm{t}_{2}\right\} \subseteq \mathrm{A}\left(\mathrm{~g}, \mathrm{t}_{2}\right)
$$

since $\left\{x \in X: f(x) \leq t_{1}\right\}$ is open and since $\left\{x \in X: g(x)<t_{2}\right\}$ is closed, it follows that $A\left(f, t_{1}\right)^{\Lambda} \subseteq A\left(g, t_{2}\right)^{V}$. Hence $t_{1}<t_{2}$ implies that $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$. The proof of the first part follows from Theorem 2.1.

On the other hand, let G_{1} and G_{2} be disjoint open sets. Set $f=\chi_{G_{1}^{c}}$ and $\mathrm{g}=\chi_{\mathrm{G}_{2}}$, then f is ISCC, g is $\mathbf{u s c c}$, and $\mathrm{g} \leq \mathrm{f}$. Thus there exists a contracontinuous function h such that $g \leq h \leq f$. Set $F_{1}=\left\{\mathbf{x} \in X: h(x)<\frac{1}{2}\right\}$ and $\mathrm{F}_{2}=\left\{\mathbf{x} \in \mathbf{X}: \mathrm{h}(\mathbf{x})>\frac{1}{2}\right\}$, then F_{1} and F_{2} are disjoint closed sets such that $\mathrm{G}_{1} \subseteq \mathrm{~F}_{1}$ and $\mathrm{G}_{2} \subseteq \mathrm{~F}_{2}$ i.e., X is an extremally disconnected space.

Before stating the consequences of Theorem 2.2, we state and prove some necessary lemmas.

Lemma 3.1. The following conditions on a space X are equivalent:
(i) X is an extremally disconnected space.
(ii) If G is an open subset of X which is contained in a closed subset F, then there exists a closed subset H such that $G \subseteq H \subseteq H^{\Lambda} \subseteq F$.

Proof.
(i) \Rightarrow (ii) Suppose that $G \subseteq F$, where G and F are open subset and closed subset of X, respectively. Hence, F^{C} is an open set and $G \cap \mathrm{~F}^{\mathrm{c}}=\varnothing$.

By (i) there exist two disjoint closed sets F_{1}, F_{2} such that, $G \subseteq F_{1}$ and $F^{c} \subseteq F_{2}$. But

$$
\mathrm{F}^{\mathrm{c}} \subseteq \mathrm{~F}_{2} \Rightarrow \mathrm{~F}_{2}^{\mathrm{c}} \subseteq \mathrm{~F},
$$

and

$$
\mathrm{F}_{1} \cap \mathrm{~F}_{2}=\varnothing \Rightarrow \mathrm{F}_{1} \subseteq \mathrm{~F}_{2}^{\mathrm{c}}
$$

hence

$$
\mathrm{G} \subseteq \mathrm{~F}_{1} \subseteq \mathrm{~F}_{2}^{\mathrm{c}} \subseteq \mathrm{~F}
$$

and since $F_{2}{ }_{2}$ is an open set containing F_{1} we conclude that $F_{1}^{\Lambda} \subseteq F_{2}{ }^{c}$, i.e.,

$$
\mathrm{G} \subseteq \mathrm{~F}_{1} \subseteq \mathrm{~F}_{1}^{\Lambda} \subseteq \mathrm{F}
$$

By setting $\mathrm{H}=\mathrm{F}_{1}$, condition (ii) holds.
(ii) \Rightarrow (i) Suppose that G_{1}, G_{2} are two disjoint open sets of X.

This implies that $\mathrm{G}_{1} \subseteq \mathrm{G}_{2}^{\mathrm{c}}$ and G_{2}^{c} is a closed set. Hence by (ii) there exists a closed set H such that, $\mathrm{G}_{1} \subseteq \mathrm{H} \subseteq \mathrm{H}^{\Lambda} \subseteq \mathrm{G}_{2}^{\mathrm{c}}$.

