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Abstract. The purpose of this paper is to study the boundedness properties of
multilinear Littlewood-Paley operators for the extreme cases.

1. Introduction and Results

Fix § > 0. Let ¥ be a fixed function which satisfies the following properties:
(1) [ ¢(x)dz =0,
Rﬂ,

(2) [(2)] < CA + o)~ +1=),
(3) [(z +y) —v(2)] < Clyl(1 + |2])~"+27%) when 2Jy| < |a].

We denote I'(z) = {(y,t) € RT™ : |z — y| < t} and the characteristic
function of I'(x) by xr(z). Let m be a positive integer and A be a function on
R™. The multilinear Littlewood-Paley operator is defined by

st =[ [ [ I nErEg] ",

T'(z)

where
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FAD ) = [ IR iy - 2)d:
]Rn
R (A,) = Alw) = 519&A<y><x—y>a
la|<m

and () =t F0p(x/t) for t > 0. Set Fy(f)(y) = f * 1 (y). We also define

sstn@ = ([ [ Imnwrs)™,
I'(z)

which is the Littlewood-Paley operator (see [14]).
1/2
Let H be the Hilbert space H = {h R = (f J |h(t)|2dydt/t"+1> <

n+1
L

oo}. Then for each fixed € R™, FA(f)(z,y) may be viewed as a mapping
from (0,400) to H, and it is clear that

S5 (N@) = [Ixe@ FH (O @), Ss(H@) = xew ()]

We also consider the variant of S(‘;‘, which is defined by
dt \1/2
A( )2
55 / / |F | fn+l ) )

A _ Qmi1(A;1,y)

R™

where

Vi —y) f(y)dy

and

Qs (A5,9) = Ru(Aiz,p) = 3 DO A() (e — )"

loe|=m

Note that when m = 0, S is just the commutator of Littlewood-Paley
operator (see [1, 11, 12]). It is well known that multilinear operators, as the
extension of Commutators, are of great interest in harmonic analysis and have
been widely studied by many authors (see [3-6, 8]). In [2, 7], the LP(p > 1)
boundedness of commutators generated by the Calderén-Zygmund operator or
fractional integral operator and BMO functions are obtained, and in [11], the
endpoint boundedness of commutators generated by the Calderén-Zygmund
operator and BMO functions are obtained. The main purpose of this paper
is to discuss the boundedness properties of the multilinear Littlewood-Paley
operators for the extreme cases of p. Throughout this paper, the letter C’s will
denote the positive constants which may have different values in each line; B
will denote a ball of R™. For a ball B, set fg = |B|™! [ f(2)dz and f#(z) =

B

sup |B|™! [|f(y) — fBldy.
x€EB B
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We shall prove the following theorems in Sec. 3.

Theorem 1. Let 0 < § < n and D*A € BMO(R") for |a| = m. Then S§ is
bounded from L™ °(R™) to BMO(R™).

Theorem 2. Let 0 < § < n and D*A € BMO(R™) for |a| = m. Then S§ is
bounded from H'(R™) to L™/ ("=9)(R™),

Theorem 3. Let 0 < § <n and D*A € BMO(R") for |a| = m. Then S§ is
bounded from H'(R™) to weak L™ (=% (R™).

Theorem 4. Let 0 < 6 <n and D*A € BMO(R") for |a| =m.
(i) If for any H'-atom a supported on certain cube Q and u € 3Q \ 2Q, there
18

n/(n—3)
xr < O,

/ [xrer - ) A / DA(2)a(2)dz
Q

ol e — ylm
e o |z — ul

then S§ is bounded from H'(R™) to L (=9 (R™);
(ii) If for any cube Q and u € 3Q \ 2Q, there is

&1/ e > (D) ~ (D" A)q)
J I =

/ W=z 2)F(2)dz|do < Ol s,

u— 2™
(4Q)

then Sg is bounded from L™/°(R™) to BMO(R™).
2. Proofs of Theorems
We begin with some preliminary lemmas.
Lemma 1. (see [6]) Let A be a function on R™ and D*A € LI(R™) for |a] =m

and some q > n. Then

Ron(As2,9) < Cla—y™ 3 (m / |D"A(z)|qdz>1/q,

a|l=m
ol B(y)

where B(x,y) is the ball centered at x and having radius 5v/n)z — y|.
Lemma 2. Let 0 < § <n, 1 <p<n/d and D*A € BMOR") for |a] = m,

