
Vietnam Journal of Mathematics 34:1 (2006) 41–49
������� 	
����


�

�����������

� ���� ���	

Strong Insertion of a
Contra - Continuous Function*

Majid Mirmiran

Department of Mathematics, University of Isfahan
Isfahan 81746-73441, Iran

Received February 22, 2004

Revised October 20, 2005

Abstract. Necessary and sufficient conditions in terms of lower cut sets are given

for the strong insertion of a contra-continuous function between two comparable real-

valued functions on such topological spaces that Λ−sets are open.

1. Introduction

A generalized class of closed sets was considered by Maki in 1986 [9]. He inves-
tigated the sets that can be represented as union of closed sets and called them
V −sets. Complements of V −sets, i.e., sets that are intersection of open sets are
called Λ−sets [9].

Results of Katětov [5, 6] concerning binary relations and the concept of an
indefinite lower cut set for a real-valued function, which is due to Brooks [2],
are used in order to give necessary and sufficient conditions for the insertion of
a contra-continuous function between two comparable real-valued functions on
such topological spaces that Λ−sets are open [3].

A real-valued function f defined on a topological space X is called contra-
continuous if the preimage of every open subset of R is closed in X .

If g and f are real-valued functions defined on a space X , we write g ≤ f in
case g(x) ≤ f(x) for all x in X .

∗This work was supported by University of Isfahan, R.P. 821033 and Centre of Excellence
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The following definitions are modifications of conditions considered in [7].
A property P defined relative to a real-valued function on a topological space

is a cc−property provided that any constant function has property P and pro-
vided that the sum of a function with property P and any contra-continuous
function also has property P . If P1 and P2 are cc−properties, the following ter-
minology is used: (i) A space X has the weak cc−insertion property for (P1, P2)
if and only if for any functions g and f on X such that g ≤ f, g has property
P1 and f has property P2, then there exists a contra-continuous function h such
that g ≤ h ≤ f . (ii) A space X has the strong cc−insertion property for (P1, P2)
if and only if for any functions g and f on X such that g ≤ f, g has property P1

and f has property P2, then there exists a contra-continuous function h such that
g ≤ h ≤ f and such that if g(x) < f(x) for any x in X , then g(x) < h(x) < f(x).

In this paper, for a topological space that Λ−sets are open, is given a suf-
ficient condition for the weak cc−insertion property. Also for a space with the
weak cc−insertion property, we give necessary and sufficient conditions for the
space to have the strong cc−insertion property. Several insertion theorems are
obtained as corollaries of these results.

2. The Main Results

Before giving a sufficient condition for insertability of a contra-continuous func-
tion, the necessary definitions and terminology are stated.

Definition 2.1. Let A be a subset of a topological space (X, τ). We define the
subsets AΛ and AV as follows:
AΛ = ∩{O : O ⊇ A, O ∈ τ} and AV = ∪{F : F ⊆ A, F c ∈ τ}.
In [4, 8], AΛ is called the kernel of A.

The following first two definitions are modifications of conditions considered
in [5, 6].

Definition 2.2. If ρ is a binary relation in a set S then ρ̄ is defined as follows:
x ρ̄ y if and only if y ρ ν implies x ρ ν and u ρ x implies u ρ y for any u and
v in S.

Definition 2.3. A binary relation ρ in the power set P (X) of a topological
space X is called a strong binary relation in P (X) in case ρ satisfies each of the
following conditions:

1) If Ai ρ Bj for any i ∈ {1, . . . , m} and for any j ∈ {1, . . . , n}, then there
exists a set C in P (X) such that Ai ρ C and C ρ Bj for any i ∈ {1, . . . , m}
and any j ∈ {1, . . . , n}.

2) If A ⊆ B, then A ρ̄ B.
3) If A ρ B, then AΛ ⊆ B and A ⊆ BV .

The concept of a lower indefinite cut set for a real-valued function was defined
by Brooks [2] as follows:
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Definition 2.4. If f is a real-valued function defined on a space X and if
{x ∈ X : f(x) < �} ⊆ A(f, �) ⊆ {x ∈ X : f(x) ≤ �} for a real number �, then
A(f, �) is called a lower indefinite cut set in the domain of f at the level �.

We now give the following main results:

Theorem 2.1. Let g and f be real-valued functions on a topological space X, in
which Λ−sets are open, with g ≤ f . If there exists a strong binary relation ρ on
the power set of X and if there exist lower indefinite cut sets A(f, t) and A(g, t)
in the domain of f and g at the level t for each rational number t such that if
t1 < t2 then A(f, t1) ρ A(g, t2), then there exists a contra-continuous function h
defined on X such that g ≤ h ≤ f .