But

$$
\mathrm{H} \subseteq \mathrm{H}^{\Lambda} \Rightarrow \mathrm{H} \cap\left(\mathrm{H}^{\Lambda}\right)^{\mathrm{c}}=\varnothing
$$

and

$$
\mathrm{H}^{\Lambda} \subseteq \mathrm{G}_{2}^{\mathrm{c}} \Rightarrow \mathrm{G}_{2} \subseteq\left(\mathrm{H}^{\Lambda}\right)^{\mathrm{c}}
$$

Furthermore, $\left(H^{\Lambda}\right)^{c}$ is a closed subset of X. Hence $G_{1} \subseteq H, G_{2} \subseteq\left(H^{\Lambda}\right)^{c}$ and $\mathrm{H} \cap\left(\mathrm{H}^{\Lambda}\right)^{\mathrm{c}}=\varnothing$. This means that condition (i) holds.

Lemma 3.2. Suppose that X is an extremally disconnected space. If G_{1} and G_{2} are two disjoint open subsets of X , then there exists a contra-continuous function $\mathrm{h}: \mathrm{X} \rightarrow[0,1]$ such that $\mathrm{h}\left(\mathrm{G}_{1}\right)=\{0\}$ and $\mathrm{h}\left(\mathrm{G}_{2}\right)=\{1\}$.

Proof. Suppose G_{1} and G_{2} are two disjoint open subsets of X. Since $G_{1} \cap G_{2}=\varnothing$, hence $\mathrm{G}_{1} \subseteq \mathrm{G}_{2}^{\mathrm{c}}$. In particular, since $\mathrm{G}_{2}^{\mathrm{c}}$ is a closed subset of X containing G_{1}, by Lemma 3.1, there exists a closed set $\mathrm{H}_{1 / 2}$ such that,

$$
\mathrm{G}_{1} \subseteq \mathrm{H}_{1 / 2} \subseteq \mathrm{H}_{1 / 2}^{\Lambda} \subseteq \mathrm{G}_{2}^{\mathrm{c}}
$$

Note that $\mathrm{H}_{1 / 2}$ is a closed set and contains G_{1}, and $\mathrm{G}_{2}^{\mathrm{C}}$ is a closed set and contains $H_{1 / 2}^{\Lambda}$. Hence, by Lemma 3.1, there exists closed sets $H_{1 / 4}$ and $H_{3 / 4}$ such that,

$$
\mathrm{G}_{1} \subseteq \mathrm{H}_{1 / 4} \subseteq \mathrm{H}_{1 / 4}^{\Lambda} \subseteq \mathrm{H}_{1 / 2} \subseteq \mathrm{H}_{1 / 2}^{\Lambda} \subseteq \mathrm{H}_{3 / 4} \subseteq \mathrm{H}_{3 / 4}^{\Lambda} \subseteq \mathrm{G}_{2}^{\mathrm{c}}
$$

By continuing this method for every $t \in D$, where $D \subseteq[0,1]$ is the set of rational numbers that their denominators are exponents of 2 , we obtain closed sets H_{t}
with the property that if $\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{D}$ and $\mathrm{t}_{1}<\mathrm{t}_{2}$, then $\mathrm{H}_{\mathrm{t}_{1}} \subseteq \mathrm{H}_{\mathrm{t}_{2}}$. We define the function h on X by setting $h(x)=\inf \left\{t: x \in H_{t}\right\}$ for $x \notin G_{2}$ and $h(x)=1$ for $\mathrm{x} \in \mathrm{G}_{2}$.

Note that for every $\mathbf{x} \in \mathrm{X}, 0 \leq \mathrm{h}(\mathbf{x}) \leq 1$, i.e., h maps \mathbf{X} into [0,1]. Also, we note that for any $\mathrm{t} \in \mathrm{D}, \mathrm{G}_{1} \subseteq \mathrm{H}_{\mathrm{t}}$; hence $\mathrm{h}\left(\mathrm{G}_{1}\right)=\{0\}$. Furthermore, by definition, $\mathrm{h}\left(\mathrm{G}_{2}\right)=\{1\}$. It remains only to prove that h is a contra-continuous function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \leq 0$ then $\{x \in X: h(x)<\alpha\}=\varnothing$ and if $0<\alpha$ then $\{x \in X: h(x)<\alpha\}=\cup\left\{H_{t}: t<\alpha\right\}$, hence, they are closed subsets of X. Similarly, if $\alpha<0$ then $\{x \in X: h(x)>\alpha\}=X$ and if $0 \leq \alpha$ then $\{x \in X: h(X)>\alpha\}=\cup\left\{\left(H_{t}^{\Lambda}\right)^{c}: t>\alpha\right\}$ hence, every of them is a closed set. Consequently h is a contra-continuous function.

