Vietnam Journal of MATHEMATICS © VAST 2005

Boundedness of Multilinear Littlewood-Paley Operators for the Extreme Cases*

Liu Lanzhe

College of Mathematics, Changsha University of Science and Technology Changsha 410077, China

> Received July 7, 2003 Revised December 4, 2004

Abstract. The purpose of this paper is to study the boundedness properties of multilinear Littlewood-Paley operators for the extreme cases.

1. Introduction and Results

Fix $\delta > 0$. Let ψ be a fixed function which satisfies the following properties:

- $(1) \int_{\mathbb{R}^n} \psi(x) dx = 0,$
- (2) $|\psi(x)| \le C(1+|x|)^{-(n+1-\delta)}$,
- (3) $|\psi(x+y) \psi(x)| \le C|y|(1+|x|)^{-(n+2-\delta)}$ when 2|y| < |x|.

We denote $\Gamma(x) = \{(y,t) \in \mathbb{R}^{n+1}_+ : |x-y| < t\}$ and the characteristic function of $\Gamma(x)$ by $\chi_{\Gamma(x)}$. Let m be a positive integer and A be a function on \mathbb{R}^n . The multilinear Littlewood-Paley operator is defined by

$$S_{\delta}^{A}(f)(x) = \left[\int \int_{\Gamma(x)} |F_{t}^{A}(f)(x,y)|^{2} \frac{dydt}{t^{n+1}} \right]^{1/2},$$

where

^{*}This work was supported by the NNSF (Grant: 10271071).

$$F_t^A(f)(x,y) = \int_{\mathbb{R}^n} \frac{\mathbb{R}_{m+1}(A;x,z)}{|x-z|^m} f(z)\psi_t(y-z)dz,$$

$$R_{m+1}(A;x,y) = A(x) - \sum_{|\alpha| \le m} \frac{1}{\alpha!} D^{\alpha} A(y)(x-y)^{\alpha}$$

and $\psi_t(x) = t^{-n+\delta}\psi(x/t)$ for t > 0. Set $F_t(f)(y) = f * \psi_t(y)$. We also define

$$S_{\delta}(f)(x) = \left(\int \int_{\Gamma(x)} |F_t(f)(y)|^2 \frac{dydt}{t^{n+1}} \right)^{1/2},$$

which is the Littlewood-Paley operator (see [14]).

Let
$$H$$
 be the Hilbert space $H=\left\{h:\|h\|=\left(\int_{\mathbb{R}^{n+1}_{\perp}}|h(t)|^2dydt/t^{n+1}\right)^{1/2}<\right\}$

 ∞ Then for each fixed $x \in \mathbb{R}^n$, $F_t^A(f)(x,y)$ may be viewed as a mapping from $(0,+\infty)$ to H, and it is clear that

$$S_{\delta}^{A}(f)(x) = \|\chi_{\Gamma(x)}F_{t}^{A}(f)(x,y)\|, \quad S_{\delta}(f)(x) = \|\chi_{\Gamma(x)}F_{t}(f)(y)\|.$$

We also consider the variant of S_{δ}^{A} , which is defined by

$$\tilde{S}^A_\delta(f)(x) = \Big(\int\int\limits_{\Gamma(x)} |\tilde{F}^A_t(f)(x)|^2 \frac{dt}{t^{n+1}}\Big)^{1/2},$$

where

$$\tilde{F}_{t}^{A}(f)(x) = \int_{\mathbb{R}^{n}} \frac{Q_{m+1}(A; x, y)}{|x - y|^{m}} \psi_{t}(x - y) f(y) dy$$

and

$$Q_{m+1}(A; x, y) = R_m(A; x, y) - \sum_{|\alpha|=m} \frac{1}{\alpha!} D^{\alpha} A(x) (x - y)^{\alpha}.$$

Note that when m=0, S^A_δ is just the commutator of Littlewood-Paley operator (see [1, 11, 12]). It is well known that multilinear operators, as the extension of Commutators, are of great interest in harmonic analysis and have been widely studied by many authors (see [3-6, 8]). In [2, 7], the $L^p(p>1)$ boundedness of commutators generated by the Calderón-Zygmund operator or fractional integral operator and BMO functions are obtained, and in [11], the endpoint boundedness of commutators generated by the Calderón-Zygmund operator and BMO functions are obtained. The main purpose of this paper is to discuss the boundedness properties of the multilinear Littlewood-Paley operators for the extreme cases of p. Throughout this paper, the letter C's will denote the positive constants which may have different values in each line; B will denote a ball of \mathbb{R}^n . For a ball B, set $f_B = |B|^{-1} \int_B f(x) dx$ and $f^\#(x) = \frac{1}{R} \int_B f(x) dx$.

$$\sup_{x \in B} |B|^{-1} \int_{B} |f(y) - f_B| dy.$$

We shall prove the following theorems in Sec. 3.

