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Abstract In this paper, we study the bootstrap with random resample size which is

not independent of the original sample. We find sufficient conditions on the random

resample size for the central limit theorem to hold for the bootstrap sample mean.

1. Introduction

Efron [5] discusses a “bootstrap” method for setting confidence intervals and
estimating significance levels. This method consists of approximating the dis-
tribution of a function of the observations and the underlying distribution, such
as a pivot, by what Efron calls the bootstrap distribution of this quantity. This
distribution is obtained by replacing the unknown distribution by the empirical
distribution of the data in the definition of the statistical function, and then
resampling the data to obtain a Monte Carlo distribution for the resulting ran-
dom variable. Efron gives a series of examples in which this principle works, and
establishes the validity of the approach for a general class of statistics when the
sample space is finite.

The first necessary condition for the bootstrap of the mean for independent
identically distributed (i.i.d.) sequences and resampling size equal to the sample
size was given in [8] showing that the bootstrap works a.s. if and only if the
common distribution of the sequence has finite second moment, while it works
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in probability if and only if that distribution belongs to the domain of attraction
of the normal law. Hall [10] completes the analysis in this setup showing that
when there exists a bootstrap limit law (in probability) then either the parent
distribution belongs to the domain of attraction of the normal law or it has
slowly varying tails and one of the two tails completely dominates the other.

The interest of considering resampling sizes different to the sample size was
noted among others by Bickel and Freedman [3], Swanepoel [19] and Athreya
[1].

In sufficiently regular cases, the bootstrap approximation to an unknown
distribution function has been established as an improvement over the simpler
normal approximation (see [2, 6 - 7]). In the case where the bootstrap sample
size N is in itself a random variable, Mammen [11] has considered bootstrap with
a Poisson random sample size which is independent of the sample. Stemming
from Efron’s observation that the information content of a bootstrap sample
is based on approximately (1 − e−1)100% ≈ 63% of the original sample, Rao,
Pathak and Koltchinskii [17] have introduced a sequential resampling method
in which sampling is carried out one-by-one (with replacement) until (m + 1)
distinct original observation appear, where m denotes the largest integer not
exceeding (1−e−1)n. It has been shown that the empirical characteristics of this
sequential bootstrap are within a distance O(n−3/4) from the usual bootstrap.
The authors provide a heuristic argument in favor of their sampling scheme and
establish the consistency of the sequential bootstrap. Our work on this problem
is limited to [12 - 16] and [20 - 21]. In these references we consider bootstrap
with a random resample size which is independent of the original sample and find
sufficient conditions for random resample size that random sample size bootstrap
distribution can be used to approximate the sampling distribution. The purpose
of this paper is to study bootstrap with a random resample size which is not
independent of the original sample.

2. Results

Let Sn = (X1, X2, . . . , Xn) be a random sample from a distribution F and
θ(F ) a parameter of interest. Let Fn denote the empirical distribution function
based on Sn and suppose that θ(Fn) is an estimator of θ(F ). The Efron boot-
strap method approximates the sampling distribution of a standardized version
of

√
n(θ(Fn) − θ(F )) by the resampling distribution of a corresponding statis-

tic
√

n(θ(F ∗
n ) − θ(Fn)) based on a bootstrap sample S∗

n. Here the original F
has been replaced by the empirical distribution based on the original sample
Sn and Fn of the former statistic has been replaced by the empirical distribu-
tion based on a bootstrap sample F ∗

n . In Efron’s bootstrap resampling scheme,
S∗

n = (X∗
n1, X∗

n2, . . . , X∗
nn) is a random sample of size n drawn from Sn by

simple random sampling with replacement. In Rao, Pathak and Koltchinskii
[17] sequential scheme, observations are drawn from Sn sequentially by simple
random sampling with replacement until there are m + 1 = [n(1 − e−1)] + 2
distinct original observations in the bootstrap sample; the last observation is
discarded to ensure technical simplicity. Thus an observed bootstrap sample
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under the Rao-Pathak-Koltchinskii scheme admits the form

S∗
Nn

= (X∗
n1, X∗

n2, . . . , X∗
nNn

)

where X∗
n1, X∗

n2, . . . , X∗
nNn

have m ≈ n(1−e−1) distinct observations from Sn.
The random sample size Nn admits the following decomposition in terms of the
independent random variables:

Nn = Nn1 + Nn2 + . . . + Nnm

where m = [n(1 − e−1)] + 1; N1 = 1 and for each k, 2 ≤ k ≤ m,

P ∗(Nnk = i) =
(
1 − k − 1

n

)(k − 1
n

)i−1

,

where P ∗ denotes conditional probability P (. . . |X1, . . . , Xn).
Rao, Pathak and Koltchinskii [17] have established the consistency of this

sampling scheme. In this paper we investigate the random bootstrap sample size
Nn such that the following condition is satisfied:

(1) Along almost all sample sequences X1, X2, . . . , given Sn = (X1, X2, . . . ,

Xn), as n tends to infinity, the sequence
(

Nn

kn

)
1≤n<∞

converges in conditional

probability to a positive random variable ν, where (kn)1≤n<∞ is an increasing
sequence of positive integer number tending to infinity when n tends to infinity:
that is, for ε > 0,

P ∗
{∣∣∣Nn

kn
− ν

∣∣∣ > ε
}
→ 0 a.s.

We state now our main result.

Theorem 2.1. Let X1, X2, . . . be a sequence of i.i.d random variables on a
probability space (Ω, A, P ) with mean μ and finite positive variance σ2. Let Fn be
the empirical distribution of Sn = (X1, . . . , Xn). Given Sn = (X1, . . . , Xn), let
X∗

n1, . . . , X∗
nm, . . . be conditionally independent random variables with common

distribution Fn and (Nn)n≥1 be a sequence of positive integer valued random
variables such that condition (1) holds. Denote

X̄n =
1
n

n∑
i=1

Xi, X̄∗
Nn

=
1

Nn

Nn∑
i=1

X∗
ni, s∗2Nn

=
1

Nn

Nn∑
i=1

(X∗
ni − X̄∗

Nn
)2.

Along almost all sample sequences, as n tends to infinity:

sup
−∞<x<+∞

∣∣P{√
n(X̄n − μ) < x

} − P ∗{√
Nn(X̄∗

Nn
− X̄n) < x

}∣∣ → 0.

3. Proofs

For the proof of Theorem 2.1 we will need the following results.

Lemma 3.1. (Guiasu, [9]) Let
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(Wn)1≤n<∞, (xmn) 1≤n<∞
1≤m<∞

, (ymn) 1≤n<∞
1≤m<∞

be sequences of random variables such that for every m and n we have

Wn = xmn + ymn.

Let us suppose that the following conditions are satisfied:
(A) The distribution functions of the sequence (xmn)

1≤n<∞
converge to the dis-

tribution function F for each fixed m;
(B) ∀ε > 0 : lim

m→∞ lim sup
n

P (|ymn| > ε) = 0

then distribution functions of sequence (Wn)
1≤n<∞

converge also to F.

Lemma 3.2. [4, Lemma 3] Let (ηn)1≤n<∞ be a sequence of independent ran-
dom variables, further let (kn)1≤n<∞ and (mn)1≤n<∞, kn ≤ mn, be two (not
constant) sequences of natural numbers. If for each n, An is an event depend-
ing only on the random variables ηkn , . . . , ηmn then for every event A, having
positive probability:

lim sup
n

P (An|A) = lim sup
n

P (An).

The proof of Theorem 2.1 is somewhat long, so we shall separate out the
major steps and present them in the form of lemmas.

Denote

s2
n =

1
n

n∑
i=1

(Xi − X̄n)2, X̄∗
nm =

1
m

m∑
i=1

X∗
ni,

s∗2m =
1
m

m∑
i=1

(X∗
ni − X̄∗

nm)2 and Y ∗
nm =

√
m

sn

(
X̄∗

nm − X̄n

)
.

Lemma 3.3. For every event A, having positive probability, we have

lim
m→∞
n→∞

P ∗
A(Y ∗

nm ≤ x) = Φ(x) a.s.,

where P ∗
A(. . . ) is conditional probability P ∗(. . . |A) and Φ(x) is the standard

normal distribution function.