Lemma 3.3. Suppose that X is an extremally disconnected space. If G_{1} and G_{2} are two disjoint open subsets of X and G_{1} is a countable intersection of closed sets, then there exists a contra-continuous function $\mathrm{h}: \mathrm{X} \rightarrow[0,1]$ such that $\mathrm{h}^{-1}(0)=\mathrm{G}_{1}$ and $\mathrm{h}\left(\mathrm{G}_{2}\right)=\{1\}$.

Proof. Suppose that $G_{1}={ }_{n=1}^{\infty} F_{n}$, where F_{n} is a closed subset of X. We can suppose that $\mathrm{F}_{\mathrm{n}} \cap \mathrm{G}_{2}=\varnothing$, otherwise we can substitute F_{n} by $\mathrm{F}_{\mathrm{n}} \backslash \mathrm{G}_{2}$. By Lemma 3.2, for every $\mathrm{n} \in \mathbb{N}$, there exists a contra-continuous function $h_{n}: X \rightarrow[0,1]$ such that $h_{n}\left(G_{1}\right)=\{0\}$ and $h_{n}\left(X \backslash F_{n}\right)=\{1\}$. We set $h(x)=\underset{n=1}{\infty} 2^{-n} h_{n}(\mathbf{x})$.

Since the above series is uniformly convergent, it follows that h is a contracontinuous function from X into $[0,1]$. Since for every $n \in \mathbb{N}, G_{2} \subseteq X \backslash F_{n}$, therefore $h_{n}\left(G_{2}\right)=\{1\}$ and consequently $h\left(G_{2}\right)=\{1\}$. Since $h_{n}\left(G_{1}\right)=\{0\}$, hence $\mathrm{h}\left(\mathrm{G}_{1}\right)=\{0\}$. It suffices to show that if $\mathbf{x} \notin \mathrm{G}_{1}$, then $\mathrm{h}(\mathbf{x}) \neq 0$.

Now if $x \notin G_{1}$, since $G_{1}=\underset{n=1}{\infty} F_{n}$, therefore there exists $n_{0} \in \mathbb{N}$ such that $\mathbf{x} \notin \mathrm{F}_{\mathrm{n}_{0}}$, hence $\mathrm{h}_{\mathrm{n}_{0}}(\mathrm{x})=1$, i.e., $\mathrm{h}(\mathrm{x})>0$. Therefore $\mathrm{h}^{-1}(0)=\mathrm{G}_{1}$.

Lemma 3.4. Suppose that X is an extremally disconnected space. The following conditions are equivalent:
(i) For every two disjoint open sets G_{1} and G_{2}, there exists a contra-continuous function $\mathrm{h}: \mathrm{X} \rightarrow[0,1]$ such that $\mathrm{h}^{-1}(0)=\mathrm{G}_{1}$ and $\mathrm{h}^{-1}(1)=\mathrm{G}_{2}$.
(ii) Every open set is a countable intersection of closed sets.
(iii) Every closed set is a countable union of open sets.

