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Abstract. In this paper, we investigate explicit viscosity solutions of the Cauchy

problem to Hamilton-Jacobi equations in connection with their Hopf-Lax-Oleinik-type

formulas.

1. Introduction

In this paper we consider the Cauchy problem for the Hamilton-Jacobi equation

ut + H(t, u, Du) = 0 in {t > 0, x ∈ R
n}, (0.1)

u(0, x) = φ(x) on {t = 0, x ∈ R
n}. (0.2)

If the Hamiltonian H(t, γ, p) denoted by H(p) depending only on p := Du is
strictly convex with its Fenchel conjugate H∗ = H∗(p) and

lim
|p|→+∞

H(p)/|p| = +∞

∗This research was supported in part by National Council on Natural Science, Vietnam. The
Sec. 3 and 4 of this paper are written by the author in cooperation with Dr. Mai Duc Thanh.
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and if the initial function φ = φ(x) is globally Lipschitz continuous, Hopf in 1965
[21] established the following formula for a global Lipschitz solution of (0.1)-(0.2)

u(t, x) = min
y∈Rn

{
φ(y) + t · H∗((x − y)/t

)}
. (0.3)

If the Hamiltonian H = H(p) is continuous and if the initial function φ = φ(x) is
globally Lipschitz continuous and convex with the Fenchel conjugate φ∗ = φ∗(p),
Hopf [21] also proved that the second formula

u(t, x) = max
p∈Rn

{〈p, x〉 − φ∗(p) − tH(p)} (0.4)

determines a global Lipschitz solution of the Cauchy problem (0.1)-(0.2).
In the one-dimensional case for the conservation law

ut + Hx(u) = 0 in {t > 0, x ∈ R
n}, (0.5)

u(0, x) = φ(x) on {t = 0, x ∈ R
n}, (0.6)

Lax [36] and Oleinik [49] had found analogous solutions u(t, x) by the method of
vanishing viscosity, and under essentially analogous hypotheses: a) H ′′(p) ≥ 0
for all p, φ(x) largely arbitrary, and b) φ(x) monotone, H(p) arbitrary.

However, as Hopf mentioned in [21], it is unlikely that such restrictions,
either on H(p) or on the initial functions φ(x), are really vital. A relevant
solution is expected to exist under much wider assumptions. Since that time
many mathematicians have obtained their generalizations of formulas (0.3) and
(0.4) for wider classes of first order nonlinear PDEs. This paper is devoted to
some of these generalizations and we call them Hopf-Lax-Oleinik type formulas.

Since the early 1980s, the concept of viscosity solutions introduced by Cran-
dall and Lions [15] has been used in a large portion of research in a nonclas-
sical theory of first-order nonlinear PDEs as well as in other types of PDEs.
For convex Hamilton-Jacobi equations, the viscosity solution-characterized by a
semiconcave stability condition, was first introduced by Kruzkov [35]. There is
an enormous activity which is based on these studies. The primary virtues of
this theory are that it allows merely nonsmooth functions to be solutions of non-
linear PDEs, it provides very general existence and uniqueness theorems, and it
yields precise formulations of general boundary conditions. Let us mention here
the names: Crandall, Lions, Evans, Ishii, Jensen, Barbu, Bardi, Barles, Barron,
Cappuzzo-Dolcetta, Dupuis, Lenhart, Osher, Perthame, Soravia, Souganidis,
Tataru, Tomita, Yamada, and many others, whose contributions make great
progress in nonlinear PDEs. The concept of viscosity solutions is motivated by
the classical maximum principle which distinguishes it from other definitions of
generalized solutions. For the results in this field the redear is referred to [14,
16 - 19, 28,..., 35, 38],...

Bardi and Evans [5, 19] and Lions [38] showed that the formulas (0.3) and
(0.4) still give the unique Lipschitz viscosity solution of (0.1) - (0.2) under the
assumptions that H is convex and φ is uniformly Lipschitz continuous for (0.3)
and H is continuous and φ is convex and Lipschitz continuous for (0.4). Fur-
thermore, Bardi and Faggian [6] proved that the formula (0.3) is still valid for
unique viscosity solution whenever H is convex and φ is uniformly continuous.
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Lions and Rochet, [40] studied the multi-time Hamilton-Jacobi equations
and obtained a Hopf-Lax-Oleinik type formula for these equations.

The Hopf-Lax-Oleinik type formulas for the Hamilton-Jacobi equations

ut(t, x) + H(u, Dxu) = 0 (0.7)

were found in the papers by Barron, Jensen, and Liu [10 - 12], where the first
and second conjugates for quasiconvex functions - functions whose level set are
convex - were successfully used.

The paper by Alvarez, Barron, and Ishii [4] is concerned with finding Hopf-
Lax-Oleinik type formulas of the Hamilton-Jacobi equation (0.7), (t, x) ∈ (0,∞)×
R

n with

u(0, x) = g(x), x ∈ R
n, (0.8)

when the initial function g is only lower semicontinuous (l.s.c.), and possibly
infinite. If H(γ, p) is convex in p and the initial data g is quasiconvex and l.s.c.,
the Hopf-Lax-Oleinik type formula gives the l.s.c. solution of the problem (0.7) -
(0.8). If the assumption of convexity of p �→ H(γ, p) is dropped, it is proved that
u = (g# + tH)# is still characterized as the minimal l.s.c. supersolution (here,
# means the second quasiconvex conjugate, see [9 - 10]).

If H is a concave-convex function given by a D. C. representation

H(p′, p′′) := H1(p′) − H2(p′′)

and φ is uniformly continuous, Bardi and Faggian [6] have found explicit point-
wise upper and lower bounds of Hopf-Lax-Oleinik type for the viscosity solutions.
If the Hamiltonian H(γ, p), (γ, p) ∈ R × R

n, is a D. C. function in p, i.e.,

H(γ, p) = H1(γ, p) − H2(γ, p), (γ, p) ∈ R × R
n,

Barron, Jensen, and Liu [12] have given their Hopf-Lax-Oleinik type estimates
for viscosity solutions to the corresponding Cauchy problem.

Penot and Volle [50] recently show that the Hopf-Lax formulas for solving
(0.1) - (0.2) are valid under very weak continuous assumptions and mild convexity
assumptions on H .

