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Abstract. It is our intention to provide via fractional calculus a generalization of

the pure and compound Poisson processes, which are known to play a fundamental

role in renewal theory, without and with reward, respectively. We first recall the basic

renewal theory including its fundamental concepts like waiting time between events,

the survival probability, the counting function. If the waiting time is exponentially

distributed we have a Poisson process, which is Markovian. However, other waiting

time distributions are also relevant in applications, in particular such ones with a fat

tail caused by a power law decay of its density. In this context we analyze a non-

Markovian renewal process with a waiting time distribution described by the Mittag–

Leffler function. This distribution, containing the exponential as particular case, is

shown to play a fundamental role in the infinite thinning procedure of a generic renewal

process governed by a power-asymptotic waiting time. We then consider the renewal

theory with reward that implies a random walk subordinated to a renewal process.

1. Essentials of Renewal Theory

The concept of renewal process has been developed as a stochastic model for
describing the class of counting processes for which the times between successive
events are independent identically distributed (i.i.d. for short) non-negative ran-
dom variables, obeying a given probability law. These times are referred to as
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waiting times or inter-arrival times. For more details see e.g. the classical trea-
tises by Khintchine [12], Cox [2], Gnedenko & Kovalenko [6], Feller [5], and the
recent book by Ross [19]. For a renewal process having waiting times T1, T2, . . . ,
let

t0 = 0, tk =
k∑

j=1

Tj , k ≥ 1. (1.1)

That is t1 = T1 is the time of the first renewal, t2 = T1 + T2 is the time of the
second renewal and so on. In general tk denotes the kth renewal.

The process is specified if we know the probability law for the waiting times.
In this respect we introduce the probability density function (p.d.f. for short)
φ(t) and the (cumulative) distribution function Φ(t) so defined:

φ(t) :=
d

dt
Φ(t), Φ(t) := P (T ≤ t) =

t∫
0

φ(t′) dt′. (1.2)

When the nonnegative random variable represents the lifetime of technical sys-
tems, it is common to refer to Φ(t) as to the failure probability and to

Ψ(t) := P (T > t) =

∞∫
t

φ(t′) dt′ = 1 − Φ(t), (1.3)

as to the survival probability, because Φ(t) and Ψ(t) are the respective probabil-
ities that the system does or does not fail in (0, T ]. A relevant quantity is the
counting function N(t) defined as

N(t) := max{k|tk ≤ t, k = 0, 1, 2, . . .}, (1.4)

that represents the effective number of events before or at instant t. In particular
we have Ψ(t) = P (N(t) = 0). Continuing in the general theory we set F1(t) =
Φ(t), f1(t) = φ(t), and in general

Fk(t) := P (tk = T1 + · · · + Tk ≤ t), fk(t) =
d

dt
Fk(t), k ≥ 1, (1.5)

thus Fk(t) represents the probability that the sum of the first k waiting times is
less or equal t and fk(t) its density. Then, for any fixed k ≥ 1 the normalization
condition for Fk(t) is fulfilled because

lim
t→∞ Fk(t) = P (tk = T1 + · · · + Tk < ∞) = 1. (1.6)

In fact, the sum of k random variables each of which is finite with probability
1 is finite with probability 1 itself. By setting for consistency F0(t) ≡ 1 and
f0(t) = δ(t), the Dirac delta function1, we also note that for k ≥ 0 we have

1We find it convenient to recall the formal representation of this generalized function in
R+,

δ(t) :=
t−1

Γ(0)
, t ≥ 0.
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P (N(t) = k) := P (tk ≤ t, tk+1 > t) =

t∫
0

fk(t′)Ψ(t − t′) dt′. (1.7)

We now find it convenient to introduce the simplified ∗ notation for the
Laplace convolution between two causal well-behaved (generalized) functions
f(t) and g(t)

t∫
0

f(t′)g(t − t′)dt′ = (f ∗ g)(t) = (g ∗ f)(t) =

t∫
0

f(t − t′) g(t′) dt′.