Theorem 1. Let $0 \le \delta < n$ and $D^{\alpha}A \in BMO(\mathbb{R}^n)$ for $|\alpha| = m$. Then S_{δ}^A is bounded from $L^{n/\delta}(\mathbb{R}^n)$ to $BMO(\mathbb{R}^n)$.

Theorem 2. Let $0 \le \delta < n$ and $D^{\alpha}A \in BMO(\mathbb{R}^n)$ for $|\alpha| = m$. Then \tilde{S}^A_{δ} is bounded from $H^1(\mathbb{R}^n)$ to $L^{n/(n-\delta)}(\mathbb{R}^n)$.

Theorem 3. Let $0 \le \delta < n$ and $D^{\alpha}A \in BMO(\mathbb{R}^n)$ for $|\alpha| = m$. Then S^A_{δ} is bounded from $H^1(\mathbb{R}^n)$ to weak $L^{n/(n-\delta)}(\mathbb{R}^n)$.

Theorem 4. Let $0 \le \delta < n$ and $D^{\alpha}A \in BMO(\mathbb{R}^n)$ for $|\alpha| = m$.

(i) If for any H^1 -atom a supported on certain cube Q and $u \in 3Q \setminus 2Q$, there

$$\int_{(4Q)^c} \left\| \chi_{\Gamma(x)} \sum_{|\alpha|=m} \frac{1}{\alpha!} \frac{(x-u)^{\alpha}}{|x-u|^m} \psi_t(y-u) \int_Q D^{\alpha} A(z) a(z) dz \right\|^{n/(n-\delta)} dx \le C,$$

then S_{δ}^{A} is bounded from $H^{1}(\mathbb{R}^{n})$ to $L^{n/(n-\delta)}(\mathbb{R}^{n})$;

(ii) If for any cube Q and $u \in 3Q \setminus 2Q$, there is

$$\frac{1}{|Q|} \int\limits_{Q} \left\| \chi_{\Gamma(x)} \sum_{|\alpha|=m} \frac{1}{\alpha!} (D^{\alpha} A(x) - (D^{\alpha} A)_{Q}) \right\|$$

$$\int\limits_{(4Q)^{c}} \frac{(u-z)^{\alpha}}{|u-z|^{m}} \psi_{t}(u-z) f(z) dz \left\| dx \leq C ||f||_{L^{n/\delta}},$$

then \tilde{S}^{A}_{δ} is bounded from $L^{n/\delta}(\mathbb{R}^{n})$ to $BMO(\mathbb{R}^{n})$.

2. Proofs of Theorems

We begin with some preliminary lemmas.

Lemma 1. (see [6]) Let A be a function on \mathbb{R}^n and $D^{\alpha}A \in L^q(\mathbb{R}^n)$ for $|\alpha| = m$ and some q > n. Then

$$|R_m(A; x, y)| \le C|x - y|^m \sum_{|\alpha| = m} \left(\frac{1}{|\tilde{B}(x, y)|} \int_{\tilde{B}(x, y)} |D^{\alpha} A(z)|^q dz \right)^{1/q},$$

where $\tilde{B}(x,y)$ is the ball centered at x and having radius $5\sqrt{n}|x-y|$.

Lemma 2. Let $0 \le \delta < n$, $1 and <math>D^{\alpha}A \in BMO(\mathbb{R}^n)$ for $|\alpha| = m$, $1 < r \le \infty$, $1/q = 1/p + 1/r - \delta/n$. Then S^A_{δ} is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$, that is

$$||S_{\delta}^{A}(f)||_{L^{q}} \leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} ||f||_{L^{p}}.$$

Proof. By Minkowski inequality and by the condition of ψ , we have

$$S_{\delta}^{A}(f)(x) \leq \int_{\mathbb{R}^{n}} \frac{|f(z)| |R_{m+1}(A; x, z)|}{|x - z|^{m}} \left(\int_{\Gamma(x)} |\psi_{t}(y - z)|^{2} \frac{dydt}{t^{1+n}} \right)^{1/2} dz$$

$$\leq C \int_{\mathbb{R}^{n}} \frac{|f(z)| |R_{m+1}(A; x, z)|}{|x - z|^{m}} \left(\int_{0}^{\infty} \int_{|x - y| \leq t} \frac{t^{-2n + 2\delta}}{(1 + |y - z|/t)^{2n + 2 - 2\delta}} \frac{dydt}{t^{1+n}} \right)^{1/2} dz$$

$$\leq C \int_{\mathbb{R}^{n}} \frac{|f(z)| |R_{m+1}(A; x, z)|}{|x - z|^{m}} \left(\int_{0}^{\infty} \int_{|x - y| \leq t} \frac{2^{2n + 2 - 2\delta} \cdot t^{1-n}}{(2t + |y - z|)^{2n + 2 - 2\delta}} dydt \right)^{1/2} dz.$$

Noting that $2t + |y - z| \ge 2t + |x - z| - |x - y| \ge t + |x - z|$ when $|x - y| \le t$ and

$$\int_{0}^{\infty} \frac{tdt}{(t+|x-z|)^{2n+2-2\delta}} = C|x-z|^{-2n+2\delta},$$

we obtain

$$S_{\delta}^{A}(f)(x) \leq C \int_{\mathbb{R}^{n}} \frac{|f(z)||R_{m+1}(A; x, z)|}{|x - z|^{m}} \left(\int_{0}^{\infty} \frac{tdt}{(t + |x - z|)^{2n + 2 - 2\delta}} \right)^{1/2} dz$$
$$= C \int_{\mathbb{R}^{n}} \frac{|f(z)||R_{m+1}(A; x, z)|}{|x - z|^{m + n - \delta}} dz.$$

Thus, the lemma follows from [8].