We also want to mention the investigations on explicit solutions of PDEs
based on the Cole-Hopf transformation, which have been discovered by Maslov
and his coworkers [22], Gesztesy and Holden [22], Sachdev [55], Joseph K.T. and
his coworkers [44, 41, 45], Truman and Zhao [62], and many others. The Hopf-
Lax-Oleinik type and explicit formulas have obtained in the recent papers by
Adimurthi and Gowda [1 - 3], Barles and Tourin [8], Barles [7], Rockafellar and
Wolenski [53], LeFloch [37], Manfredi and Stroffolini [43], Ngoan [47], Plaskacz
and Quincampoix [51], Thai Son [61], Subbotin [59], Melikyan [46], Rublev [54],
Silin [56], Stromberg [57],...

This paper is a survey of results on Hopf-Lax-Oleinik type and explicit for-
mulas for the solutions of (0.1) - (0.2) obtained by the author, Mai Duc Thanh
and Rudolf Gorenflo in [70, 72, and 69].

The paper consists of 4 sections. Sec. 1 being introduction gives the con-
tents of the present paper and notations that we use in the following sections..
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Sec. 2 is to deal with Hopf-Lax-Oleinik type formulas of viscosity solutions to
Hamilton-Jacobi equations when the Hamiltonian does not depend on the un-
known function, the initial function need not be uniformly continuous. Sec. 3
is to do the same work with the convex Hamiltonian depending also on the un-
known function and its spatial gradient. The Hamiltonian H will be supposed
to satisfy the conditions: H = H(γ, p) is nondecreasing in γ ∈ R, convex and
positively homogeneous of degree one in p ∈ R

n. The initial function will be
assumed to be only continuous. In Sec. 4, the Hamiltonian also contains the
time variable, the unknown function and its spatial gradient. Our assumptions
are: the Hamiltonian H = H(t, γ, p) is nondecreasing in γ ∈ R, positively ho-
mogeneous of degree one in p ∈ R

n and some additional conditions on the time
variable; the initial data are quasiconvex. In this paper, the following notations
will be used:

U := (0, T )× R
n,

thus,
Ū = [0, T ]× R

n,

for some given numbers a, b ∈ R, r > 0, N > 0, for some given x ∈ R
n,

a ∨ b := max{a, b},
B(x; r) := {y ∈ R

n : |y − x| < r},
S(x; N) := {y ∈ R

n : |y − x| = N};

for some given open subset D ⊂ R
n, f : D → R̄ := R ∪ {−∞} ∪ {+∞},

Q(f) := {x ∈ D : f(x) = −∞},
C0,1(D̄) := {v ∈ C(D̄) : ∃k > 0, |v(x) − v(y)| ≤ k|x − y|, ∀x, y ∈ D̄},

C0,1(D) := {v ∈ C0,1(W̄ ), ∀ W open bounded set such that W̄ ⊂ D},
W 1,∞

loc (D) := {v ∈ L∞
loc(D) : Djv ∈ L∞

loc(D), ∀j = 1, 2, ..., m},

where Djv are understood in the sense of distributions;

UC(D) := {v ∈ C(D) : v is uniformly continuous in D},
UC(D̄) := {v ∈ C(D̄) : v is uniformly continuous in D̄},

BUC(D) := {v ∈ UC(D) : v is bounded on D},
BUC(D̄) := {v ∈ UC(D̄) : v is bounded on D̄},

UCx(Ū) := {v ∈ C(Ū ) : v is uniformly continuous on R
n uniformly in t ∈ [0, T ]}.

Remark 1. It is indicated (see [38] for example) that

C0,1(D) = W 1,∞
loc (D).

Now we give a definition of viscosity solutions for the Cauchy problem of
Hamilton-Jacobi equations (0.1) - (0.2). Namely, consider the Cauchy problem
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ut + H(t, u, Du) = 0 in U := (0,∞) × R
n (0.1)

u(0, x) = g(x) on {t = 0} × R
n. (0.2)

Here the Hamiltonian H(t, γ, p) is continuous in the variables t, γ and p.

Definition 1.1. A bounded, uniformly continuous function u is called a viscosity
solution of (0.1) - (0.2) provided:
(i) u = g on {t = 0} × R

n and
(ii) for each v ∈ C∞(

(0,∞) × R
n
)
,

{
if u − v has a local maximum at a point (t0, x0) ∈ (0,∞) × R

n

then vt(t0, x0) + H(t0, v(t0, x0), Dv(t0, x0)) ≤ 0,

(in this case u is called a subsolution) and

{
if u − v has a local minimum at a point (t0, x0) ∈ (0,∞) × R

n

then vt(t0, x0) + H(t0, v(t0, x0), Dv(t0, x0)) ≥ 0,

(in this case u is called a supersolution).
If the solution u is locally Lipschitz continuous in (0,∞) × R

n, then u is
called a Lipschitz viscosity solution.

2. A Hopf-Lax-Oleinik-type Formula for Viscosity Solutions

Let us consider the Cauchy problem for the Hamilton-Jacobi equation

∂u

∂t
+ H(Dxu) = 0 in U, (1)

u(0, x) = lim
(t,y)→(0,x)

t>0

u(t, y) = g(x) in R
n. (2)

When g is in BUC(Rn) and H is convex and satisfies

lim
|p|→∞

H(p)
|p| = +∞, (3)

the unique viscosity solution of (1)-(2) is given by the first Hopf-Lax formula

u(t, x) = inf
y∈Rn

sup
z∈Rn

{
g(y) +

〈
z, x − y

〉 − tH(z)
}

= inf
y∈Rn

{
g(y) + tH∗

(x − y

t

)}
,

(4)

where, H∗ is the Fenchel conjugate of H . This fact was established in [38].
The formula (4) was also proved to be the unique viscosity solution, uniformly

continuous on R
n uniformly in t ∈ [0, T ], of (1)-(2) under the assumptions that
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g is uniformly Lipschitz continuous in R
n, H is convex, (see [5]). Furthermore,

Bardi and Faggian [6] recently showed that this result is still valid whenever
g ∈ UC(Rn) and H is convex.

In this section we prove

Theorem 2.1. Assume that H is convex and satisfies (3), g is continuous.
Suppose in addition that for every 0 < r < +∞, there exists a number N such
that

inf
|z|≤N

{
g(z) + tH∗

(x − z

t

)}
< g(y) + tH∗

(x − y

t

)
,

∀(t, x) ∈ (0, T ) × B(0; r), ∀|y| > N.