Being fk(t) the p.d.f. of the sum of the k i.i.d. random variables T1, . . . , Tk with
p.d.f. φ(t), we easily recognize that fk(t) turns out to be the k-fold convolution
of φ(t) with itself,

fk(t) =
(
φ∗k

)
(t), (1.8)

so Eq. (1.7) simply reads:

P (N(t) = k) = (φ∗k ∗ Ψ)(t). (1.9)

Because of the presence of Laplace convolutions a renewal process is suited for
the Laplace transform method. Throughout this paper we will denote by f̃(s)
the Laplace transform of a sufficiently well-behaved (generalized) function f(t)
according to

L{f(t); s} = f̃(s) =

+∞∫
0

e−st f(t) dt, s > s0,

and for δ(t) consistently we will have δ̃(s) ≡ 1. Note that for our purposes we
agree to take s real. We recognize that (1.9) reads in the Laplace domain

L{P (N(t) = k); s} =
[
φ̃(s)

]k Ψ̃(s), (1.10)

where, using (1.3),

Ψ̃(s) =
1 − φ̃(s)

s
. (1.11)

2. The Poisson Process as a Renewal Process

The most celebrated renewal process is the Poisson process characterized by a
waiting time p.d.f. of exponential type,

φ(t) = λ e−λt, λ > 0, t ≥ 0. (2.1)

The process has no memory. Its moments turn out to be

〈T 〉 =
1
λ

, 〈T 2〉 =
1
λ2

, . . . , 〈T n〉 =
1
λn

, . . . , (2.2)

and the survival probability is
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Ψ(t) := P (T > t) = e−λt, t ≥ 0. (2.3)

We know that the probability that k events occur in the interval of length t is

P (N(t) = k) =
(λt)k

k!
e−λt, t ≥ 0, k = 0, 1, 2, . . . . (2.4)

The probability distribution related to the sum of k i.i.d. exponential random
variables is known to be the so-called Erlang distribution (of order k). The
corresponding density (the Erlang p.d.f.) is thus

fk(t) = λ
(λt)k−1

(k − 1)!
e−λt, t ≥ 0, k = 1, 2, . . . , (2.5)

so that the Erlang distribution function of order k turns out to be

Fk(t) =
∫ t

0

fk(t′) dt′ = 1 −
k−1∑
n=0

(λt)n

n!
e−λt =

∞∑
n=k

(λt)n

n!
e−λt, t ≥ 0. (2.6)

In the limiting case k = 0 we recover f0(t) = δ(t), F0(t) = 1, t ≥ 0.
The results (2.4) - (2.6) can be easily obtained by using the technique of the

Laplace transform sketched in the previous section noting that for the Poisson
process we have:

φ̃(s) =
λ

λ + s
, Ψ̃(s) =

1
λ + s

, (2.7)

and for the Erlang distribution:

f̃k(s) = [φ̃(s)]k =
λk

(λ + s)k
, F̃k(s) =

[φ̃(s)]k

s
=

λk

s(λ + s)k
. (2.8)

We also recall that the survival probability for the Poisson renewal process
obeys the ordinary differential equation (of relaxation type)

d

dt
Ψ(t) = −λΨ(t), t ≥ 0; Ψ(0+) = 1. (2.9)

3. The Renewal Process of Mittag–Leffler Type

A “fractional” generalization of the Poisson renewal process is simply obtained
by generalizing the differential equation (2.9) replacing there the first derivative
with the integro-differential operator tD

β
∗ that is interpreted as the fractional

derivative of order β in Caputo’s sense, see Appendix. We write, taking for
simplicity λ = 1,

tD
β
∗Ψ(t) = −Ψ(t), t > 0, 0 < β ≤ 1; Ψ(0+) = 1. (3.1)

We also allow the limiting case β = 1 where all the results of the previous section
(with λ = 1) are expected to be recovered.

For our purpose we need to recall the Mittag–Leffler function as the natural
“fractional” generalization of the exponential function, that characterizes the
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Poisson process. The Mittag–Leffler function of parameter β is defined in the
complex plane by the power series

Eβ(z) :=
∞∑

n=0

zn

Γ(β n + 1)
, β > 0, z ∈ C. (3.2)

It turns out to be an entire function of order β which reduces for β = 1 to exp(z).
For detailed information on the Mittag–Leffler-type functions and their Laplace
transforms the reader may consult e.g. [4, 8, 17].