Proof of Theorem 1. It suffices to prove that there exists a constant C depending on B such that

$$\frac{1}{|B|} \int\limits_{B} |S_{\delta}^{A}(f)(x) - C_{B}| dx \le C_{B} ||f||_{L^{n/\delta}}$$

holds for any ball B. Fix a ball $B=B(x_0,l)$. Let $\tilde{B}=5\sqrt{n}B$ and $\tilde{A}(x)=A(x)-\sum_{|\alpha|=m}\frac{1}{\alpha!}(D^{\alpha}A)_{\tilde{B}}x^{\alpha}$, then $R_m(A;x,y)=R_m(\tilde{A};x,y)$ and $D^{\alpha}\tilde{A}=D^{\alpha}A-(D^{\alpha}A)_{\tilde{B}}$ for $|\alpha|=m$. We write, for $f_1=f\chi_{\tilde{B}}$ and $f_2=f\chi_{\mathbb{R}^n\setminus\tilde{B}}$, $F_t^A(f)(x)=F_t^A(f_1)(x)+F_t^A(f_2)(x)$, then

$$\begin{split} &\frac{1}{|B|} \int\limits_{B} |S_{\delta}^{A}(f)(x) - S_{\delta}^{A}(f_{2})(x_{0})| dx \\ &= \frac{1}{|B|} \int\limits_{B} \left| ||\chi_{\Gamma(x)} F_{t}^{A}(f)(x,y)|| - ||\chi_{\Gamma(x)} F_{t}^{A}(f_{2})(x_{0},y)|| \right| dx \\ &\leq \frac{1}{|B|} \int\limits_{B} S_{\delta}^{A}(f_{1})(x) dx + \frac{1}{|B|} \int\limits_{B} ||\chi_{\Gamma(x)} F_{t}^{A}(f_{2})(x,y) - \chi_{\Gamma(x)} F_{t}^{A}(f_{2})(x_{0},y)|| dx \\ &:= I + II. \end{split}$$

Now, let us estimate I and II. First, taking p>1 and q>1 such that $1/q=1/p-\delta/n$, by the (L^p,L^q) boundedness of $S^A_\delta(\text{Lemma 2})$, we gain

$$I \leq \left(\frac{1}{|B|} \int\limits_{B} (S_{\delta}^{A}(f_{1})(x))^{q} dx\right)^{1/q} \leq C|B|^{-1/q}||f_{1}||_{L^{p}} = C||f||_{L^{n/\delta}}.$$

To estimate II, we write

$$\begin{split} &\chi_{\Gamma(x)}F_t^A(f_2)(x,y) - \chi_{\Gamma(x)}F_t^A(f_2)(x_0,y) \\ &= \int \Big[\frac{1}{|x-z|^m} - \frac{1}{|x_0-z|^m}\Big]\chi_{\Gamma(x)}\psi_t(y-z)R_m(A;x,z)f_2(z)dz \\ &+ \int \frac{\chi_{\Gamma(x)}\psi_t(y-z)f_2(z)}{|x_0-z|^m}[R_m(A;x,z) - R_m(A;x_0,z)]dz \\ &+ \int (\chi_{\Gamma(x)} - \chi_{\Gamma(x_0)})\frac{\psi_t(y-z)R_m(A;x_0,z)f_2(z)}{|x_0-z|^m}dz \\ &- \sum_{|\alpha|=m} \frac{1}{\alpha!} \int \Big[\frac{\chi_{\Gamma(x)}(x-z)^\alpha}{|x-z|^m} - \frac{\chi_{\Gamma(x_0)}(x_0-z)^\alpha}{|x_0-z|^m}\Big]\psi_t(y-z)D^\alpha \tilde{A}(z)f_2(z)dz \\ &:= II_1^t(x) + II_2^t(x) + II_3^t(x) + II_4^t(x). \end{split}$$