Proof. For every event A, P ∗(A) > 0, we have

lim
m→∞
n→∞

P ∗
A(Y ∗

nm ≤ x) = Φ(x) ⇔ lim
m→∞
n→∞

E∗(eitY ∗
nm |A) = e−

t2
2 , ∀t,

where E∗(. . . ) is the conditional expectation E(. . . |Xn1, . . . , Xnn).
Therefore, the lemma follows if we show that for all t

lim
m→∞
n→∞

E∗(eitY ∗
nm |A) = e−

t2
2 a.s.
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For every natural number n denote by Fn the tail σ-field of the sequence

(X∗
nm)1≤m<∞ and let F be the σ-field generated by

∞⋃
n=1

Fn.

Since Fn is trivial on the probability space (Ω, A, P ∗) for every n (n =
1, 2, . . . ), F is also trivial on the probability space (Ω, A, P ∗).

Consider, for fixed t, the sequence ξ∗nm = eitY ∗
nm of bounded random variables

on the probability space (Ω, A, P ∗) which is necessarily uniformly integrable.
It is well known that a sequence of random variables is relatively sequentially

L1(Ω, A, P ∗)-weakly compact if and only if it is uniformly integrable.
Hence, there exists a subsequence random variables of ξnm that converges

weakly in L1(Ω, A, P ∗) to some random variable α(t). It is easy to check that
α(t) is F -measurable. But F is trivial, and so α(t) must be a constant (P ∗-a.s.).

By Theorem 2.1 of Bickel and Freedman [3], the conditional distribution
function of Y ∗

mn converges almost surely to the standard normal distribution
function as n and m tend to ∞. Hence α(t) has to be e−

t2
2 and

lim
m→∞
n→∞

E∗(eitY ∗
nm |A) = e−

t2
2 a.s.

Thus all subsequences of ξnm which converge weakly in L1(Ω, A, P ∗), converge
to e−

t2
2 a.s. and so the original sequence must converge weakly in L1(Ω, A, P ∗)

to e−
t2
2 a.s. also. This holds for all real t, the lemma is proved. �

Lemma 3.4. For every ε > 0 and η > 0 there exists a positive real number
s0 = s0(ε, η) and a natural number m0 = m0(ε, η) such that for every m > m0,
we have

P ∗( max
i:|i−m|<s0m

|Y ∗
ni − Y ∗

nm| > ε
)

< η

for every natural number n.

Proof. It is easy to check that

P ∗( max
i:|i−m|<s0m

|Y ∗
ni − Y ∗

nm| > ε
) ≤ P ∗( max

i:|i−m|<s0m
|Y ∗

ni − Y ∗
n[(1−s0)m]| >

ε

2
)

+ P ∗(|Y ∗
nm − Y ∗

n[(1−s0)m]| >
ε

2
)
,

where [x] is the largest integer ≤ x.
Applying the well-known inequalities of Tchebychev and Kolmogorov one

obtains the following inequalities:

P ∗
(

max
i:|i−m|<s0m

|Y ∗
ni − Y ∗

n[(1−s0)m]| >
ε

2

)
≤ 16

ε2

(u

v
+

v

u
− 2

√
u

v

)

P ∗
(
|Y ∗

nm − Y ∗
n[(1−s0)m]| >

ε

2

)
≤ 32

ε2

(
1 −

√
u

m

)
,

where u = [(1 − s0)m], v = [(1 + s0)m].
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From the above inequalities we obtain the result desired.

Lemma 3.5. For every ε > 0 and η > 0 there exists a positive real number
s0 = s0(ε, η) and a natural number m0 = m0(ε, η) such that for every m > m0

we have

P ∗
A

(
max

i:|i−m|<s0m
|Y ∗

ni − Y ∗
nm| > ε

)
< η

for every natural number n and every A ∈ A, (P ∗(A) > 0).

Proof. By Lemma 3.4, for every ε > 0 and η > 0 there exists a positive real
number s0 = s0(ε, η) such that

lim sup
m

P ∗( max
i:|i−m|<s0m

|Y ∗
ni − Y ∗

nm| > ε
)

< η

for every natural number n.
We notice also that for every ε > 0 and η > 0 the event(

max
i:|i−m|<s0m

|Y ∗
ni − Y ∗

nm| > ε
) ∈ K[(1−s0)m]+1,

where K[(1−s0)m]+1 is the σ-algebra generated by the sequence of random vari-
ables (Ynk)[(1−s0)m]+1≤k<∞.