The solution of Eq. (3.1) is known to be, see e.g. [1, 8, 13],

Ψ(t) = Eβ(−tβ), t ≥ 0, 0 < β ≤ 1, (3.3)

so
φ(t) := − d

dt
Ψ(t) = − d

dt
Eβ(−tβ), t ≥ 0, 0 < β ≤ 1. (3.4)

Then, the corresponding Laplace transforms read

Ψ̃(s) =
sβ−1

1 + sβ
, φ̃(s) =

1
1 + sβ

, 0 < β ≤ 1. (3.5)

Hereafter, we find it convenient to summarize the most relevant features of
the functions Ψ(t) and φ(t) when 0 < β < 1. We begin to quote their series
expansions for t → 0+ and asymptotics for t → ∞,

Ψ(t) =
∞∑

n=0

(−1)n tβn

Γ(β n + 1)
∼ sin (βπ)

π

Γ(β)
tβ

, (3.6)

and

φ(t) =
1

t1−β

∞∑
n=0

(−1)n tβn

Γ(β n + β)
∼ sin (βπ)

π

Γ(β + 1)
tβ+1

. (3.7)

In contrast to the Poissonian case β = 1, in the case 0 < β < 1 for large t
the functions Ψ(t) and φ(t) no longer decay exponentially but algebraically. As
a consequence of the power-law asymptotics the process turns to be no longer
Markovian but of long-memory type. However, we recognize that for 0 < β < 1
both functions Ψ(t), φ(t) keep the “completely monotonic” character of the
Poissonian case. Complete monotonicity of the functions Ψ(t) and φ(t) means

(−1)n dn

dtn
Ψ(t) ≥ 0, (−1)n dn

dtn
φ(t) ≥ 0, n = 0, 1, 2, . . . , t ≥ 0, (3.8)

or equivalently, their representability as real Laplace transforms of non-negative
generalized functions (or measures), see e.g. [8]

For the generalizations of Eqs (2.4) and (2.5) - (2.6), characteristic of the
Poisson and Erlang distributions respectively, we must point out the Laplace
transform pair

L{tβ k E
(k)
β (−tβ); s} =

k! sβ−1

(1 + sβ)k+1
, β > 0, k = 0, 1, 2, . . . , (3.9)
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with E
(k)
β (z) :=

dk

dzk
Eβ(z), that can be deduced from the book by Podlubny, see

(1.80) in [17]. Then, by using the Laplace transform pairs (3.5) and Eqs (3.3),
(3.4), (3.9) in Eqs (1.8) and (1.9), we have the generalized Poisson distribution,

P (N(t) = k) =
tk β

k!
E

(k)
β (−tβ), k = 0, 1, 2, . . . (3.10)

and the generalized Erlang p.d.f. (of order k ≥ 1),

fk(t) = β
tkβ−1

(k − 1)!
E

(k)
β (−tβ). (3.11)

The generalized Erlang distribution function turns out to be

Fk(t) =
∫ t

0

fk(t′) dt′ = 1 −
k−1∑
n=0

tnβ

n!
E

(n)
β (−tβ) =

∞∑
n=k

tnβ

n!
E

(n)
β (−tβ). (3.12)

4. The Mittag–Leffler Distribution as Limit for Thinned Renewal Pro-
cesses

The procedure of thinning (or rarefaction) for a generic renewal process (charac-
terized by a generic random sequence of waiting times {Tk}) has been considered
and investigated by Gnedenko and Kovalenko [6]. It means that for each pos-
itive index k a decision is made: the event is deleted with probability p or it
is maintained with probability q = 1 − p, with 0 < q < 1. For this thinned or
rarefied renewal process we shall hereafter revisit and complement the results
available in [6]. We begin to rescale the time variable t replacing it by t/r, with
a parameter r on which we will dispose later. Denoting, like in (1.5), by Fk(t)
the probability distribution function of the sum of k waiting times and by fk(t)
its density, we have recursively, in view of (1.8),

f1(t) = φ(t), fk(t) =

t∫
0

fk−1(t − t′)φ(t′) dt′ =
(
φ∗k

)
(t), for k ≥ 2. (4.1)

Let us denote by (Tq,rf)(t) the waiting time density in the thinned and rescaled
process from one event to the next. Observing that after a maintained event the
next one of the original process is kept with probability q but dropped in favour
of the second next with probability p q and, generally, n− 1 events are dropped
in favour of the n-th next with probability pn−1 q, we arrive at the formula