We choose r > 1 such that $1/r + \delta/n = 1$. Note that $|x - z| \sim |x_0 - z|$ for $x \in \tilde{B}$ and $z \in \mathbb{R}^n \setminus \tilde{B}$, similar to the proof of Lemmas 2 and 1, we have

$$\frac{1}{|B|} \int_{B} ||II_{1}^{t}(x)|| dx$$

$$\leq \frac{C}{|B|} \int_{B} \left(\int_{\mathbb{R}^{n} \setminus \tilde{B}} \frac{|x - x_{0}||f(z)|}{|x - z|^{n+m+1-\delta}} |R_{m}(\tilde{A}; x, z)| dz \right) dx$$

$$\leq \frac{C}{|B|} \int_{B} \left(\sum_{k=0}^{\infty} \int_{2^{k+1} \tilde{B} \setminus 2^{k} \tilde{B}} \frac{|x - x_{0}||f(z)|}{|x - z|^{n+m+1-\delta}} |R_{m}(\tilde{A}; x, z)| dz \right) dx$$

$$\leq C \sum_{k=0}^{\infty} \frac{l(2^{k}l)^{m}}{(2^{k}l)^{n+m+1-\delta}} k \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} \left(\int_{2^{k}\tilde{B}} |f(z)|dz \right)$$

$$\leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} ||f||_{L^{n/\delta}} \sum_{k=0}^{\infty} k2^{-k}$$

$$\leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} ||f||_{L^{n/\delta}}.$$

For $II_2^t(x)$, by the formula (see [6])

$$R_m(\tilde{A}; x, z) - R_m(\tilde{A}; x_0, z)$$

$$= R_m(\tilde{A}; x, x_0) + \sum_{0 < |\beta| < m} \frac{1}{\beta!} R_{m-|\beta|} (D^{\beta} \tilde{A}; x_0, z) (x - x_0)^{\beta}$$

and by Lemma 1, we get

$$|R_m(\tilde{A}; x, z) - R_m(\tilde{A}; x_0, z)|$$

$$\leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} (|x - x_0|^m + \sum_{0 < |\beta| < m} |x_0 - z|^{m-|\beta|} |x - x_0|^{|\beta|}),$$

thus, for $x \in B$,

$$||II_{2}^{t}(x)|| \leq C \int_{\mathbb{R}^{n}} \frac{|f_{2}(z)|}{|x-z|^{m+n-\delta}} |R_{m}(\tilde{A};x,z) - R_{m}(\tilde{A};x_{0},z)| dz$$

$$\leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} \int_{\mathbb{R}^{n}} \frac{|x-x_{0}|^{m} + \sum_{0 < |\beta| < m} |x_{0}-z|^{m-|\beta|} |x-x_{0}|^{|\beta|}}{|x_{0}-z|^{m+n-\delta}} |f_{2}(z)| dz$$

$$\leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} \sum_{k=0}^{\infty} \frac{kl^{m}}{(2^{k}l)^{m+n-\delta}} \int_{2^{k}\tilde{B}} |f(z)| dz$$

$$\leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} ||f||_{L^{n/\delta}} \sum_{k=1}^{\infty} k2^{-km}$$

$$\leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} ||f||_{L^{n/\delta}}.$$

For $II_3^t(x)$, note that $|x+y-z| \sim |x_0+y-z|$ for $x \in \tilde{B}$ and $z \in \mathbb{R}^n \setminus \tilde{B}$, we obtain, similar to the estimate of II_1 ,

$$\begin{split} &||II_3^t(x)||\\ &\leq C\int\limits_{\mathbb{R}^n} \Big(\int\int\limits_{R_+^{n+1}}^{+} \Big[\frac{|\psi_t(y-z)||f_2(z)||R_m(\tilde{A};x_0,z)|}{|x_0-z|^m}\\ &\times |\chi_{\Gamma(x)}(y,t)-\chi_{\Gamma(x_0)}(y,t)|\Big]^2 \frac{dydt}{t^{n+1}}\Big)^{1/2}dz\\ &\leq C\int\limits_{\mathbb{R}^n} \frac{|f_2(z)|R_m(\tilde{A};x_0,z)|}{|x_0-z|^m}\\ &\times \Big|\int\int\limits_{\Gamma(x)}^{+} \frac{t^{1-n}dydt}{(t+|y-z|)^{2n+2-2\delta}} - \int\int\limits_{\Gamma(x_0)}^{+} \frac{t^{1-n}dydt}{(t+|y-z|)^{2n+2-2\delta}}\Big|^{1/2}dz\\ &\leq C\int\limits_{\mathbb{R}^n} \frac{|f_2(z)|R_m(\tilde{A};x_0,z)|}{|x_0-z|^m}\\ &\times \Big(\int\int\limits_{|y|\leq t}^{+} \Big|\frac{1}{(t+|x+y-z|)^{2n+2-2\delta}} - \frac{1}{(t+|x_0+y-z|)^{2n+2-2\delta}}\Big|\frac{dydt}{t^{n-1}}\Big)^{1/2}dz\\ &\leq C\int\limits_{\mathbb{R}^n} \frac{|f_2(z)|R_m(\tilde{A};x_0,z)|}{|x_0-z|^m}\\ &\times \Big(\int\int\limits_{|y|\leq t}^{+} \frac{|x-x_0|t^{1-n}dydt}{(t+|x+y-z|)^{2n+3-2\delta}}\Big)^{1/2}dz\\ &\leq C\int\limits_{\mathbb{R}^n} \frac{|f_2(z)||x-x_0|^{1/2}|R_m(\tilde{A};x_0,z)|}{|x_0-z|^{m+n+1/2-\delta}}dz\\ &\leq C\sum\limits_{\mathbb{R}^n} \frac{kt^{1/2}(2^kt)^m}{(2^kt)^{n+m+1/2-\delta}}||f||_{L^{n/\delta}}\sum\limits_{|\alpha|=m}^{\infty} ||D^\alpha A||_{BMO}||f||_{L^{n/\delta}}. \end{split}$$