(5)

Then (4) determines a Lipschitz viscosity solution of (1) - (2).

Remark 2. The condition (5) may be considered as a compatible one between the
Hamiltonian and the initial function for the existence of generalized solutions of
Problem (1) - (2).

Proof. Fix an arbitrary r > 0 and let N be the corresponding constant as in (5).
First, we will show that u is in C0,1(U). Define

h(t, x) := Argmin
y∈Rn

{
g(y) + tH∗

(x − y

t

)}

:=
{

y0 ∈ R
n : g(y0) + tH∗

(x − y0

t

)
= min

y∈Rn

{
g(y) + tH∗

(x − y

t

)}}
,

(t, x) ∈ (0, T ]× R
n.

(6)

Since H is convex and satisfies (3), H∗ is finite and is therefore locally Lipschitz.
By continuity, from (5) we can see that h(t, x) �= ∅ for any (t, x) ∈ U and

‖h(t, x)‖ = sup
y∈h(t,x)

|y| ≤ N, ∀(t, x) ∈ (0, T ) × B(0, r).

Choosing a constant δ > 0, it follows that the function

(t, x, y) �→ tH∗
(x − y

t

)
, (t, x, y) ∈ [δ, T ]× B̄(0; r) × B̄(0; N)

is Lipschitz continuous. Let M be the Lipschitz constant for this function. Then,

u(t, x) = g(y) + tH∗
(x − y

t

)
, u(t′, x′) ≤ g(y) + t′H∗

(x′ − y

t′
)
,

∀(t, x), (t′, x′) ∈ [δ, T ]× B̄(0; r), ∀y ∈ h(t, x).

Hence,

u(t′, x′) − u(t, x) ≤ t′H∗
(x′ − y

t′
)
− tH∗

(x − y

t

)
≤ M(|t − t′| + |x − x′|).
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Interchanging (t, x) and (t′, x′), we find u ∈ C0,1(U).
Second, let us check the initial condition (2). Clearly,

u(t, x′) ≤ g(x′) + tH∗(0), ∀(t, x′) ∈ (0, T ]× R
n.

This yields
lim

(t,x′)→(0,x)
sup u(t, x′) ≤ g(x). (7)

Besides,

u(t, x′) = g(y) + tH∗
(x′ − y

t

)
≥ g(y) − tH(0),

∀(t, x′) ∈ (0, T ) × B(0; r), ∀y ∈ h(t, x′).
(8)

We make a claim that

lim
y∈h(t,x′)

(t,x′)→(0,x)

y = x. (9)

Otherwise, by passing to a subsequence, we may assume that there are

(ti, xi) ∈ (0, T )× B(0; r), yi ∈ h(ti, xi), i ∈ N, |xi − yi| ≥ ε > 0.

Since
‖h(t, x)‖ ≤ N, ∀(t, x) ∈ (0, T )× B(0; r),

it holds true for i large enough and yi ∈ h(ti, xi) that

+∞ > C = max
|x|≤r

g(x) + T max{0, H∗(0)} ≥ g(xi) + tiH
∗(0) ≥ u(ti, xi),

u(ti, xi) = g(yi) +
H∗

(
xi−yi

ti

)
∣∣xi−yi

ti

∣∣ |xi − yi| ≥ min
|y|≤N

g(y) + ε
H∗

(
xi−yi

ti

)
∣∣xi−yi

ti

∣∣ → +∞

as i → ∞, this is a contradiction. Thus, (9) is verified. From (8) and (9), we
have

lim
(t,x′)→(0,x)

inf u(t, x′) ≥ g(x). (10)

The condition (2) immediately follows from (7) and (10).
Third, we suppose in addition that H is strictly convex. By an argument

similar to the one in Theorem 4.1 of Chapter 4 in [76], one can see that u is a
Lipschitz solution of Problem (1) - (2). Below, u will be shown to be a viscosity
solution of the equation (1) in every open bounded subset of U . To this end, we
intend to use Theorem 11.1 [38]. Let C be a set in R

n. As in [ 38, p. 217], define

LC(t, x; s, y) = inf
{∫ t

s

H∗
( dξ

dΛ

)
dΛ / ξ such that ξ(s) = y, ξ(t) = x, ξ ∈ C̄,

dξ

dΛ
∈ L∞(s, t), ∀Λ ∈ (s, t)

}
, t, s ∈ [0, T ], x, y ∈ C.
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If C is convex, arguing similarly as in [38], we have

LC(t, x; s, y) = LRn(t, x; s, y) = (t − s)H∗(
x − y

t − s
),

∀(t, x), (s, y) ∈ [0, T ]× C, s < t.
(11)

On the other hand, it is seen that for any (t, x) ∈ (0, T ) × B(0, r),

u(t, x) = min
|y|≤N

{
g(y) + tH∗

(x − y

t

)}
= inf

{
u(s, y) + (t − s)H∗

(x − y

t − s

)
, (s, y) ∈ {0} × B̄(0, r)

}
.

(12)

Without loss of generality, we may suppose that N ≥ r. Put

Q := (0, T ) × B(0; N).

We have left to check the compatibility condition,

u(t, x) − u(s, y) ≤ LB(0;N)(t, x; s, y) ∀(t, x) ∈ (0, T ]× S(0; N),

∀(s, y) ∈ ∂0Q := ({0} × B̄(0; N)) ∪ ([0, T ]× S(0; N)), s < t.
(13)

Let z ∈ h(t, x) defined by (6). By convexity,
s

t
H∗

(y − z

s

)
+

t − s

t
H∗

(x − y

t − s

)
≥ H∗

(x − z

t

)
.

Then,
u(t, x) − u(s, y) ≤ tH∗

(x − z

t

)
− sH∗

(y − z

s

)
≤ (t − s)H∗

(x − y

t − s

)
= LB(0;N)(t, x; s, y),

i.e., (13) is verified. Set

v(t, x) = inf
{

u(s, y) + (t − s)H∗
(x − y

t − s

)
, (s, y) ∈ ∂0Q, s < t

}
, (t, x) ∈ Q.