1 <r<oo, 1/g=1/p+1/r —&/n. Then S§ is bounded from LP(R™) to
L(R™), that is
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155 (Hllzs < C Y IID*Allparol|fl]Lr-

|la]=m
Proof. By Minkowski inequality and by the condition of v, we have
SR [Rimt1(A4; 2, 2) 2dydt
< _
- / |z — 2™ ey = =)l t1+”>
Rn F(x)

< C/ |f (| Rmt1(As 2, 2) / / ¢2n dydt)mdz
— |£L' _ Z|m ]_ + |y _ Z|/t)2n+2726 t1+n

R™ 0 |z—y|<t

- A 22n+2—25. 1-n 1/2
gc/m N Bm1 (432, 2) / / i dydt) dz.

o~ 4l Gr vy~ P
R™ 0 |z—y|<t

Noting that 2t + |y — 2| > 2t + |x — 2| — |[x —y| > t + | — 2| when |z —y| < ¢
and

o0

C|J) _Z|—2n+26,

/ t+|x—z| )2ni2=28
0

we obtain

1/2

0

|(E—Z|m t+ |x_z|)2n+2726
R!L

J) _ Z|m+n 5

Thus, the lemma follows from [8].

Proof of Theorem 1. 1t suffices to prove that there exists a constant C' depending
on B such that

5 / IS2(7) @) ~ Oslde < O] s

holds for any ball B. Fix a ball B = B(xo,1). Let B = 5/nB and A(z) =
1 ~ ~
A(z)— > J(DO‘A)BJ:O‘, then Ry, (A;x,y) = Ry (4;2,y) and D¥A = D*A—

o=
(D*A) s for la| = m. We write, for fi = fxp and fo = fX]R"\Bv FA(f)(z) =
FtA(fl)( )+FtA(f2)( ), then
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|B|/|Sé 55 (fz)(xo)|dx
= @B/‘HXF(;C)F#(f)(x,y)H — ||X1"(x)Ft (f2)(zo,y ||‘dx
< B/ S+ B/ IDer) F{ (2 (@) = X B (f2) (0.

=1+1I.

Now, let us estimate I and II . First, taking p > 1 and ¢ > 1 such that
1/g=1/p—&/n, by the (LP, L9) boundedness of S{' (Lemma 2), we gain

Ln/é-

1/
1< (i Jst@yras) ™ < B Al = €l
B

To estimate I, we write

X FE (f2) (2, 9) = xr@) F7 (£2) (0, )
— [ o= ~ o s = R4 ) fa(2)ds

e

N / Xr(a) Ve (y — 2) f2(2)

|zo — 2|™

[Rim(A;zx, 2) — R (A; 2o, 2)]dz

— m A; ,
+ /(Xr(x) - Xr(xo))wt(y Z)|f0 E Z;o Z)f2(z)dz

_ Z a'/ XF l‘—z XF(mo)(xO_Z)a}wt( )DO(A( )fQ( )dZ

Ix—ZIM |0 — 2™

o=

o= I1{(z) + [ 15 (z) + I I(z) + I I}(z).

We choose r > 1 such that 1/r+§/n = 1. Note that [z —z| ~ |z¢ — 2| for z € B
and z € R™\ B, similar to the proof of Lemmas 2 and 1, we have

1
TR ALACIE
B

- = 2ollf G | g
= ﬁ ( WIR m(A; Z)|dz)dx

e ~wllfG) 5
: B / |$—z|”+m+1 5|Rm(A,$,Z)|dz)dx

“okt1B\2% B
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oo

2’“1 o
Z (2k)ntm+1- 5k Z IID*AllBpmo /|f |d«z

F=0 o= 2+ B

<C Z [|1D*Al[Bmol| f] Ln/éZkQ k

la|=m =
<C Y [ID*Allgyollfll L.
la|=m
For IT4(x), by the formula (see [6])
R (A; 2, 2) — Ry (A; o, )
= R (A, 20) Z 5' —181( (DPA; xo, 2)(z — x0)"
0<|Bl<m
and by Lemma 1, we get
|Rin(As 2, 2) = Ryn (A 20, 2)|
<C Y ID*Allpmo(| — o™

laj=m
+ Z lzo — 2| 1Pz — 20|17,
0<|Bl<m

thus, for z € B,

||II2 || < C/ | |];2|m+n 5|Rm(‘47x7z) - Rm(AvaaZﬂdZ
R

| = 20|™ + Yo 51<m 120 = 2|17l — 0|17
|$0 _ Z|m+n—5

<C > ||DaA||BMo/ |f2(2)|dz

la|=m Rn

<C 3 1Dl X s | 10

|oj=m 2k BB
Ln/é E k2 kem

Ln/é-

<C Y ID*Allsaollf]

loe|=m

<C Y 1D Allsaollf]

loe|=m

For IT4(x), note that |z +y — z| ~ |z + y — 2| for z € B and z € R™ \ B, we
obtain, similar to the estimate of 11y,
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[ 13()]|
th = 2)[1f2() || B (4; 0, 2)|
of (] [ ete-tptn
n R7L+1