For $II_4^t(x)$, similar to the estimate of $II_3^t(x)$, we have

$$\begin{aligned} \|II_4^t(x)\| &\leq C \int\limits_{\mathbb{R}^n \setminus \tilde{B}} \left[\frac{|x - x_0|}{|x - z|^{n+1-\delta}} + \frac{|x - x_0|^{1/2}}{|x - z|^{n+1/2-\delta}} \right] \sum_{|\alpha| = m} |D^{\alpha} \tilde{A}(z)| |f(z)| dz \\ &\leq C \sum_{|\alpha| = m} ||D^{\alpha} A||_{BMO} ||f||_{L^{n/\delta}} \sum_{k=0}^{\infty} k(2^{-k} + 2^{-k/2}) \\ &\leq C \sum_{|\alpha| = m} ||D^{\alpha} A||_{BMO} ||f||_{L^{n/\delta}}. \end{aligned}$$

Combining these estimates, we complete the proof of Theorem 1.

Proof of Theorem 2. It suffices to show that there exists a constant C > 0 such that for every H^1 -atom a (that is: supp $a \subset B = B(x_0, r)$, $||a||_{L^{\infty}} \leq |B|^{-1}$ and $\int_{\mathbb{R}^n} a(y)dy = 0$ (see[9, 13])), we have

$$||\tilde{S}_{\delta}^{A}(a)||_{L^{n/(n-\delta)}} \le C.$$

We write

$$\int\limits_{\mathbb{R}^n} [\tilde{S}^A_{\delta}(a)(x)]^{n/(n-\delta)} dx = \Big[\int\limits_{|x-x_0| \leq 2r} + \int\limits_{|x-x_0| > 2r} \Big] [\tilde{S}^A_{\delta}(a)(x)]^{n/(n-\delta)} dx := J + JJ.$$

For J, by the following equality

$$Q_{m+1}(A; x, y) = R_{m+1}(A; x, y) - \sum_{|\alpha| = m} \frac{1}{\alpha!} (x - y)^{\alpha} (D^{\alpha} A(x) - D^{\alpha} A(y)),$$

we have, similar to the proof of Lemma 2,

$$\tilde{S}_{\delta}^{A}(a)(x) \leq S_{\delta}^{A}(a)(x) + C \sum_{|\alpha|=m_{\mathbb{D}^n}} \int \frac{|D^{\alpha}A(x) - D^{\alpha}A(y)|}{|x - y|^{n - \delta}} |a(y)| dy,$$

thus, \tilde{S}^A_{δ} is (L^p,L^q) -bounded by Lemma 2 and [1, 2], where $1/q=1/p-\delta/n$. We see that

$$J \leq C ||\tilde{S}^A_\delta(a)||_{L^q}^{n/((n-\delta)q)}|2B|^{1-n/((n-\delta)q)} \leq C ||a||_{L^p}^{n/(n-\delta)}|B|^{1-n/((n-\delta)q)} \leq C.$$

To obtain the estimate of JJ, set $\tilde{A}(x) = A(x) - \sum_{|\alpha|=m} \frac{1}{\alpha!} (D^{\alpha}A)_{2B} x^{\alpha}$. Then $Q_m(A;x,y) = Q_m(\tilde{A};x,y)$. We write, by the vanishing moment of a and $Q_{m+1}(A;x,y) = R_m(A;x,y) - \sum_{|\alpha|=m} \frac{1}{\alpha!} (x-y)^{\alpha} D^{\alpha} A(x)$, for $x \in (2B)^c$,

$$\begin{split} \tilde{F}_{t}^{A}(a)(x,y) &= \int_{\mathbb{R}^{n}} \frac{\psi_{t}(y-z)R_{m}(\tilde{A};x,z)}{|x-z|^{m}} a(z)dz \\ &- \sum_{|\alpha|=m} \frac{1}{\alpha!} \int_{\mathbb{R}^{n}} \frac{\psi_{t}(y-z)D^{\alpha}\tilde{A}(z)(x-z)^{\alpha}}{|x-z|^{m}} a(z)dz \\ &= \int_{\mathbb{R}^{n}} \left[\frac{\psi_{t}(y-z)R_{m}(\tilde{A};x,z)}{|x-z|^{m}} - \frac{\psi_{t}(y-x_{0})R_{m}(\tilde{A};x,x_{0})}{|x-x_{0}|^{m}} \right] a(z)dz \\ &- \sum_{|\alpha|=m} \frac{1}{\alpha!} \int_{\mathbb{R}^{n}} \left[\frac{\psi_{t}(y-z)(x-z)^{\alpha}}{|x-z|^{m}} - \frac{\psi_{t}(y-x_{0})(x-x_{0})^{\alpha}}{|x-x_{0}|^{m}} \right] D^{\alpha}\tilde{A}(x)a(z)dz, \end{split}$$