From (11), (13) and that u is continuous on Q̄, in view of Theorem 11.1 [38],
we see that v is a viscosity solution of the equation (1) in Q. Moreover, v is
accordingly the maximum element of the set S defined by:

S =
{

w ∈ C(Q̄) ∩ W 1,∞
loc ,

∂w

∂t
+ H(Dxw) ≤ 0 a.e. in Q, w ≤ u on ∂0Q

}
.

Evidently, u ∈ S. Thus,

v(t, x) ≥ u(t, x) ∀(t, x) ∈ Q.

On the other hand, from (12), we have

u(t, x) ≥ v(t, x), ∀(t, x) ∈ (0, T ) × B(0; r).
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Consequently,

u(t, x) = v(t, x), ∀(t, x) ∈ (0, T ) × B(0; r).

That means u is a viscosity solution of the equation (1) in (0, T ) × B(0; r).
Since r is arbitrary, u is a viscosity solution of the equation (1) in U and therefore
of Problem (1) - (2).

Finally, we turn to the case where H is not necessarily strictly convex. In
this case, one can treat as follows. For each k ∈ N, put

Hk(x) = H(x) + |x|2/k.

Then Hk is strictly convex. It is easy to check that the condition (5) is then
fulfilled with respect to Hk as well. Arguing similarly as above, we see that for
every k ∈ N, the function

uk(t, x) = inf
y∈Rn

{
g(y) + tH∗

k (
x − y

t
)
}

, (t, x) ∈ U,

is a viscosity solution of the equation
∂u

∂t
+ Hk(Dxu) = 0 in U.

Besides, let M > 0 be arbitrary selected, by the condition (3), for any |z| < M ,
we have

〈
z, x

〉 − H(x) → −∞ as |x| → +∞. Hence,

〈
z, x

〉 − Hk(x) ≤ 〈
z, x

〉 − H(x) < −H(0) − 1, ∀|z| < M, ∀|x| > m,

for some m > 0. This implies that the sup in the expressions of H∗
k (z) and

H∗(z) must be taken over the common ball B̄(0; m), ∀|z| < M . Thus, a simple
calculation leads to

H∗(z) ≥ H∗
k (z) ≥ H∗(z) − m2/k, ∀|z| < M, ∀k ∈ N. (14)

For any fixed r > 0, δ > 0, from (12) and (14), it follows that

u(t, x) ≥ uk(t, x) = inf
|y|≤N

{
g(y) + tH∗

k

(x − y

t

)}
≥ u(t, x) − Tm2/k, (15)

for all (t, x) ∈ [δ, T ]× B̄(0; r), provided M chosen is large enough such that∣∣∣x − y

t

∣∣∣ ≤ |x| + |y|
t

≤ r + N

δ
≤ M.

The inequalities (15) guarantee that the sequence uk converges uniformly on
compact subsets of (0, T )×R

n to u. In view of Theorem 1.4 [16], u is a viscosity
solution of (1).

In fact, we have already proved that u is a viscosity solution of Problem
(1) - (2), and u is locally Lipschitz continuous in U . �

Corollary 2.2. Assume that H is convex and satisfies (3), g is continuous and
satisfies
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lim inf
|x|→∞

g(x)
|x| > −∞. (16)

Then (4) defines a Lipschitz viscosity solution of Problem (1) - (2).

Proof. We need only to prove that the condition (5) is fulfilled. Actually, as
seen in the proof of Theorem 2.1, H∗ is finite and satisfies (3). Hence,

g(y) + tH∗
(x − y

t

)
= |x − y|

( |y|
|x − y|

g(y)
|y| +

H∗(x−y
t )

|x−y
t |

)
→ +∞ as |y| → +∞,

uniformly in (t, x) ∈ (0, T )×B(0; r). Therefore, for any fixed r > 0, there exists
a number N > 0 such that for all |y| > N :

g(y) + tH∗
(x − y

t

)
> max

|z|≤N
g(z) + tH∗(0)

≥ min
|z|≤N

{g(z) + tH∗(
x − z

t
)} ∀(t, x) ∈ (0, T ) × B(0; r),

i.e., the condition (5) is verified. �
Let us illustrate the above results by the two following examples.

Example 1.

∂u

∂t
+

1
2
(
∂u

∂x
)2 = 0, t > 0, x ∈ R, (17)

u(0, x) = x2, x ∈ R. (18)

It is easy to see that all the conditions of Corollary 2.2 are fulfilled. Therefore,
a Lipschitz viscosity solution of Problem (17) - (18) is given by

u(t, x) =
x2

1 + 2t
, t ≥ 0, x ∈ R.

Example 2. Given a > 0,

∂u

∂t
+ e|

∂u
∂x | − |∂u

∂x
| = 0, t > 0, x ∈ R, (19)

u(0, x) = ax2, x ∈ R. (20)

Clearly, all the conditions of Corollary 2.2 are satisfied. Hence, the formula (4)
yields a viscosity solution of (19) - (20), for every t ≥ 0, x ∈ R,

u(t, x) = a(x − ty0)2 + t(|y0| + 1)(log(|y0| + 1) − 1),

where y0 is the unique solution of

2a(ty − x) + sign y.log(|y| + 1) = 0.

The regularity and uniqueness of solutions are shown in the following.
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Corollary 2.3. If g ∈ UC(Rn), H is convex and satisfies (3), then the formula
(4) defines a function u Lipschitz continuous on [ε, T ]× R

n for any ε > 0, and

u ∈ UC([0, T ] × R
n)

is the unique viscosity solution in UCx(Ū).

Proof. Under the hypotheses, Problem (1) - (2) has a unique viscosity solution
in UCx([0, T ]× R

n), (see Lions and Perthame [39]).
If g is uniformly continuous on R

n, then it is easy to see that for any fixed
δ > 0,

C = sup
x,y∈Rn

|g(x) − g(y)|
max{δ, |x − y|} < +∞. (21)

This implies (16) and therefore, by virtue of Corollary 2.2, u is a viscosity solution
of Problem (1) - (2).

Next, we claim that the quantity |x−y|, (t, x) ∈ (ε, T ]×R
n, y ∈ h(t, x) must

be bounded and the limit (9) is uniform with respect to x ∈ R
n, i.e., for some

positive constant M ,

|x − y| ≤ M, ∀(t, x) ∈ (ε, T ] × R
n, ∀y ∈ h(t, x),

lim
y∈h(t,x′)

(t,x′)→(0,x)

y = x, uniformly for x ∈ R
n. (22)

Indeed, if it is not the case, there are (ti, xi) ∈ (0, T ]× R
n, yi ∈ h(ti, xi), |xi −

yi| ≥ ε > 0, i ∈ N such that
|xi − yi|

ti
→ +∞, as i → ∞.