Proof.
(i) \Rightarrow (ii). Suppose that G is an open set. Since \varnothing is an open set, by (i) there exists a contra-continuous function $h: X \rightarrow[0,1]$ such that $h^{-1}(0)=G$. Set $F_{n}=\left\{x \in X: h(x)<\frac{1}{n}\right\}$. Then for every $n \in \mathbb{N}, F_{n}$ is a closed set and ${ }_{\mathrm{n}=1}^{\infty} \mathrm{F}_{\mathrm{n}}=\{\mathrm{x} \in \mathrm{X}: \mathrm{h}(\mathrm{x})=0\}=\mathrm{G}$.
(ii) \Rightarrow (i). Suppose that G_{1} and G_{2} are two disjoint open sets. By Lemma 3.3, there exists a contra-continuous function $f: X \rightarrow[0,1]$ such that $f{ }^{-1}(0)=G_{1}$ and $\mathbf{f}\left(\mathbf{G}_{2}\right)=\{1\}$. Set $F=\left\{\mathbf{x} \in \mathbf{X}: \mathbf{f}(\mathbf{x})<\frac{1}{2}\right\}$, $\mathbf{G}=\left\{\mathbf{x} \in X: \mathbf{f}(\mathbf{x})=\frac{1}{2}\right\}$, and $H=\left\{x \in X: f(x)>\frac{1}{2}\right\}$. Then $F \cup G$ and $H \cup G$ are two open sets and $(F \cup G) \cap \mathrm{G}_{2}=\varnothing$. By Lemma 3.3, there exists a contra-continuous function $g: X \rightarrow\left[\frac{1}{2}, 1\right]$ such that $\mathrm{g}^{-1}(1)=\mathrm{G}_{2}$ and $\mathrm{g}(\mathrm{F} \cup \mathrm{G})=\left\{\frac{1}{2}\right\}$. Define h by setting $h(x)=f(x)$ for $x \in F \cup G$, and $h(x)=g(x)$ for $x \in H \cup G$. Then h is well-
defined and is a contra-continuous function, since $(F \cup G) \cap(H \cup G)=G$ and for every $x \in G$ we have $f(x)=g(x)=\frac{1}{2}$. Furthermore, $(F \cup G) \cup(H \cup G)=X$, hence h defined on X and maps X into $[0,1]$. Also, we have $h^{-1}(0)=G_{1}$ and $\mathrm{h}^{-1}(1)=\mathrm{G}_{2}$.
(ii) \Leftrightarrow (iii) By De Morgan laws and noting that the complement of every open set is a closed set and the complement of every closed set is an open set, the equivalence holds.

Corollary 3.2. For every two disjoint open sets G_{1} and G_{2}, there exists a contra-continuous function $\mathrm{h}: \mathrm{X} \rightarrow[0,1]$ such that $\mathrm{h}^{-1}(0)=\mathrm{G}_{1}$ and $\mathrm{h}^{-1}(1)=$ G_{2} if and only if X has the strong Cc -insertion property for (uscc, Iscc).

Proof. Since for every two disjoint open sets G_{1} and G_{2}, there exists a contracontinuous function $\mathrm{h}: \mathrm{X} \rightarrow[0,1]$ such that $\mathrm{h}^{-1}(0)=\mathrm{G}_{1}$ and $\mathrm{h}^{-1}(1)=\mathrm{G}_{2}$, define $\mathrm{F}_{1}=\left\{\mathrm{x} \in \mathrm{X}: \mathrm{h}(\mathrm{x})<\frac{1}{2}\right\}$ and $\mathrm{F}_{2}=\left\{\mathrm{x} \in \mathrm{X}: \mathrm{h}(\mathrm{x})>\frac{1}{2}\right\}$. Then F_{1} and F_{2} are two disjoint closed sets that contain G_{1} and G_{2}, respectively. This means that, X is an extremally disconnected space. Hence by Corollary 3.1, X has the weak Cc-insertion property for (USCC, ISCC). Now, assume that g and f are functions on X such that $g \leq f, g$ is uscc and f is Iscc. Since $f-g$ is Iscc, therefore the lower cut set $A\left(f-g, 2^{-n}\right)=\left\{x \in X:(f-g)(x) \leq 2^{-n}\right\}$ is an open set. By Lemma 3.4, we can choose a sequence $\left\{\mathbf{G}_{n}\right\}$ of open sets such that $\{\mathbf{x} \in X:(\mathbf{f}-\mathbf{g})(\mathbf{x})>0\}={ }_{\mathrm{n}=1}^{\infty} \mathrm{G}_{\mathrm{n}}$ and for every $\mathrm{n} \in \mathbb{N}, \mathrm{G}_{\mathrm{n}}$ and $A\left(f-g, 2^{-n}\right)$ are disjoint. By Lemma $3.2, G_{n}$ and $A\left(f-g, 2^{-n}\right)$ can be completely separated by contra-continuous functions. Hence by Theorem 2.2, X has the strong CC-insertion property for (USCC, ISCC).