(Tq,rf)(t) =
∞∑

n=1

q pn−1 fn(t/r)/r. (4.2)

Let f̃n(s) =
∞∫
0

e−st fn(t) dt be the Laplace transform of fn(t). Recalling

f1(t) = φ(t) we set f̃1(s) = φ̃(s). Then fn(t/r)/r has the transform f̃n(rs) =(
φ̃(rs)

)n

, and we obtain (in view of p = 1 − q) the formula
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(Tq,rφ̃)(s) =
∞∑

n=1

q pn−1
(
φ̃(rs)

)n

=
q φ̃(rs)

1 − (1 − q) φ̃(rs)
, (4.3)

from which by Laplace inversion we can, in principle, construct the transformed
process.

We now imagine stronger and stronger rarefaction (infinite thinning) by con-
sidering a scale of processes with the parameters r = δ and q = ε tending to zero
under a scaling relation ε = ε(δ) yet to be specified. Gnedenko and Kovalenko
have, among other things, shown that if the condition

φ̃(s) = 1 − a(s) sβ + o
(
a(s) sβ

)
, for s → 0+, (4.4)

where a(s) is a slowly varying function for s → 02, is satisfied, then we have
with ε = ε(δ) = a(δ) δβ for every fixed s > 0 the limit relation

φ̃0(s) := lim
δ→0

ε(δ) φ̃(δs)

1 − (1 − ε) φ̃(δs)
=

1
1 + sβ

, 0 < β ≤ 1. (4.5)

This condition is met with a(s) = λM(1/s) if the waiting time T obeys a power
law with index β, in the sense of Master Lemma 2 by Gorenflo and Abdel-
Rehim [7]. The function M(y) is the same as in Master Lemma 2, so it varies
slowly at infinity, whence M(1/s) varies slowly at zero. The proof of (4.5) is
by straightforward calculation. Observe the slow variation property of a(s) and
note that terms small of higher order become negligible in the limit. By the
continuity theorem for Laplace transforms, see Feller [5], we now recognize φ0(t)
as the limiting density, which we identify, in view of (3.2) - (3.5),

φ0(t) = − d

dt
Eβ(−tβ). (4.6)

So the limiting waiting time density is the so-called Mittag–Leffler density, that
in the special case β = 1 reduces to the well-known exponential density exp(−t).
It should be noted that Gnedenko and Kovalenko in the sixties failed to recognize
φ̃0(s) as Laplace transform of a Mittag–Leffler type function3.

5. Renewal Processes with Reward: the Fractional Master Equation
and Its Solution

The renewal process can be accompanied by reward that means that at every

2Definition: We call a (measurable) positive function a(y), defined in a right neighbour-
hood of zero, slowly varying at zero if a(y) > 0 and a(cy)/a(y) → 1 with y → 0 for
every c > 0. We call a (measurable) positive function b(y), defined in a neighbourhood of
infinity, slowly varying at infinity if b(cy)/a(y) → 1 with y → ∞ for every c > 0. Ex-
amples: (log y)γ with γ ∈ R and exp (log y/log log y).
3Although the Mittag-Leffler function was introduced by the Swedish mathematician G. Mittag-
Leffler in the first years of the twentieth century, it lived for long time in isolation as Cinderella.
The term Cinderella function was used in the fifties by the Italian mathematician F. G. Tri-
comi for the incomplete gamma function. In recent years the Mittag–Leffler function is gaining
more and more popularity in view of the increasing applications of the fractional calculus and
is classified as 33E12 in the Mathematics Subject Classification 2000.
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renewal instant a space-like variable makes a random jump from its previous
position to a new point in “space”. “Space” is here meant in a very general
sense. In the insurance business, e.g., the renewal points are instants where
the company receives a payment or must give away money to some claim of a
customer, so space is money. In such process occurring in time and in space,
also referred to as compound renewal process, the probability distribution of
jump widths is as relevant as that of waiting times.