2 dydt 1/2
X |XF(z)(y7t) - XF(xo)(yat)|:| W)

<o [Nz )

|370 —Z|m

R

‘/ / ti=ndydt / / ti="dydt ‘1/2dz
(t+ |y — 2[)2nt+2-20 (t+ |y — 2[)2nt+2-20

Fx()
<C/ s )

|370 —Z|m
/ / ‘ 1 1 dydt)1/2d
- 2
(t+ ]z +y—2))2" 122 (L4 |zo +y — 2|)2n 228 |gn—1
ly|<t
<C/ | f2(2)| Ron (A; 20, 2))|
|$0—Z|m
R’IL
" (/ / |z — o[t " dydt )1/2d
2
e (t+ |z +y— z])2nt3-20
y|<t

|[fo(2)llz — xo|"/?| Rin (A; 20, 2)|
S C/ |£C0 _ Z|m+n+1/2 ) dz
R?L

o kIY2 (2R .
Zwllﬂ s Y, IID*AllBaro

k=0 lo|=m

Z [D*AllBmol| f] L'L/52k2 Mreo Z [[D* Al Barol| ]

| /\

Ln/é-
laf= la|=
For IT{(z), similar to the estimate of IT{(z), we have
— 20| |z — 20[1/2
e e e Eae P G

R\ B la|=

=¢ Z 1D Al|Bpollf]|Lnss Zk(Z‘k + Q—k/2)

laj=m k=0

<C Y ID*4llpwollf]

la|=m

Ln/é-

Combining these estimates, we complete the proof of Theorem 1. n
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Proof of Theorem 2. 1t suffices to show that there exists a constant C' > 0 such
that for every H!-atom a (that is: supp a C B = B(zo,7), ||a||L~ < |B|~! and
J a(y)dy = 0 (see[9, 13])), we have

i
1554 (@) /-9y < C.
We write
/ 1S5 (@) ()] "= da = [ / + / }[gg‘(a)(x)]"/w—&dx = J+ JJ.
Rn lo—w0|<2r  |z—wo|>2r

For J, by the following equality

Quuit (A,9) = Rma(Ai,0) = 32 (e =) (D"A() — D*A),

|al=m

we have, similar to the proof of Lemma 2,

. D*A(z) — D*A(y
S0 < st o 3 [P TE g,
la|=mpgn
thus, S¢* is (L?, L9)-bounded by Lemma 2 and [1, 2], where 1/q = 1/p — 6/n.
We see that

J< C||§A( )||n/((n 5)q)|2B|1 n/((n—38)q < CH ||n/(n 5)|B|17n/((n76)q) <C.
To obtain the estimate of J.J, set A(x) = A(z) — > lal=m L (D*A)2pa®. Then

Qum(A;z,y) = Qum(A; z,y). We write, by the vanishing moment of @ and Q11
(Aa z, y) = Rm(A’ z, y) - Z\a|=m %((E - y)aDaA(x)v for € (QB)Ca

Fft(a)(z,y)
/ w |x—Z|mA " a(z)i:
(y — 2)D*A(2)(xz — 2)*
- Z al/w |a:—z(|m)( : alz)dz

/[w |) m(Aiz,2) wt<y—xo)Rm<A;x,xo>]a(z)dz

x —z|™ |x — xo|™

|x—z|m | — zo|™

3 Z - / {wt (—2)"  tuly — o) (@ — JT?o)a] D A(z)a(z)dz,
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thus, similar to the proof of IT in Theorem 1, we obtain

1 (@) (z, )]
< O( Y2 D" Allpaso B ol "4+ Bl D A ).
la|=m

so that,
W) S
Jch( 3 ||DaA||BMo) 3 ke /o0 <
k=1

lee|=m

which together with the estimate for J yields the desired result. This finishes
the proof of Theorem 2. n

Proof of Theorem 3. By the equality
1 «@ « (07
Ry 1(A;2,9) = Qmer(Aizy) + ) —(w—y)* (D A(x) — D A(y))
la]=m

and similar to the proof of Lemma 2, we get

s 5@ +e Y [ 'Da“‘ mft“‘(”'u@ﬂdy.