Then,
g(xi) + tiH

∗(0) ≥ u(ti, xi) = g(yi) + tiH
∗(

xi − yi

ti
).

Hence, from (21) it follows that,

C ≥ g(xi) − g(yi)
|xi − yi| ≥

H∗
(

xi−yi

ti

)
|xi−yi

ti
| − H∗(0)

|xi − yi| → +∞, as i → ∞,

a contradiction, i.e., (22) holds true. Since H∗ is locally Lipschitz, the function

(t, x) �→ tH∗
(x

t

)
, (t, x) ∈ [ε, T ] × B̄(0; 2M),

is Lipschitz. Let L > 0 be the Lipschitz constant for this function. For every
x, x′ ∈ R

n, t, t′ ≥ ε, let y ∈ h(t, x) and y′ ∈ h(t, x′). By (22), |x′ − y′|, |x− y| ≤
M . So,

u(t′, x′) − u(t, x′) ≤ t′H∗
(x′ − y′

t′
)
− tH∗

(x′ − y′

t

)
≤ L|t − t′|,
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and if |x − x′| ≤ M , then |x′ − y| ≤ |x′ − x| + |x − y| ≤ 2M . Hence,

u(t, x′) − u(t, x) ≤ tH∗
(x′ − y

t

)
− tH∗

(x − y

t

)
≤ L|x − x′|.

Consequently, for |x − x′| ≤ M and therefore for every x, x′ ∈ R
n, t, t′ ≥ ε,

u(t′, x′) − u(t, x) ≤ L(|t′ − t| + |x′ − x|).
Interchanging (t′, x′) and (t, x), we obtain

|u(t′, x′) − u(t, x)| ≤ L(|t′ − t| + |x′ − x|), ∀(t′, x′), (t, x) ∈ [ε, T ]× R
n.

That means u ∈ C0,1([ε, T ] × R
n).

To prove that u ∈ UC([0, T ]× R
n), we need only indicate that the limit (2)

is uniform with respect to x ∈ R
n, i.e.,

lim
(t,x′)→(0,x)

u(t, x′) = g(x) uniformly for x ∈ R
n. (23)

Actually,
u(t, x′) ≤ g(x′) + tH∗(0), ∀(t, x′) ∈ (0, T ]× R

n.

Hence,

lim
(t,x′)→(0,x)

sup u(t, x′) ≤ g(x), uniformly for x ∈ R
n. (24)

On the other hand, since g is uniformly continuous, for every ε′ > 0, there exists
δ1 > 0 such that if

t ∈ (0, T ], x, y ∈ R
n, t < δ1, |x − y| < δ1,

then
g(y) − tH(0) ≥ g(x) − ε′.

By virtue of (22), for above δ1 > 0, there exists 0 < δ < δ1 such that if t + |x′ −
x| < δ then

|y − x| < δ1, ∀y ∈ h(t, x′).

So, for every t ∈ (0, T ], x, x′ ∈ R
n, t + |x′ − x| < δ, let y ∈ h(t, x′), then

u(t, x′) = g(y) + tH∗
(x′ − y

t

)
≥ g(y) − tH(0) ≥ g(x) − ε′.

That means

lim
(t,x′)→(0,x)

inf u(t, x′) ≤ g(x), uniformly for x ∈ R
n. (25)

Combining (24) and (25), we obtain (23). �

Let us illustrate Corollary 2.3 by considering the two following Cauchy prob-
lems.
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Example 3. Given a > 0,

∂u

∂t
+

1
2

(∂u

∂x

)2

= 0, t > 0, x ∈ R, (26)

u(0, x) = a|x|, x ∈ R. (27)

According to Corollary 2.3, the unique viscosity solution of Problem (26), (27)
is given by

u(t, x) =

{ −a2t
2 + a|x|, |x| > at

x2

2t , |x| ≤ at.

Example 4.

∂u

∂t
+ e|

∂u
∂x | − |∂u

∂x
| = 0, t > 0, x ∈ R, (28)

u(0, x) = |x|, x ∈ R. (29)

It is easy to check that all the requirements of Corollary 2.3 are fulfilled. An
elementary calculus yields

u(t, x) =
{ |x| − (e − 1)t, |x| > (e − 1)t,

(|x| + t)(log( |x|t + 1) − 1), |x| ≤ (e − 1)t,

a viscosity solution of (28) - (29).

3. Viscosity Solutions for Convex Hamiltonians Depending on u, Du

Let us consider the Cauchy problem for Hamilton-Jacobi equations of the form

∂u

∂t
+ H(u, Dxu) = 0 in U, (30)

u(0, x) = g(x) in R
n. (31)

In this section the following conditions are supposed:

(A1) H(γ, p) is continuous in R
n+1, H(., p) is nondecreasing in R for each p ∈

R
n;

(A2) H(γ, .) is convex and positively homogeneous of degree one in R
n, for each

γ ∈ R, i.e.

H(γ, Λp) = ΛH(γ, p), ∀Λ ≥ 0, ∀γ ∈ R.

Our main result in this section is

Theorem 3.1. Assume that (A1) and (A2) hold, and that the initial data g is
continuous in R

n. Then the function

u(t, x) = inf
y∈Rn

{
H#

(x − y

t

)
∨ g(y)

}
, (t, x) ∈ U, (32)
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determines a viscosity solution of Problem (30) - (31).

To prove Theorem 3.1 first, we need

Lemma 3.2. The set Q(H#) := {q ∈ R
n : H#(q) = −∞} is bounded and not

empty.

Proof. Theorem 2.1 and Lemma 2.2 in [10] imply that there exists N > 0 such
that

H#(z) > 0, ∀|z| ≥ N.

This proves the boundedness of Q(H#). Put

h(z) := min {H#(z), 0},
of course, h is l.s.c. on R

n. If
H#(z) > −∞, ∀z, then h is l.s.c. and finite. Hence, by virtue of Theorem

2.1 and Lemma 2.2 in [10],

−∞ < min
|z|≤N

h(z) ≤ inf
|z|≤N

H#(z) = inf
z∈Rn

H#(z) = −∞.