Therefore

lim sup
m

P ∗
A

(
max

i:|i−m|<s0m
|Y ∗

ni − Y ∗
nm| > ε

)

= lim sup
m

P ∗( max
i:|i−m|<s0m

|Y ∗
ni − Y ∗

nm| > ε
)

< η

for every natural number n and every A ∈ A, (P ∗(A) > 0), by Lemma 3.2.
Thus, for every ε > 0 and η > 0 there exists a positive real number s0 =

s0(ε, η) and a natural number m0 = m0(ε, η) such that for every m > m0, we
have

P ∗
A

(
max

i:|i−m|<s0m
|Y ∗

ni − Y ∗
nm| > ε

)
< η

for every natural number n and every A ∈ A, (P ∗(A) > 0), which completes the
proof. �

Proof of Theorem 2.1.
If EX2 < ∞ then s2

n → σ2 a.s. Therefore, the theorem follows if we show that
the conditional distribution of Y ∗

nNn
converges weakly to N(0, 1) a.s.

Let (νm)1≤m<∞ be the usual sequence of elementary random variables which
approximates the random variable ν on the probability space (Ω, A, P ∗). For
every natural number m and h define

Ahm = {(h − 1)2−m < ν ≤ h2−m} = {νm = h2−m}.
Obviously
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Ahm

⋂
Akm = ∅, h �= k,

∞⋃
h=1

Ahm = Ω, m = 1, 2, . . .

Since for every m (m = 1, 2, . . . )
∞∑

h=1

P ∗(Ahm) = 1

then, for every η > 0 and every m there exists a natural number l∗ = l∗(m, η)
such that

∞∑
h=l∗+1

P ∗(Ahm) < η,

or equivalently:
l∗∑

h=1

P ∗(Ahm) ≤ 1 − η.

We shall denote the set of events {A1m, A2m, . . . , Al∗m} by ε(l∗(m, η)) and
the sequence (ε(l∗(m, η)))1≤m<∞ by εν(η).

According to the notation of Lemma 3.1, we put

x∗
mn = Y ∗

n[knνm], y∗
mn = Y ∗

nNn
− Y ∗

n[knνm], W ∗
n = Y ∗

nNn
.

Obviously,
W ∗

n = x∗
mn + y∗

mn

for any n, m (n, m = 1, 2, . . . ).
Let us show that all conditions of Lemma 3.1 are satisfied. Indeed,

([knh2−m])1≤n<∞ is a sequence of natural number, for every m and h (m, h =
1, 2, . . . ). Lemma 3.3 implies that for every η > 0, Ahm ∈ εν(η) and every real
number x there exits a natural number n0 = n0(η, x, h, m) such that for every
n > n0 we have ∣∣∣P ∗

Ahm

(
Y ∗

n[knh2−m] ≤ x
) − Φ(x)

∣∣∣ < η a.s.

We put now
n∗ = n∗(η, x, m) = max

1≤k≤l∗
n0(η, x, h, m) (l∗ = l∗(m, η))

and for simplicity of notation, we let

Δ1
mn =

∣∣∣
∞∑

h=1

P ∗((Y ∗
n[knνm] ≤ x

) ⋂
Ahm

) − Φ(x)
∣∣∣,

Δ11
mn =

∣∣∣
l∗∑

h=1

P ∗((Y ∗
n[knνm] ≤ x

) ⋂
Ahm

) − Φ(x)
l∗∑

h=1

P ∗(Ahm

)∣∣∣,
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Δ12
mn =

∞∑
h=l∗+1

P ∗((Y ∗
n[knνm] ≤ x

) ⋂
Ahm

)
,

Δ13
mn = Φ(x)

∞∑
h=l∗+1

P ∗(Ahm

)
,

then for every m (m = 1, 2, . . . ) if n > n∗ we have

∣∣P ∗(x∗
mn ≤ x) − Φ(x)

∣∣ =
∣∣P ∗(Y ∗

n[knνm] ≤ x
) − Φ(x)