thus, similar to the proof of II in Theorem 1, we obtain

$$\begin{aligned} &||\tilde{F}_t^A(a)(x,y)||\\ &\leq C\Big(\sum_{|\alpha|=m}||D^\alpha A||_{BMO}|B|^{1/n}|x-x_0|^{-n-1+\delta}+|B|^{1/n}|x-x_0|^{-n-1+\delta}|D^\alpha \tilde{A}(x)|\Big), \end{aligned}$$

so that,

$$JJ \le C \left(\sum_{|\alpha|=m} ||D^{\alpha}A||_{BMO} \right)^{n/(n-\delta)} \sum_{k=1}^{\infty} k 2^{-kn/(n-\delta)} \le C,$$

which together with the estimate for J yields the desired result. This finishes the proof of Theorem 2.

Proof of Theorem 3. By the equality

$$R_{m+1}(A; x, y) = Q_{m+1}(A; x, y) + \sum_{|\alpha| = m} \frac{1}{\alpha!} (x - y)^{\alpha} (D^{\alpha} A(x) - D^{\alpha} A(y))$$

and similar to the proof of Lemma 2, we get

$$S_{\delta}^{A}(f)(x) \leq \tilde{S}_{\delta}^{A}(f)(x) + C \sum_{|\alpha|=m_{\mathbb{R}^n}} \int \frac{|D^{\alpha}A(x) - D^{\alpha}A(y)|}{|x - y|^{n - \delta}} |f(y)| dy.$$

By Theorems 1 and 2 with [1, 2], we obtain

$$\begin{aligned} &|\{x \in \mathbb{R}^n : S_{\delta}^A(f)(x) > \lambda\}|\\ &\leq |\{x \in \mathbb{R}^n : \tilde{S}_{\delta}^A(f)(x) > \lambda/2\}|\\ &+ \left|\left\{x \in \mathbb{R}^n : \sum_{|\alpha| = m_{\mathbb{R}^n}} \int \frac{|D^{\alpha}A(x) - D^{\alpha}A(y)|}{|x - y|^{n - \delta}} |f(y)| dy > C\lambda\right\}\right|\\ &\leq C(||f||_{H^1}/\lambda)^{n/(n - \delta)}.\end{aligned}$$

This completes the proof of Theorem 3.

Proof of Theorem 4 (i). It suffices to show that there exists a constant C > 0 such that for every $H^1(w)$ -atom a with supp $a \subset Q = Q(x_0, d)$, there is

$$||S_{\delta}^{A}(a)||_{L^{n/(n-\delta)}} \le C.$$

Let $\tilde{A}(x) = A(x) - \sum_{|\alpha|=m} \frac{1}{\alpha!} (D^{\alpha}A)_Q x^{\alpha}$, then $R_m(A; x, y) = R_m(\tilde{A}; x, y)$ and $D^{\alpha}\tilde{A} = D^{\alpha}A - (D^{\alpha}A)_Q$ for all α with $|\alpha| = m$. We write, by the vanishing

moment of a and for $u \in 3Q \setminus 2Q$,

$$\begin{split} F_t^A(a)(x,y) &= \chi_{4Q}(x) F_t^A(a)(x,y) \\ &+ \chi_{(4Q)^c}(x) \int\limits_{\mathbb{R}^n} \Big[\frac{R_m(\tilde{A};x,z) \psi_t(y-z)}{|x-y|^m} - \frac{R_m(\tilde{A};x,u) \psi_t(y-u)}{|x-u|^m} \Big] a(z) dz \\ &- \chi_{(4Q)^c}(x) \sum_{|\alpha|=m} \frac{1}{\alpha!} \int\limits_{\mathbb{R}^n} \Big[\frac{\psi_t(y-z) (x-z)^\alpha}{|x-z|^m} - \frac{\psi_t(y-u) (x-u)^\alpha}{|x-u|^m} \Big] D^\alpha \tilde{A}(z) a(z) dz \\ &- \chi_{(4Q)^c}(x) \sum_{|\alpha|=m} \frac{1}{\alpha!} \int\limits_{\mathbb{R}^n} \frac{(x-u)^\alpha}{|x-u|^m} \psi_t(y-u) D^\alpha \tilde{A}(z) a(z) dz, \end{split}$$