This contradiction shows that Q(H#) �= ∅. Lemma 3.2 is proved. �

Proof of Theorem 3.1. Now, we will show that u ∈ C(U). Obviously,

u(t, x) = inf
z∈Rn

{H#(z) ∨ g(x − tz)} ∀(t, x) ∈ (0, T ]× R
n. (33)

Define

h(t, x) := Argmin
y∈Rn

{H#(y) ∨ g(x − ty)}

=
{
y0 ∈ R

n : H#(y0) ∨ g(x − ty0) = min
y∈Rn

{H#(y) ∨ g(x − ty)}
}
,

(t, x) ∈ (0, T ]× R
n.

Let x0 ∈ R
n and let r > 0 be arbitrary. From Lemma 3.2, there exists M > 0

such that

‖Q(H#)‖ := sup{|q| : q ∈ Q(H#)} ≤ M.

Let q∗ ∈ Q(H#), then

u(t, x) ≤ H#(q∗)∨g(x− tq∗) = g(x− tq∗) ≤ K < +∞, ∀(t, x) ∈ (0, T ]×B(0; r).

In view of Theorem 2.1 and Lemma 2.2 in [10], we can take a constant N > 0
such that

H#(z) > K, ∀|z| ≥ N.

Hence, the infimum in (33) has to be taken over the ball B(0; N) for (t, x) ∈
(0, T ]× B(0; r). Thus
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u(t, x) = inf
|z|≤N

{H#(z) ∨ g(x − tz)} ∧ K

= inf
|z|≤N

{(H#(z) ∨ g(x − tz)) ∧ K}

= min
|z|≤N

{(H#(z) ∨ g(x − tz)) ∧ K}

u(t, x) = min
|z|≤N

{H#(z) ∨ g(x − tz)}, ∀(t, x) ∈ (0, T ] × B(0; r),

since the function z �→ (H#(z)∨ g(x− tz))∧K, z ∈ B̄(0; N) is finite (bounded)
and lower semicontinuous on a compact set. That means h(t, x) �= ∅ and

‖h(t, x)‖ ≤ N, ∀(t, x) ∈ (0, T ]× B(0; r). (34)

For any (t, x), (t′, x′) ∈ (0, T ] × B(0; r), from (34) let us choose ξ ∈ h(t, x),
|ξ| ≤ N . Then,

u(t′, x′) − u(t, x) = inf
z∈Rn

{H#(z) ∨ g(x′ − t′z)} − H#(ξ) ∨ g(x − tξ)

≤ H#(ξ) ∨ g(x′ − t′ξ) − H#(ξ) ∨ g(x − tξ) ≤ |g(x′ − t′ξ) − g(x − tξ)|.
(35)

Interchanging (t, x) and (t′, x′), we obtain

u(t, x) − u(t′, x′) ≤ |g(x′ − t′ξ′) − g(x − tξ′)|. (36)

From (35) and (36), we have

lim
(t′,x′)→(t,x)

u(t′, x′) = u(t, x), ∀(t, x) ∈ (0, T ]× B(0, r).

Therefore u ∈ C(U).
Further, we will prove that u(t, x) is actually a viscosity solution of (30).

For convenience, let us show that u(t, x) given by (32) can be expressed for any
x ∈ R

n and 0 ≤ s < t as follows

u(t, x) = min
y∈Rn

{
H#

(x − y

t − s

)
∨ u(s, y)

}
. (37)

Indeed, arguing as in [10, pp. 56-57], it holds true that

u(t, x) ≤ min
y∈Rn

{
H#

(x − y

t − s

)
∨ u(s, y)

}
.

To get (37), it is sufficient to show

u(t, x) ≥ min
y∈Rn

{
H#

(x − y

t − s

)
∨ u(s, y)

}
. (38)

Let us choose q ∈ R
n such that u(t, x) = H#((x − q)/t) ∨ g(q). Then

min
y∈Rn

{
H#

(x − y

t − s

)
∨ u(s, y)

}
= min

y∈Rn

{
H#

(x − y

t − s

)
∨ min

z∈Rn

(
H#(

y − z

s
) ∨ g(z)

)}
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≤ min
y∈Rn

{
H#

(x − y

t − s

)
∨ H#

(y − q

s

)
∨ g(q)

}
≤ min

{y=x− t−s
t (x−q)}

{
H#

(x − y

t − s

)
∨ H#

(y − q

s

)
∨ g(q)

}

≤ H#
(x − q

t

)
∨ H#

(x − q

t

)
∨ g(q) = u(t, x),

i.e., (38) is verified.
i) u is a subsolution, i.e., if ϕ ∈ C1(U) and u − ϕ attains its local maximum at
(t0, x0) ∈ U , then

∂ϕ(t0, x0)
∂t

+ H(u(t0, x0), Dxϕ(t0, x0)) ≤ 0.

Assume the contrary, that u is not a subsolution. Then, there exist ε0 >
0, (t0, x0) ∈ U , a neighborhood V (t0, x0) of (t0, x0) and ϕ ∈ C1(U) so that
u − ϕ attains its maximum M at (t0, x0) on V (t0, x0):

u − ϕ ≤ M, (t, x) ∈ V (t0, x0), u(t0, x0) − ϕ(t0, x0) = M,

and
∂ϕ(t0, x0)

∂t
+ H(u(t0, x0), Dxϕ(t0, x0)) > ε0 > 0.

Therefore, using H = H#∗ we conclude that there exists δ > 0 so that
∂ϕ(t0, x0)

∂t
+ H(u(t0, x0) − δ, Dxϕ(t0, x0))

=
∂ϕ(t0, x0)

∂t
+ sup

{q:H#(q)≤u(t0,x0)−δ}

〈
Dxϕ(t0, x0), q

〉
> ε0.

Thus, we can take q0 ∈ R
n, H#(q0) ≤ u(t0, x0) − δ, such that

∂ϕ(t0, x0)
∂t

+
〈
Dxϕ(t0, x0), q0

〉
> ε0 > 0. (39)

Set μ = t0 − t, x = x0 − μq0 in the inequality obtained from (37) to get

u(t0, x0) ≤ H#(
x0 − x

t0 − t
) ∨ u(t, x) = H#(q0) ∨ u(t0 − μ, x0 − μq0).