On the other hand, suppose that G_{1} and G_{2} are two disjoint open sets. Since $\mathrm{G}_{1} \cap \mathrm{G}_{2}=\varnothing$, hence $\mathrm{G}_{2} \subseteq \mathrm{G}_{1}^{\mathrm{c}}$. Set $\mathrm{g}=\chi_{\mathrm{G}_{2}}$ and $\mathrm{f}=\chi_{\mathrm{G}_{1}}$. Then f is Iscc and g is USCC and furthermore $\mathrm{g} \leq \mathrm{f}$. By hypothesis, there exists a contra-continuous function h on X such that $g \leq h \leq f$ and whenever $g(x)<f(x)$ we have $\mathrm{g}(\mathrm{x})<\mathrm{h}(\mathrm{x})<\mathrm{f}(\mathrm{x})$. By definitions of f and g , we have $\mathrm{h}^{-1}(1)=\mathrm{G}_{2} \cap \mathrm{G}_{1}^{\mathrm{c}}=\mathrm{G}_{2}$ and $\mathrm{h}^{-1}(0)=\mathrm{G}_{1} \cap \mathrm{G}_{2}^{\mathrm{c}}=\mathrm{G}_{1}$.

Corollary 3.3. X is a normal space if and only if X has the weak cc-insertion property for (Iscc, uscc).

Proof. Let X be a normal space and let g and f be real-valued functions defined on the X, such that f is ISCC, g is USCC, and $f \leq g$. If a binary relation ρ is defined by $A \rho B$ in case $A^{\Lambda} \subseteq F \subseteq F^{\Lambda} \subseteq B^{V}$ for some closed set F in X, then by hypothesis ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $\mathrm{t}_{1}<\mathrm{t}_{2}$, then

$$
\mathrm{A}\left(\mathrm{~g}, \mathrm{t}_{1}\right)=\left\{\mathrm{x} \in \mathrm{X}: \mathrm{g}(\mathrm{x})<\mathrm{t}_{1}\right\} \subseteq\left\{\mathrm{x} \in \mathrm{X}: \mathrm{f}(\mathrm{x}) \leq \mathrm{t}_{2}\right\}=\mathrm{A}\left(\mathrm{f}, \mathrm{t}_{2}\right)
$$

since $\left\{x \in X: g(x)<t_{1}\right\}$ is a closed set and since $\left\{x \in X: f(x) \leq t_{2}\right\}$ is an open set, by hypothesis it follows that $A\left(g, t_{1}\right) \rho A\left(f, t_{2}\right)$. The proof of the first part follows from Theorem 2.1.

On the other hand, let F_{1} and F_{2} be disjoint closed sets. Set $f=\chi_{F_{2}}$ and $g=\chi_{F_{1}}$, then f is ISCC, g is USCC, and $f \leq g$.

Thus there exists a contra-continuous function h such that $f \leq h \leq g$. Set $\mathrm{G}_{1}=\left\{\mathrm{x} \in \mathbf{X}: \mathbf{h}(\mathbf{x}) \leq \frac{1}{3}\right\}$ and $\mathrm{G}_{2}=\{\mathbf{x} \in \mathbf{X}: \mathrm{h}(\mathrm{x}) \geq 2 / 3\}$ then G_{1} and G_{2} are disjoint open sets such that $F_{1} \subseteq G_{1}$ and $F_{2} \subseteq G_{2}$. Hence X is a normal space.

Corollary 3.4. Every closed set is an open set if and only if X has the strong cc-insertion property for (Iscc, uscc).