then

$$\begin{split} & \underset{S_{\delta}^{A}(a)(x)}{\text{Hom}} = \left\| \chi_{\Gamma(x)}(y,t) F_{t}^{A}(a)(x,y) \right\| \\ & \leq i_{4Q}(x) \left\| \chi_{\Gamma(x)}(y,t) F_{t}^{A}(a)(x,y) \right\| + \chi_{(4Q)^{c}}(x) \\ & \times \left\| \chi_{\Gamma(x)}(y,t) \int_{\mathbb{R}^{n}} \left[\frac{R_{m}(\tilde{A};x,z) \psi_{t}(y-z)}{|x-z|^{m}} - \frac{R_{m}(\tilde{A};x,u) \psi_{t}(y-u)}{|x-u|^{m}} \right] a(z) dz \right\| \\ & + \chi_{(4Q)^{c}}(x) \left\| \chi_{\Gamma(x)}(y,t) \sum_{|\alpha|=m} \frac{1}{\alpha!} \int_{\mathbb{R}^{n}} \left[\frac{\psi_{t}(y-z)(x-z)^{\alpha}}{|x-z|^{m}} - \frac{\psi_{t}(y-u)(x-u)^{\alpha}}{|x-u|^{m}} \right] D^{\alpha} \tilde{A}(z) a(z) dz \right\| \\ & + \chi_{(4Q)^{c}}(x) \left\| \chi_{\Gamma(x)}(y,t) \sum_{|\alpha|=m} \frac{1}{\alpha!} \int_{\mathbb{R}^{n}} \frac{(x-u)^{\alpha}}{|x-u|^{m}} \psi_{t}(y-u) D^{\alpha} \tilde{A}(z) a(z) dz \right\| \end{split}$$

$$= L_1(x) + L_2(x, u) + L_3(x, u) + L_4(x, u).$$

By the (L^p, L^q) -boundedness of S^A_δ for $n/(n-\delta) < q$ and $1/q = 1/p - \delta/n$ (see Lemma 2), we get

$$||L_1(\cdot)||_{L^{n/(n-\delta)}} \le ||S_{\delta}^A(a)||_{L^q} |4Q|^{(n-\delta)/n-1/q} \le C||a||_{L^p} |Q|^{1-1/p} \le C.$$

Similar to the proof of Theorem 1, we obtain

$$||L_2||_{L^{n/(n-\delta)}} \le C$$
 and $||L_3(\cdot, u)||_{L^{n/(n-\delta)}} \le C$.

Thus, using the condition of $L_4(x, u)$, we obtain

$$||S_{\delta}^{A}(a)||_{L^{n/(n-\delta)}} \leq C.$$

(ii). We write, for $f = f\chi_{4Q} + f\chi_{(4Q)^c} = f_1 + f_2$ and $u \in 3Q \setminus 2Q$,

$$\tilde{F}_{t}^{A}(f)(x,y) = \tilde{F}_{t}^{A}(f_{1})(x,y) + \int_{\mathbb{R}^{n}} \frac{R_{m}(\tilde{A};x,z)}{|x-z|^{m}} \psi_{t}(y-z) f_{2}(z) dz$$

$$- \sum_{|\alpha|=m} \frac{1}{\alpha!} (D^{\alpha} A(x) - (D^{\alpha} A)_{Q}) \int_{\mathbb{R}^{n}} \left[\frac{\psi_{t}(y-z)(x-z)^{\alpha}}{|x-z|^{m}} - \frac{\psi_{t}(u-z)(u-z)^{\alpha}}{|u-z|^{m}} \right] f_{2}(z) dz$$

$$- \sum_{|\alpha|=m} \frac{1}{\alpha!} (D^{\alpha} A(x) - (D^{\alpha} A)_{Q}) \int_{\mathbb{R}^{n}} \frac{(u-z)^{\alpha}}{|u-z|^{m}} \psi_{t}(u-z) f_{2}(z) dz,$$