Proof. Let g and f be real-valued functions defined on X such that g ≤ f . By
hypothesis there exists a strong binary relation ρ on the power set of X and there
exist lower indefinite cut sets A(f, t) and A(g, t) in the domain of f and g at the
level t for each rational number t such that if t1 < t2 then A(f, t1) ρ A(g, t2).

Define functions F and G mapping the rational numbers Q into the power
set of X by F (t) = A(f, t) and G(t) = A(g, t). If t1 and t2 are any elements
of Q with t1 < t2, then F (t1) ρ̄ F (t2), G(t1) ρ̄ G(t2), and F (t1) ρ G(t2). By
Lemmas 1 and 2 of [6] it follows that there exists a function H mapping Q into
the power set of X such that if t1 and t2 are any rational numbers with t1 < t2,
then F (t1) ρ H(t2), H(t1) ρ H(t2) and H(t1) ρ G(t2).

For any x in X , let h(x) = inf{t ∈ Q : x ∈ H(t)}.
We first verify that g ≤ h ≤ f : If x is in H(t) then x is in G(t′) for any

t′ > t; since x is in G(t′) = A(g, t′) implies that g(x) ≤ t′, it follows that g(x) ≤ t.
Hence g ≤ h. If x is not in H(t), then x is not in F (t′) for any t′ < t; since x
is not in F (t′) = A(f, t′) implies that f(x) > t′, it follows that f(x) ≥ t. Hence
h ≤ f .

Also, for any rational numbers t1 and t2 with t1 < t2, we have h−1(t1, t2) =
H(t2)V \ H(t1)Λ. Hence h−1(t1, t2) is closed in X , i.e., h is a contra-continuous
function on X . �

The above proof used the technique of proof of Theorem 1 of [5].
If a space has the strong cc-insertion property for (P1, P2), then it has the

weak cc-insertion property for (P1, P2).The following results use lower cut sets
and gives a necessary and sufficient condition for a space satisfying the weak
cc-insertion property to satisfy the strong cc-insertion property.

Theorem 2.2. Let P1 and P2 be cc−properties and X be a space satisfying the
weak cc−insertion property for (P1, P2). Also assume that g and f are functions
on X such that g ≤ f, g has property P1 and f has property P2. The space X has
the strong cc−insertion property for (P1, P2) if and only if there exist lower cut
sets A(f − g, 2−n) and there exists a sequence {Fn} of subsets of X such that (i)
for each n, Fn and A(f − g, 2−n) are completely separated by contra-continuous
functions, and (ii){x ∈ X : (f − g)(x) > 0} =

⋃∞
n=1 Fn.
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Proof. Theorem 3.1 of [11]. �

Theorem 2.3. Let P1 and P2 be cc−properties and assume that a space X
satisfies the weak cc−insertion property for (P1, P2). The space X satisfies the
strong cc−insertion property for (P1, P2) if and only if X satisfies the strong
cc−insertion property for (P1, cc) and for (cc, P2).

Proof. Theorem 3.2 of [11]. �

3. Applications

Definition 3.1. A real-valued function f defined on a space X is called up-
per semi-contra-continuous (resp. lower semi-contra-continuous) if f−1(−∞, t)
(resp. f−1(t, +∞)) is closed for any real number t.

The abbreviations usc, lsc, uscc, lscc, and cc are used for upper semicontin-
uous, lower semicontinuous, upper semi-contra-continuous, lower semi-contra-
continuous, and contra-continuous, respectively.

Before stating the consequences of Theorems 2.1, 2.2, and 2.3 we suppose
that X is a topological space that Λ−sets are open.

Corollary 3.1. X is an extremally disconnected space if and only if X has the
weak cc−insertion property for (uscc, lscc).

Proof. Let X be an extremally disconnected space and let g and f be real-valued
functions defined on the X, such that f is lscc, g is uscc, and g ≤ f . If a binary
relation ρ is defined by A ρ B in case AΛ ⊆ BV , then by hypothesis ρ is a strong
binary relation in the power set of X . If t1 and t2 are any elements of Q with
t1 < t2, then

A(f, t1) ⊆ {x ∈ X : f(x) ≤ t1} ⊆ {x ∈ X : g(x) < t2} ⊆ A(g, t2);

since {x ∈ X : f(x) ≤ t1} is open and since {x ∈ X : g(x) < t2} is closed, it
follows that A(f, t1)Λ ⊆ A(g, t2)V . Hence t1 < t2 implies that A(f, t1) ρ A(g, t2).
The proof of the first part follows from Theorem 2.1.