Let us denote by Xn the jumps occurring at instants tn, n = 1, 2, 3, . . . . Let
us assume that Xn are i.i.d. (real, not necessarily positive) random variables
with probability density w(x), independent of the waiting time density φ(t). In a
physical context the Xns represent the jumps of a diffusing particle (the walker),
and the resulting random walk model is known as continuous time random walk
(abbreviated as CTRW) in that the waiting time is assumed to be a continuous
random variable4. The position x of the walker at time t is

x(t) = x(0) +
N(t)∑
k=1

Xk. (5.1)

Let us now denote by p(x, t) the probability density of finding the random walker
at the position x at time instant t. We assume the initial condition p(x, 0) = δ(x),
meaning that the walker is initially at the origin, x(0) = 0. We look for the
evolution equation for p(x, t) of the compound renewal process. Based upon the
previous probabilistic arguments we arrive at

p(x, t) = δ(x)Ψ(t) +

t∫
0

φ(t − t′)

⎡
⎣ +∞∫
−∞

w(x − x′) p(x′, t′) dx′

⎤
⎦ dt′, (5.2)

called the integral equation of the CTRW. In fact, from Eq. (5.2) we recognize
the role of the survival probability Ψ(t) and of the densities φ(t), w(x). The first
term in the RHS of (5.2) expresses the persistence (whose strength decreases
with increasing time) of the initial position x = 0. The second term (a space-
time convolution) gives the contribution to p(x, t) from the walker sitting in

4The name CTRW became popular in physics after that in the 1960s Montroll, Weiss and
Scher (just to cite the pioneers) published a celebrated series of papers on random walks to
model diffusion processes on lattices, see e.g. [22] and references therein. CTRWs are rather
good and general phenomenological models for diffusion, including anomalous diffusion, pro-
vided that the resting time of the walker is much greater than the time it takes to make a
jump. In fact, in the formalism, jumps are instantaneous. In more recent times, CTRWs were
applied back to economics and finance by Hilfer [10], by the authors of the present paper with
M. Raberto [9, 14, 18, 20], and, later, by Weiss and co-workers [15].
However, it should be noted that the idea of combining a stochastic process for waiting times
between two consecutive events and another stochastic process which associates a reward or
a claim to each event dates back at least to the first half of the twentieth century with the
so-called Cramér–Lundberg model for insurance risk, see for a review [3]. In a probabilistic
framework, we now find it more appropriate to refer to all these processes as to compound
renewal processes.
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point x′ ∈ R at instant t′ < t jumping to point x just at instant t, after stopping
(or waiting) time t − t′.

The integral equation (5.2) can be solved by using the machinery of the
transforms of Laplace and Fourier. Having introduced the notation for the
Laplace transform in Sec. 1, we now quote our notation for the Fourier trans-

form, F{f(x); κ} = f̂(κ) =
+∞∫
−∞

eiκx f(x) dx (κ ∈ R), and for the corresponding

Fourier convolution between (generalized) functions

(f1 ∗ f2)(x) =

+∞∫
−∞

f1(x′) f2(x − x′) dx′.

Then, applying the transforms of Fourier and Laplace in succession to (5.2) and
using the well-known operational rules, we arrive at the famous Montroll–Weiss
equation, see [16],

̂̃p(κ, s) =
Ψ̃(s)

1 − φ̃(s) ŵ(κ)
. (5.3)

As pointed out in [7], this equation can alternatively be derived from the Cox
formula, see [2] chapter 8 formula (4), describing the process as subordination
of a random walk to a renewal process.

By inverting the transforms one can, in principle, find the evolution p(x, t)
of the sojourn density for time t running from zero to infinity. In fact, recalling
that |ŵ(κ)| < 1 and |φ̃(s)| < 1, if κ �= 0 and s �= 0, Eq. (5.3) becomes

˜̂p(κ, s) = Ψ̃(s)
∞∑

k=0

[φ̃(s) ŵ(κ)]k ; (5.4)

this gives, inverting the Fourier and the Laplace transforms and taking into
account Eqs. (1.9) - (1.10),

p(x, t) =
∞∑

k=0

P (N(t) = k)wk(x), (5.5)

where wk(x) =
(
w∗k

)
(x), in particular w0(x) = δ(x), w1(x) = w(x).