|al=mgn
By Theorems 1 and 2 with [1, 2], we obtain

[{z € R : S5(f)(2) > A}
< Hz € R™ : S3(f) (@) > A/2}]

erR”- 3 /'DaA DaA(y)||f(y)|dy>C)\H

—y[n°
lal=

C(I /)™ ‘”-

This completes the proof of Theorem 3. n

Proof of Theorem 4 (i). It suffices to show that there exists a constant C' > 0
such that for every H'(w)-atom a with suppa C Q = Q(z¢, d), there is

1155 (a)|
Let A(m) = A(z) — > ﬁ(DO‘A)Qxa, then R, (A;z,y) = Rm(fl;:c,y) and

|al=m
DA = D*A — (D*A)q for all a with |a| = m. We write, by the vanishing
moment of a and for u € 3Q \ 2Q,

Ln/(n=23) é C
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F{ @)(w,9) = xio (@) F @)z, 1) ~
+ X(4Q)r( )/ |:Rm(A7x7 Z)wt(y — Z) _ Rm(Aa Z, U)Z/Jt(y — U):|G(Z)d2:

|z —y|™ |z —ul™

wt y2)(z-2)* dhily-u)(@u)*) 4z

— DA

X(a@) |Z o p— | 7 A(2)a(z)dz

x —u)® o

— X(4Q)e Z a'/ u|m (y —u)D*A(2)a(z)dz,

lol=
then

S (@)(@) = || xre (0 D FA @) @)
< igq ()| xr (@) (U, O F (a) (2, 9) || + X (1)< ()
y HXF w)/ [Rm(A,x,Z)wt(y —2)  Ru(Aiz,u)u(y _“)}a(z)dzH

|z — 2| |z —ul™

wt 2)(x — z)“
+ X(1q)< ( HXr(x) Y, Z a,/ |x—z|m

lee|=

Yy —u)(@ —u)® }Dafl(z)a(z)dzu

|z — uf™

+ X (1)< ( HXr(x) Y, Z a'/|x u|mwt(y u)D*A(z)a dzH

lou|=m
= L1(z) + La(z,u) + La(z,u) + L4(a:, w).
By the (LP, L9)-boundedness of S for n/(n—8) < gand 1/qg=1/p—35/n (see
Lemma 2), we get
1L ()| samor < (1S5 (@) [ 2a|4Q| "~/ < Cllal| o] Q[P < C.
Similar to the proof of Theorem 1, we obtain
| L2|[zn/m-5 < C and | L3(-,w)|[pn/en-0) < C.
Thus, using the condition of Ls(x,u), we obtain
155" (@) | s n-s) < C.
(ii). We write, for f = fxaq + fX0) = f1 + f2 and u € 3Q \ 20,

FAD ) = FA )+ [ FE B - 2 e

_ Z DaA DaA) )/[wt(yi’z)(xi’z)a _ wt(u_z)(u_z)a fQ(Z)dZ
Rﬂ/

|—z[™ u— 2™

-y $<D“A<x>—<DaA> /5 - ()

|lu —
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then

527 (w) — 5 (20 1y
|0 — |

= [ AN @l - e B (2 “ﬁ?,;' 2)w)|]

|z

< e 0, OFAE) 5 9) = Xt (0, 0)F: (%h) W

< lxr@) @, O F (f1) (=, 9)

_'_H R (A;z,2) ey — 2)
XT(z y7 |£L' Z|m
R!L
Rm(A;xo,Z)
xmo)(y,t)R/ L0 = =) e

w3 0 Aw) - (0" 4)g)

XRn [wt(y |; Z_)(;Tm_ 2)*  e(u |; f)f,‘m_ Z)a} fQ(z)dzH
e ¥ S0ma@ - 020 [ E=E - ne|
loo|=m R7

= M (x) + Ma(x) + M3(z,u) + My(z,u).

By the (L, L9)-boundedness of S for 1 < p < n/d and 1/q = 1/p — §/n, we
get

Ln/é-

Tc12| [ M@ < 1@ 1S )l < ClQI AL < CIl)
Q

Similar to the proof of Theorem 1, we obtain

n/s and Ln/s-

1 /Mg(x,u)da: < Cl|f]

1
@/Mz@dax <cfl o
Q Q

Thus, by using the condition of My(x,u), we obtain

-5 (B0 ) lar <

Ln/é-
0

IQ
This completes the proof of Theorem 4.
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