On the other hand, let G1 and G2 be disjoint open sets. Set f = χGc
1

and
g = χG2 , then f is lscc, g is uscc, and g ≤ f . Thus there exists a contra-
continuous function h such that g ≤ h ≤ f . Set F1 = {x ∈ X : h(x) < 1

2 } and
F2 = {x ∈ X : h(x) > 1

2 }, then F1 and F2 are disjoint closed sets such that
G1 ⊆ F1 and G2 ⊆ F2 i.e.,X is an extremally disconnected space. �

Before stating the consequences of Theorem 2.2, we state and prove some
necessary lemmas.

Lemma 3.1. The following conditions on a space X are equivalent:
(i) X is an extremally disconnected space.
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(ii) If G is an open subset of X which is contained in a closed subset F , then
there exists a closed subset H such that G ⊆ H ⊆ HΛ ⊆ F .

Proof.
(i) ⇒ (ii) Suppose that G ⊆ F , where G and F are open subset and closed
subset of X , respectively. Hence, F c is an open set and G ∩ F c = ∅.

By (i) there exist two disjoint closed sets F1, F2 such that, G ⊆ F1 and
F c ⊆ F2. But

F c ⊆ F2 ⇒ F c
2 ⊆ F,

and
F1 ∩ F2 = ∅ ⇒ F1 ⊆ F c

2 ,

hence
G ⊆ F1 ⊆ F c

2 ⊆ F,

and since F c
2 is an open set containing F1 we conclude that F Λ

1 ⊆ F c
2 , i.e.,

G ⊆ F1 ⊆ F Λ
1 ⊆ F.

By setting H = F1, condition (ii) holds.
(ii) ⇒ (i) Suppose that G1, G2 are two disjoint open sets of X .

This implies that G1 ⊆ Gc
2 and Gc

2 is a closed set. Hence by (ii) there exists
a closed set H such that, G1 ⊆ H ⊆ HΛ ⊆ Gc

2.
But

H ⊆ HΛ ⇒ H ∩ (HΛ)c = ∅,

and
HΛ ⊆ Gc

2 ⇒ G2 ⊆ (HΛ)c.

Furthermore, (HΛ)c is a closed subset of X . Hence G1 ⊆ H, G2 ⊆ (HΛ)c and
H ∩ (HΛ)c = ∅. This means that condition (i) holds. �

Lemma 3.2. Suppose that X is an extremally disconnected space. If G1 and
G2 are two disjoint open subsets of X, then there exists a contra-continuous
function h : X → [0, 1] such that h(G1) = {0} and h(G2) = {1}.

Proof. Suppose G1 and G2 are two disjoint open subsets of X . Since G1∩G2 = ∅,
hence G1 ⊆ Gc

2. In particular, since Gc
2 is a closed subset of X containing G1,

by Lemma 3.1, there exists a closed set H1/2 such that,

G1 ⊆ H1/2 ⊆ HΛ
1/2 ⊆ Gc

2.

Note that H1/2 is a closed set and contains G1, and Gc
2 is a closed set and

contains HΛ
1/2. Hence, by Lemma 3.1, there exists closed sets H1/4 and H3/4

such that,

G1 ⊆ H1/4 ⊆ HΛ
1/4 ⊆ H1/2 ⊆ HΛ

1/2 ⊆ H3/4 ⊆ HΛ
3/4 ⊆ Gc

2.

By continuing this method for every t ∈ D, where D ⊆ [0, 1] is the set of rational
numbers that their denominators are exponents of 2, we obtain closed sets Ht
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with the property that if t1, t2 ∈ D and t1 < t2, then Ht1 ⊆ Ht2 . We define the
function h on X by setting h(x) = inf{t : x ∈ Ht} for x �∈ G2 and h(x) = 1 for
x ∈ G2.

Note that for every x ∈ X, 0 ≤ h(x) ≤ 1, i.e., h maps X into [0,1]. Also,
we note that for any t ∈ D, G1 ⊆ Ht; hence h(G1) = {0}. Furthermore, by
definition, h(G2) = {1}. It remains only to prove that h is a contra-continuous
function on X . For every α ∈ R, we have if α ≤ 0 then {x ∈ X : h(x) < α} = ∅

and if 0 < α then {x ∈ X : h(x) < α} = ∪{Ht : t < α}, hence, they are closed
subsets of X . Similarly, if α < 0 then {x ∈ X : h(x) > α} = X and if 0 ≤ α
then {x ∈ X : h(x) > α} = ∪{(HΛ

t )c : t > α} hence, every of them is a closed
set. Consequently h is a contra-continuous function. �

Lemma 3.3. Suppose that X is an extremally disconnected space. If G1 and G2

are two disjoint open subsets of X and G1 is a countable intersection of closed
sets, then there exists a contra-continuous function h : X → [0, 1] such that
h−1(0) = G1 and h(G2) = {1}.