then

$$\begin{split} & \left| \tilde{S}_{\delta}^{A}(f)(x) - S_{\delta} \left(\frac{R_{m}(\tilde{A}; x_{0}, \cdot)}{|x_{0} - \cdot|^{m}} f_{2} \right)(x_{0}) \right| \\ & = \left| \left\| \chi_{\Gamma(x)} \tilde{F}_{t}^{A}(f)(x, y) \right\| - \left\| \chi_{\Gamma(x_{0})} F_{t} \left(\frac{R_{m}(\tilde{A}; x_{0}, \cdot)}{|x_{0} - \cdot|^{m}} f_{2} \right)(y) \right\| \right| \\ & \leq \left\| \chi_{\Gamma(x)}(y, t) \tilde{F}_{t}^{A}(f)(x, y) - \chi_{\Gamma(x_{0})}(y, t) F_{t} \left(\frac{R_{m}(\tilde{A}; x_{0}, \cdot)}{|x_{0} - \cdot|^{m}} f_{2} \right)(y) \right\| \\ & \leq \left\| \chi_{\Gamma(x)}(y, t) \tilde{F}_{t}^{A}(f_{1})(x, y) \right\| \\ & + \left\| \left[\chi_{\Gamma(x)}(y, t) \int_{\mathbb{R}^{n}} \frac{R_{m}(\tilde{A}; x, z)}{|x_{0} - z|^{m}} \psi_{t}(y - z) - \chi_{\Gamma(x_{0})}(y, t) \int_{\mathbb{R}^{n}} \frac{R_{m}(\tilde{A}; x_{0}, z)}{|x_{0} - z|^{m}} \psi_{t}(y - z) \right] f_{2}(z) dz \right\| \\ & + \left\| \chi_{\Gamma(x)}(y, t) \sum_{|\alpha| = m} \frac{1}{\alpha!} (D^{\alpha} A(x) - (D^{\alpha} A)_{Q}) \right. \\ & \times \int_{\mathbb{R}^{n}} \left[\frac{\psi_{t}(y - z)(x - z)^{\alpha}}{|x - z|^{m}} - \frac{\psi_{t}(u - z)(u - z)^{\alpha}}{|u - z|^{m}} \right] f_{2}(z) dz \right\| \\ & + \left\| \chi_{\Gamma(x)}(y, t) \sum_{|\alpha| = m} \frac{1}{\alpha!} (D^{\alpha} A(x) - (D^{\alpha} A)_{Q}) \int_{\mathbb{R}^{n}} \frac{(u - z)^{\alpha}}{|u - z|^{m}} \psi_{t}(u - z) f_{2}(z) dz \right\| \\ & = M_{1}(x) + M_{2}(x) + M_{3}(x, u) + M_{4}(x, u). \end{split}$$

By the (L^p, L^q) -boundedness of \tilde{S}^A_δ for $1 and <math>1/q = 1/p - \delta/n$, we get

$$\frac{1}{|Q|} \int_{Q} M_{1}(x) dx \le |Q|^{-1/q} ||\tilde{S}_{\delta}^{A}(f_{1})||_{L^{q}} \le C|Q|^{-1/q} ||f_{1}||_{L^{p}} \le C||f||_{L^{n/\delta}}.$$

Similar to the proof of Theorem 1, we obtain

$$\frac{1}{|Q|} \int_{Q} M_2(x) dx \le C||f||_{L^{n/\delta}} \text{ and } \frac{1}{|Q|} \int_{Q} M_3(x, u) dx \le C||f||_{L^{n/\delta}}.$$

Thus, by using the condition of $M_4(x, u)$, we obtain

$$\frac{1}{|Q|} \int\limits_{\Omega} \left| \tilde{S}_{\delta}^{A}(f)(x) - S_{\delta}\left(\frac{R_{m}(\tilde{A}; x_{0}, \cdot)}{|x_{0} - \cdot|^{m}} f_{2}\right)(x_{0}) \right| dx \leq C||f||_{L^{n/\delta}}.$$

This completes the proof of Theorem 4.

Acknowledgement. The author would like to express his gratitude to the referee for his comments and suggestions.

References

1. J. Alvarez, R. J. Babgy, D. S. Kurtz, and C. Perez, Weighted estimates for commutators of linear operators, *Studia Math.* **104** (1993) 195–209.

- 2. S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31 (1982) 7–16.
- 3. W. Chen and G. Hu, Weak type (H^1, L^1) estimate for multilinear singular integral operator, Adv. in Math. **30** (2001) 63–69 (Chinese).
- 4. J. Cohen, A sharp estimate for a multilinear singular integral on \mathbb{R}^n , *Indiana Univ. Math. J.* **30** (1981) 693–702.
- 5. J. Cohen and J. Gosselin, On multilinear singular integral operators on \mathbb{R}^n , Studia Math. **72** (1982) 199–223.
- J. Cohen and J. Gosselin, A BMO estimate for multilinear singular integral operators, *Illinois J. Math.* 30 (1986) 445–465.
- 7. R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, *Ann. Math.* **103** (1976) 611–635.
- 8. Y. Ding and S. Z. Lu, Weighted boundedness for a class rough multilinear operators, *Acta Math. Sinica* 17 (2001) 517–526.
- 9. J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. 16, Amsterdam, 1985.
- E. Harboure, C. Segovia, and J. L. Torrea, Boundedness of commutators of fractional and singular integrals for the extreme values of p, Illinois J. Math. 41 (1997) 676–700.
- L.Z. Liu, Weighted weak type estimates for commutators of Littlewood-Paley operator, Japanese J. Math. 29 (2003) 1–13.
- 12. L. Z. Liu, Weighted weak type (H^1, L^1) estimates for commutators of Littlewood-Paley operator, *Indian J. Math.* **45** 71–78.
- E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton NJ, 1993.
- 14. A. Torchinsky, *The Real Variable Methods in Harmonic Analysis*, Pure and Applied Math. 123, Academic Press, New York, 1986.