Proof. Suppose that every closed set in X is open, then X is a normal space. Hence by Corollary 3.3, X has the weak CC-insertion property for (ISCC, USCC). Now, assume that g and f are functions on X such that $g \leq f, g$ is ISCC and f is cc. Set $A\left(f-g, 2^{-n}\right)=\left\{x \in X:(f-g)(x)<2^{-n}\right\}$. Then, since $f-g$ is uscc, we can say that $A\left(f-g, 2^{-n}\right)$ is a closed set. By hypothesis, $A\left(f-g, 2^{-n}\right)$ is an open set. Set $F_{n}=X \backslash A\left(f-g, 2^{-n}\right)$. Then F_{n} is a closed set. This means that F_{n} and $A\left(f-g, 2^{-n}\right)$ are disjoint closed sets and also are two disjoint open sets. Therefore F_{n} and $A\left(f-g, 2^{-n}\right)$ can be completely separated by contra-
 By Theorem 2.2, X has the strong CC-insertion property for (ISCC, CC). By an analogous argument, we can prove that X has the strong CC-insertion property for (CC, USCC). Hence, by Theorem 2.3, X has the strong CC-insertion property for (Iscc, uscc).

On the other hand, suppose that X has the strong CC-insertion property for (ISCC, USCC). Also, suppose that F is a closed set. Set $f=1$ and $g=\chi_{F}$. Then f is USCC, g is ISCC and $g \leq f$. By hypothesis, there exists a contra-continuous function h on X such that $g \leq h \leq f$ and whenever $g(x)<f(x)$, we have $g(x)<$ $h(\mathbf{x})<\mathrm{f}(\mathbf{x})$. It is clear that $\mathrm{h}(\mathrm{F})=\{1\}$ and for $\mathbf{x} \in \mathrm{X} \backslash \mathrm{F}$ we have $0<\mathrm{h}(\mathbf{x})<1$. Since h is a contra-continuous function, therefore $\{x \in X: h(x) \geq 1\}=F$ is an open set, i.e., \mathbf{F} is an open set.

Remark 1. [5, 6]. A space X has the weak \mathbf{C}-insertion property for (USC, ISC) if and only if X is normal.

Remark 2. [10] . A space X has the strong C-insertion property for (USC, Isc) if and only if X is perfectly normal.

Remark 3. [12]. A space X has the weak C-insertion property for (Isc, usc) if and only if X is extremally disconnected.

Remark 4. [1]. A space X has the strong \mathbf{C}-insertion property for (Isc, usc) if and only if each open subset of X is closed.

References

1. J. Blatter and G. L. Seever, Interposition of semicontinuous functions by continuous functions, In: Analyse Fonctionelle et A pplications (Comptes Rendus du colloque d' A nalyse, Rio de J aneiro 1972), Hermann, Paris, 1975, 27-51.
2. F. Brooks, Indefinite cut sets for real functions, A mer. M ath. M onthly 78 (1971) 1007-1010.
3. J. Dontchev, Contra-continuous functions and strongly S-closed space, Internat. J. Math. Sci. 19 (1996) 303-310.
4. J. Dontchev and H. Maki, On Sg-closed sets and semi- $\boldsymbol{\lambda}$-closed sets, Questions Answers Gen. Topology 15 (1997) 259-266.
5. M. Katětov, On real-valued functions in topological spaces, Fund. M ath. 38 (1951) 85-91.
6. M. Katětov, Correction to "On real-valued functions in topological spaces", Fund. M ath. 40 (1953) 203-205.
7. E. Lane, Insertion of a continuous function, P acific J. M ath. 66 (1976) 181-190.
8. S. N. Maheshwari and R. Prasad, On R ${ }_{\text {Os }}$-spaces, P ortugal. Math. 34 (1975) 213-217.
9. H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement, 1986, 139-146.
10. E. Michael, Continuous selections I , Ann. M ath. 63 (1956) 361-382.
11. M. Mirmiran, Insertion of a function belonging to a certain subclass of \mathbb{R}^{X}, B ull. Iran. Math. Soc. 28 (2002) 19-27.
12. M. H. Stone, Boundedness properties in function-lattices, Canad. J. Math. 1 (1949) 176-189.

[^0]: *This work was supported by University of Isfahan, R.P. 821033 and Centre of Excellence for Mathematics (University of Isfahan).