Proof. Suppose that G1 =
⋂∞

n=1 Fn, where Fn is a closed subset of X . We can
suppose that Fn∩G2 = ∅, otherwise we can substitute Fn by Fn\G2. By Lemma
3.2, for every n ∈ N, there exists a contra-continuous function hn : X → [0, 1]
such that hn(G1) = {0} and hn(X \ Fn) = {1}. We set h(x) =

∑∞
n=1 2−nhn(x).

Since the above series is uniformly convergent, it follows that h is a contra-
continuous function from X into [0, 1]. Since for every n ∈ N, G2 ⊆ X \ Fn,
therefore hn(G2) = {1} and consequently h(G2) = {1}. Since hn(G1) = {0},
hence h(G1) = {0}. It suffices to show that if x �∈ G1, then h(x) �= 0.

Now if x �∈ G1, since G1 =
⋂∞

n=1 Fn, therefore there exists n0 ∈ N such that
x �∈ Fn0 , hence hn0 (x) = 1, i.e., h(x) > 0. Therefore h−1(0) = G1. �

Lemma 3.4. Suppose that X is an extremally disconnected space. The following
conditions are equivalent:
(i) For every two disjoint open sets G1 and G2, there exists a contra-continuous

function h : X → [0, 1] such that h−1(0) = G1 and h−1(1) = G2.
(ii) Every open set is a countable intersection of closed sets.
(iii) Every closed set is a countable union of open sets.

Proof.
(i) ⇒ (ii). Suppose that G is an open set. Since ∅ is an open set, by (i) there
exists a contra-continuous function h : X → [0, 1] such that h−1(0) = G. Set
Fn = {x ∈ X : h(x) < 1

n }. Then for every n ∈ N, Fn is a closed set and⋂∞
n=1 Fn = {x ∈ X : h(x) = 0} = G.

(ii) ⇒ (i). Suppose that G1 and G2 are two disjoint open sets. By Lemma 3.3,
there exists a contra-continuous function f : X → [0, 1] such that f−1(0) = G1

and f(G2) = {1}. Set F = {x ∈ X : f(x) < 1
2 }, G = {x ∈ X : f(x) = 1

2 },
and H = {x ∈ X : f(x) > 1

2 }. Then F ∪ G and H ∪ G are two open sets and
(F ∪ G) ∩ G2 = ∅. By Lemma 3.3, there exists a contra-continuous function
g : X → [ 1

2 , 1] such that g−1(1) = G2 and g(F ∪ G) = { 1
2 }. Define h by setting

h(x) = f(x) for x ∈ F ∪ G, and h(x) = g(x) for x ∈ H ∪ G .Then h is well-
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defined and is a contra-continuous function, since (F ∪ G) ∩ (H ∪ G) = G and
for every x ∈ G we have f(x) = g(x) = 1

2 . Furthermore, (F ∪ G) ∪ (H ∪ G) = X ,
hence h defined on X and maps X into [0, 1]. Also, we have h−1(0) = G1 and
h−1(1) = G2.
(ii) ⇔ (iii) By De Morgan laws and noting that the complement of every open
set is a closed set and the complement of every closed set is an open set, the
equivalence holds. �

Corollary 3.2. For every two disjoint open sets G1 and G2, there exists a
contra-continuous function h : X → [0, 1] such that h−1(0) = G1 and h−1(1) =
G2 if and only if X has the strong cc−insertion property for (uscc, lscc).

Proof. Since for every two disjoint open sets G1 and G2, there exists a contra-
continuous function h : X → [0, 1] such that h−1(0) = G1 and h−1(1) = G2,
define F1 = {x ∈ X : h(x) < 1

2 } and F2 = {x ∈ X : h(x) > 1
2 }. Then F1

and F2 are two disjoint closed sets that contain G1 and G2, respectively. This
means that,X is an extremally disconnected space. Hence by Corollary 3.1, X
has the weak cc−insertion property for (uscc, lscc). Now, assume that g and
f are functions on X such that g ≤ f, g is uscc and f is lscc. Since f − g is
lscc, therefore the lower cut set A(f − g, 2−n) = {x ∈ X : (f − g)(x) ≤ 2−n}
is an open set. By Lemma 3.4, we can choose a sequence {Gn} of open sets
such that {x ∈ X : (f − g)(x) > 0} =

⋃∞
n=1 Gn and for every n ∈ N, Gn

and A(f − g, 2−n) are disjoint. By Lemma 3.2, Gn and A(f − g, 2−n) can be
completely separated by contra-continuous functions. Hence by Theorem 2.2, X
has the strong cc−insertion property for (uscc, lscc).