Since H#(q0) ≤ u(t0, x0) − δ < u(t0, x0), by the continuity of u(t, x) at (t0, x0),
there exists a number μ′ > 0 so that, for all 0 < μ < μ′

u(t0 − μ, x0 − μq0) − δ/2 > u(t0, x0) − δ ≥ H#(q0).

Let us choose a μ′′, 0 < μ′′ < μ′ so that (t0 − μ′′, x0 − μ′′q0) still belongs to
V (t0, x0). Then,
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ϕ(t0, x0) + M = u(t0, x0) ≤ H#(q0) ∨ u(t0 − μ, x0 − μq0)
u(t0 − μ, x0 − μq0) ≤ ϕ(t0 − μ, x0 − μq0) + M, ∀μ, 0 < μ < μ′′.

This implies
ϕ(t0 − μ, x0 − μq0) − ϕ(t0, x0) ≥ 0, ∀μ, 0 < μ < μ′′.

Equivalently,
ϕ(t0 − μ, x0 − μq0) − ϕ(t0, x0)

−μ
≤ 0, ∀μ, 0 < μ < μ′′.

Letting μ → 0+ in the last above inequality, we have
∂ϕ(t0, x0)

∂t
+

〈
Dxϕ(t0, x0), q0

〉 ≤ 0,

which contradicts (39). This proves that u is a subsolution.
ii) u is a supersolution, i.e., if ϕ ∈ C1(U) and u − ϕ attains its local minimum
at (t0, x0) ∈ U , then

∂ϕ(t0, x0)
∂t

+ H(u(t0, x0), Dxϕ(t0, x0)) ≥ 0.

Assume the contrary, then there exist ε0 > 0, (t0, x0) ∈ U , a neighborhood
V (t0, x0) of (t0, x0) and ϕ ∈ C1(U) so that u − ϕ attains its minimum m at
(t0, x0) on V (t0, x0):

u − ϕ ≥ m, (t, x) ∈ V (t0, x0), u(t0, x0) − ϕ(t0, x0) = m

and
∂ϕ(t0, x0)

∂t
+ H(u(t0, x0), Dxϕ(t0, x0)) < −ε0 < 0.

Thus, there is a δ > 0 so that
∂ϕ(t0, x0)

∂t
+ H(u(t0, x0) + δ, Dxϕ(t0, x0)) < −ε0.

Then, using H = H#∗, we obtain
∂ϕ(t0, x0)

∂t
+ sup

{q:H#(q)≤u(t0,x0)+δ}

〈
Dxϕ(t0, x0), q

〉
< −ε0.

Equivalently,
∂ϕ(t0, x0)

∂t
+

〈
Dxϕ(t0, x0), q

〉
< −ε0 < 0,

∀q ∈ R
n, H#(q) ≤ u(t0, x0) + δ.

(40)

On the other hand, from (37) we can write u(t, x) in the form

u(t, x) = min
z∈Rn

{H#(z) ∨ u(s, x − (t − s)z)}.

Hence, for every 0 < t < t0, we may select q ∈ R
n such that

u(t0, x0) = H#(q) ∨ u(t, x0 − (t0 − t)q) ≥ H#(q).

Take an arbitrary sequence
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(ti)i ⊂ (0, t0), ti → t0

as i → ∞ and put
νi = t0 − ti > 0, i ∈ N.

For every i ∈ N, we choose a qi ∈ R
n such that

u(t0, x0) = H#(qi) ∨ u(ti, x0 − (t0 − ti)qi)

= H#(qi) ∨ u(t0 − νi, x0 − νiqi) ≥ H#(qi).

It follows from Theorem 2.1 and Lemma 2.2 in [10] that the sequence (qi)i must
be bounded. Without loss of generality, we can suppose that qi → q0 as i → ∞.
Therefore,

(t0 − νi, x0 − νiqi) → (t0, x0)

as i → ∞. By the lower semicontinuity of H# and the continuity of u, we see
that

u(t0, x0) ≤ H#(q0) ∨ u(t0, x0) ≤ lim
i→∞

inf {H#(qi) ∨ u(t0 − νi, x0 − νiqi)}
≤ lim

i→∞
inf u(t0, x0) = u(t0, x0).

This means
H#(q0) ≤ u(t0, x0) < u(t0, x0) + δ. (41)

Since (t0−νi, x0−νiqi) → (t0, x0) as i → ∞, there exists a number N1 ∈ N such
that (t0 − νi, x0 − νiqi) ∈ V (t0, x0), for all i > N1. Hence,

ϕ(t0, x0) + m = u(t0, x0) = H#(qi) ∨ u(t0 − νi, x0 − νiqi)
≥ u(t0 − νi, x0 − νiqi) ≥ ϕ(t0 − νi, x0 − νiqi) + m, ∀i > N1.

Consequently,

ϕ(t0 − νi, x0 − νiqi) − ϕ(t0, x0) ≤ 0, ∀i > N1.

Now, it follows from Mean Value Theorem that

ϕ(t0 − νi, x0 − νiqi) − ϕ(t0, x0) =
〈
Dϕ(t0 − θi, x0 − θiqi), (−νi,−νiqi)

〉
= − νi

{
∂ϕ

∂t
(t0 − θi, x0 − θiqi) +

〈
Dxϕ(t0 − θi, x0 − θiqi), qi

〉}
,

where 0 ≤ θi ≤ νi, ∀i ∈ N. This implies

∂ϕ

∂t
(t0 − θi, x0 − θiqi) +

〈
Dxϕ(t0 − θi, x0 − θiqi), qi

〉 ≥ 0, ∀i > N1.

On the other hand, we have

|(t0 − θi) − t0| + |(x0 − θiqi) − x0| + |qi − q0|
= θi + θi|qi| + |qi − q0| ≤ νi + νi|qi| + |qi − q0| → 0 as i → ∞,
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i.e., (t0 − θi, x0 − θiqi, qi) → (t0, x0, q0) as i → ∞. Since ϕ ∈ C1, it follows that
there exists a number N2 ∈ N such that

∂ϕ(t0, x0)
∂t

+
〈
Dxϕ(t0, x0), q

〉
+ ε0/2

>
∂ϕ

∂t
(t0 − θi, x0 − θiqi) +

〈
Dxϕ(t0 − θi, x0 − θiqi), qi

〉
, ∀i > N2.