A special case of the integral equation (5.2) is obtained for the compound
Poisson process where φ(t) = e−t (as in (2.1) with λ = 1 for simplicity). Then,
the corresponding equation reduces after some manipulations, that best are car-
ried out in the Laplace–Fourier domain, to the Kolmogorov–Feller equation:

∂

∂t
p(x, t) = −p(x, t) +

+∞∫
−∞

w(x − x′) p(x′, t) dx′, (5.6)

which is the master equation of the compound Poisson process. In this case, in
view of Eqs. (2.4) and (5.5) the solution reads

p(x, t) =
∞∑

k=0

tk

k!
e−t wk(x). (5.7)
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When the survival probability is the Mittag–Leffler function introduced in (3.3),
the master equation for the corresponding fractional version of the compound
process can be shown to be

tD
β
∗ p(x, t) = −p(x, t) +

+∞∫
−∞

w(x − x′) p(x′, t) dx′, 0 < β < 1, (5.8)

where tD
β
∗ denotes the time fractional derivative of order β in the Caputo sense.

For a (detailed) derivation of Eq. (5.8 ) we refer to the paper by Mainardi et
al. [14], in which the results have been obtained by an approach independent
from that adopted in a previous paper by Hilfer and Anton [11]. In this case,
in view of Eqs. (3.10) and (5.5), the solution of the fractional master equation
(5.8) reads:

p(x, t) =
∞∑

k=0

tβk

k!
E

(k)
β (−tβ)wk(x). (5.9)

In [9] we have, under a power law regime for the jumps, investigated for Eq. (5.8)
the so-called diffusive or hydrodynamic limit, obtained by making smaller all
jumps by a positive factor h and accelerating the process by a large factor prop-
erly related to h, then letting h tend to zero. In this limit the master equation
(5.8) reduces to a space-time fractional diffusion equation. This is also the topic
of the recent paper by Scalas et al. [21] and, in a more general framework, of
the paper by Gorenflo and Abdel-Rehim [7].

Conclusions

We have provided a fractional generalization of the Poisson renewal processes
by replacing the first time derivative in the relaxation equation of the survival
probability by a fractional derivative of order β (0 < β ≤ 1). Consequently,
we have obtained for 0 < β < 1 non-Markovian renewal processes where, es-
sentially, the exponential probability densities, typical for the Poisson processes,
are replaced by functions of Mittag–Leffler type, that decay in a power law man-
ner with an exponent related to β. The distributions obtained by considering
the sum of k i.i.d. random variables distributed according to the Mittag–Leffler
law provide the fractional generalization of the corresponding Erlang distribu-
tions. Furthermore, the Mittag–Leffler probability distribution is shown to be
the limiting distribution for the thinning procedure of a generic renewal process
with waiting time density of power law character. Then, our theory has been
applied to renewal processes with reward, so can be considered as the fractional
generalization of the compound Poisson processes. In such processes, occurring
in time and in space, also the probability distribution of the jump widths is rel-
evant. The stochastic evolution of the space variable in time is modelled by an
integro-differential equation (the master equation) which, by containing a time
fractional derivative, can be considered as the fractional generalization of the
classical Kolmogorov–Feller equation of the compound Poisson process. For this
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master equation we have provided the analytical solution in terms of iterated
derivatives of a Mittag–Leffler function.

Appendix: The Caputo Fractional Derivative

The Caputo fractional derivative provides a fractional generalization of the first
derivative through the following rule in the Laplace transform domain,

L{
tD

β
∗ f(t); s

}
= sβ f̃(s) − sβ−1 f(0+), 0 < β ≤ 1, s > 0, (A.1)

hence turns out to be defined as, see e.g. [1, 8],

tD
β
∗ f(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
Γ(1 − β)

t∫
0

f (1)(τ)
(t − τ)β

dτ, 0 < β < 1,

d

dt
f(t), β = 1.

(A.2)

It can alternatively be written in the form

tD
β
∗ f(t) =

1
Γ(1 − β)

d

dt

t∫
0

f(τ)
(t − τ)β

dτ − t−β

Γ(1 − β)
f(0+)

=
1

Γ(1 − β)
d

dt

t∫
0

f(τ) − f(0+)
(t − τ)β

dτ , 0 < β < 1.

(A.3)

The Caputo derivative has been indexed with ∗ in order to distinguish it from
the classical Riemann–Liouville fractional derivative tD

β , the first term at the
R.H.S. of the first equality in (A.3). As it can be noted from the last equality
in (A.3), the Caputo derivative provides a sort of regularization at t = 0 of the
Riemann-Liouville derivative; for more details see [8].
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