On the other hand, suppose that G1 and G2 are two disjoint open sets. Since
G1 ∩ G2 = ∅, hence G2 ⊆ Gc

1. Set g = χG2 and f = χGc
1
. Then f is lscc and g

is uscc and furthermore g ≤ f . By hypothesis, there exists a contra-continuous
function h on X such that g ≤ h ≤ f and whenever g(x) < f(x) we have
g(x) < h(x) < f(x). By definitions of f and g, we have h−1(1) = G2 ∩ Gc

1 = G2

and h−1(0) = G1 ∩ Gc
2 = G1. �

Corollary 3.3. X is a normal space if and only if X has the weak cc−insertion
property for (lscc, uscc).

Proof. Let X be a normal space and let g and f be real-valued functions defined
on the X , such that f is lscc, g is uscc, and f ≤ g. If a binary relation ρ is
defined by A ρ B in case AΛ ⊆ F ⊆ F Λ ⊆ BV for some closed set F in X , then
by hypothesis ρ is a strong binary relation in the power set of X . If t1 and t2

are any elements of Q with t1 < t2, then

A(g, t1) = {x ∈ X : g(x) < t1} ⊆ {x ∈ X : f(x) ≤ t2} = A(f, t2);

since {x ∈ X : g(x) < t1} is a closed set and since {x ∈ X : f(x) ≤ t2} is an
open set, by hypothesis it follows that A(g, t1) ρ A(f, t2). The proof of the first
part follows from Theorem 2.1.

On the other hand, let F1 and F2 be disjoint closed sets. Set f = χF2 and
g = χF c

1
, then f is lscc, g is uscc, and f ≤ g.
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Thus there exists a contra-continuous function h such that f ≤ h ≤ g. Set
G1 = {x ∈ X : h(x) ≤ 1

3 } and G2 = {x ∈ X : h(x) ≥ 2/3} then G1 and G2 are
disjoint open sets such that F1 ⊆ G1 and F2 ⊆ G2. Hence X is a normal space.

�

Corollary 3.4. Every closed set is an open set if and only if X has the strong
cc−insertion property for (lscc, uscc).

Proof. Suppose that every closed set in X is open, then X is a normal space.
Hence by Corollary 3.3, X has the weak cc−insertion property for (lscc, uscc).
Now, assume that g and f are functions on X such that g ≤ f, g is lscc and f is
cc. Set A(f − g, 2−n) = {x ∈ X : (f − g)(x) < 2−n}. Then, since f − g is uscc,
we can say that A(f − g, 2−n) is a closed set. By hypothesis, A(f − g, 2−n) is
an open set. Set Fn = X \ A(f − g, 2−n). Then Fn is a closed set. This means
that Fn and A(f − g, 2−n) are disjoint closed sets and also are two disjoint open
sets. Therefore Fn and A(f − g, 2−n) can be completely separated by contra-
continuous functions. Now, we have

⋃∞
n=1 Fn = {x ∈ X : (f − g)(x) > 0}.

By Theorem 2.2, X has the strong cc−insertion property for (lscc, cc). By an
analogous argument, we can prove that X has the strong cc−insertion property
for (cc, uscc). Hence, by Theorem 2.3, X has the strong cc−insertion property
for (lscc, uscc).

On the other hand, suppose that X has the strong cc−insertion property for
(lscc, uscc). Also, suppose that F is a closed set. Set f = 1 and g = χF . Then
f is uscc, g is lscc and g ≤ f . By hypothesis, there exists a contra-continuous
function h on X such that g ≤ h ≤ f and whenever g(x) < f(x), we have g(x) <
h(x) < f(x). It is clear that h(F ) = {1} and for x ∈ X \F we have 0 < h(x) < 1.
Since h is a contra-continuous function, therefore {x ∈ X : h(x) ≥ 1} = F is an
open set, i.e., F is an open set. �

Remark 1. [5, 6]. A space X has the weak c−insertion property for (usc, lsc) if
and only if X is normal.

Remark 2. [10] . A space X has the strong c−insertion property for (usc, lsc) if
and only if X is perfectly normal.

Remark 3. [12]. A space X has the weak c−insertion property for (lsc, usc) if
and only if X is extremally disconnected.

Remark 4. [1]. A space X has the strong c−insertion property for (lsc, usc) if
and only if each open subset of X is closed.
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