∣∣ = Δ1
mn ≤ Δ11

mn + Δ12
mn + Δ13

mn

≤
l∗∑

h=1

∣∣P ∗
Ahm

(
Y ∗

n[knh2−m] ≤ x
) − Φ(x)

∣∣P ∗(Ahm) + 2
∞∑

h=l∗+1

P ∗(Ahm)

< η

l∗∑
h=1

P ∗(Ahm) + 2η < 3η a.s.

i.e.
lim

n→∞P ∗(xmn ≤ x) = Φ(x) a.s.

for any m (m = 1, 2, . . . ).
Therefore condition (A) of Lemma 3.1 is satisfied a.s.
Now, for all ε > 0, consider the following events:

Bmn =
{∣∣Y ∗

nNn
− Y ∗

n[knνm]

∣∣ > ε
}
,

Cmn =
{∣∣∣Nn

kn
− ν

∣∣∣ < 2−m
}
,

Dmn =
{∣∣∣Nn

kn
− ν

∣∣∣ ≥ 2−m
}

,

Emn =
∞⋃

h=1

({
max

i:
∣∣ i

Nn
−ν

∣∣<2−m

∣∣Y ∗
ni − Y ∗

n[knh2−m]

∣∣ > ε
}⋂

Ahm

)
,

Fmn =
∞⋃

h=1

({
max

i:(h−2)2−mkn<i<(h+1)2−mkn

∣∣Y ∗
ni − Y ∗

n[knh2−m]

∣∣ > ε
}⋂

Ahm

)
.

From condition (1) we have

lim
m→∞ lim sup

n
P ∗(|y∗

mn| > ε) = lim
m→∞ lim sup

n
P ∗(Bmn

) ≤ lim
m→∞ lim sup

n
P ∗(Bmn ∩ Cmn

)

+ lim
m→∞ lim sup

n
P ∗(Dmn

)
= lim

m→∞ lim sup
n

P ∗
( ∞⋃

h=1

(
Bmn ∩ Cmn ∩ Ahm

))

≤ lim
m→∞ lim sup

n
P ∗(Emn

) ≤ lim
m→∞ lim sup

n
P ∗(Fmn

)
a.s., (1)

where in the last inequality we have taken into account that the inequality∣∣∣ i

kn
− ν

∣∣∣ < 2−m
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implies
(h − 2)2−mkn < i < (h + 1)2−mkn, (2)

because on the set Ahm we have (h − 1)2−m < ν < h2−m.
From Lemma 3.5 it follows that for every ε > 0 and η > 0 there exists a

positive real number s0 = s0(ε, η) such that

lim sup
j

P ∗
Ahm

(
max

i:|i−j|<s0j
|Y ∗

ni − Y ∗
nj | > ε

)
< η (3)

for every natural number n and every Ahm ∈ εν(η).
Let us choose the natural number m0 = m0(ε, η) such that m0s0 > 2 and

such that for m > m0

P ∗(ν < m2−m) < η a.s. (4)

Some simple calculations show that for every m > m0 and h ≥ m if n is
sufficiently large, the inequality (2) implies

|i − [knh2−m]| < s0[knh2−m]. (5)

Now, using (3) and (4) it follows that for m > m0 we have

lim
m→∞ lim sup

n
P ∗(Fmn

) ≤ Δ∗ + P ∗(ν < m2−m) +
∞∑

h=l∗+1

P ∗(Ahm)

< η

l∗∑
h=m

P ∗(Ahm) + η + η < 3η a.s., (6)

where

Δ∗ =
l∗∑

h=m

lim sup
n

P ∗
Ahm

(
max

i:|i−[knh2−m]|<s0[knh2−m]

∣∣Y ∗
ni−Y ∗

n[knh2−m]

∣∣ > ε
)
P ∗(Ahm).

Thus from (1) and (6) it results

lim
m→∞ lim sup

n
P ∗(|y∗

mn| > ε) = 0 a.s., ∀ε > 0.

Therefore the condition (B) of Lemma 3.1 is satisfied too and we have

lim
n→∞ P ∗(Y ∗

nNn
≤ x

)
= lim

n→∞ P ∗(W ∗
n ≤ x) = lim

n→∞P ∗(x∗
mn ≤ x

)
= Φ(x) a.s.,

which proves the theorem.
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