Putting N = max{N1, N2}, for all i > N , we obtain
∂ϕ(t0, x0)

∂t
+

〈
Dxϕ(t0, x0), q

〉
+ ε0/2

>
∂ϕ

∂t
(t0 − θi, x0 − θiqi) +

〈
Dxϕ(t0 − θi, x0 − θiqi), qi

〉 ≥ 0.

Consequently,
∂ϕ(t0, x0)

∂t
+

〈
Dxϕ(t0, x0), q

〉 ≥ −ε0/2. (42)

From (41) and (42), we have the fact that conflicts with (40). This proves that
u is a supersolution.

Finally, we will check that u(t, x) satisfies the initial data (31)

lim
(t,x)→(0,x0)

u(t, x) = g(x0), ∀x0 ∈ R
n. (43)

Indeed, for every x0 ∈ R
n, using the representation (33), for some q∗ ∈ Q(H#), |q∗|

≤ M ,

u(t, x) ≤ H#(q∗) ∨ g(x − tq∗) = g(x − tq∗), ∀(t, x) ∈ U.

Consequently,

lim
(t,x)→(0,x0)

sup u(t, x) ≤ lim
(t,x)→(0,x0)

g(x − tq∗) = g(x0). (44)

Let r > 0, N > 0 be corresponding to (34), then for (t, x) ∈ (0, T ]×B(0; r), |ξ| ≤
N ,

u(t, x) = H#(ξ) ∨ g(x − tξ) ≥ g(x − tξ).

Letting (t, x) → (0, x0), we have

lim
(t,x)→(0,x0)

inf u(t, x) ≥ lim
(t,x)→(0,x0)

g(x − tξ) = g(x0). (45)

A combination of (44) and (45) gives us (43). The proof of Theorem 3.1 is
complete. �

Corollary 3.3. Assume (A1), (A2) and g ∈ BUC(Rn). Then u defined by (32)
is the unique viscosity solution of Problem (30) − (31) in the space BUC(Ū).

Proof. Under the above conditions, the Problem (30) - (31) has the unique vis-
cosity solution u defined by (32), (see, for example, Ishii [23], Lions [38]). We
remain to prove that u ∈ BUC(Ū ). First,
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u(t, x) ≤ g(x − tq∗) ≤ ‖g‖L∞,

u(t, x) = H#(ξ) ∨ g(x − tξ) ≥ g(x − tξ) ≥ −‖g‖L∞.

That means u is bounded with ‖u‖L∞ ≤ ‖g‖L∞. Re-examinating the proof
of Theorem 3.1, we see that the constant N in the formula (34) can be chosen
to be independent of (t, x) ∈ U . Concretely,

H#(z) > ‖g‖L∞, ∀|z| > N.

Thus, we obtain the representation (34) for all (t, x) ∈ U with a fixed constant
N . Since N is common and g is uniformly continuous, the inequalities (35), (36)
imply the uniform continuity of u. �

We illustrate our result by the following examples.

Example 5.

∂u

∂t
+

∣∣∣∂u

∂x

∣∣∣.u + |u|
2

= 0, u(0, x) = |x|, T > t > 0, x ∈ R. (46)

Of course, the initial data g(x) = |x| is not bounded. Problem (46) has a
viscosity solution derived by the formula (32),

u(t, x) =
|x|

1 + t
, (t, x) ∈ [0, T ]× R.

Example 6.

∂u

∂t
+

∣∣∣∂u

∂x

∣∣∣.u + |u|
2

= 0, u(0, x) = |x|2, T > t > 0, x ∈ R. (46)

Clearly, g(x) = |x|2 is not Lipschitz in R. According to the formula (32), Problem
(47) has an explicit viscosity solution as follows

u(t, x) =
2x2

1 + 2t|x| + √
1 + 4t|x| , (t, x) ∈ [0, T ]× R.

6. Viscosity Solutions for Hamiltonians Depending on t, u, Du with
Quasiconvex Initial Data

4.1. Preliminaries

Given a function f : R
n → R, set

γ∗ = inf
x∈Rn

f(x).

Consider the multifunction L defined by

L : (γ∗, +∞) → 2R
n \ ∅

a �→ Ef,a,

which will be accordingly called the generated multi (by f).
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Definition 4.1. The function f is said to have L-l.s.c. property if the generated
multi L is ε − δ-l.s.c.

Let f satisfy the condition

lim
|x|→∞

f(x) = +∞, (48)

then Ef,a is bounded for any a ∈ R. Therefore, by virtue of Proposition 2.1 in
[77] we obtain

Proposition 4.2. If f is continuous, and satisfies the growth condition (48),
then the multi L is ε − δ-l.s.c. if and only if L is l.s.c.

The class of functions having L-l.s.c. property is broad enough as seen by
the following.

Theorem 4.3. Let the continuous function f do not attain its local minimum
in any open subset of R

n \Argmin f , and let f satisfy the growth condition (48).
Then, f has L-l.s.c. property.

Proof. In view of Proposition 4.2, it is sufficient to prove that L is l.s.c. To this
end, assume (γi)i ⊂ (γ∗, +∞), V is open in R

n and γi → γ ∈ (γ∗, +∞), and
L(γ) ∩ V �= ∅. We have to show that L(γi) ∩ V �= ∅ for all large i.

Actually, since L(γ) ∩ V �= ∅, there exists x ∈ L(γ) ∩ V . By the assumption
that f does not attain its minimum in V , there is x′ ∈ V such that

f(x′) < f(x) ≤ γ.

Since γi → γ, for γ − f(x′) > 0, there exists N ∈ N such that for all i > N we
have

γ − γi < γ − f(x′).

Equivalently,
γi > f(x′) for all i > N,

which means x′ ∈ Ef,γi = L(γi) for all i > N . Hence, L(γi) ∩ V �= ∅ for all
i > N . �

The next corollary is an immediate consequence of Theorem 4, Sec. 2, Chap. 9
in [42], its Remark and Theorem 4.3.

Corollary 4.4. Given a continuous function f satisfying (48). Assume that,
either f is strictly quasiconvex or f is convex. Then, f has L-l.s.c. property.

Lemma 4.5. Assume that f : R
n → R is quasiconvex and has L-l.s.c. property.

The family

(f∗(γ, p))|p|=1

is equilower semicontinuous on (γ∗, +∞), and f∗(γ, p) = −∞ if γ < γ∗.
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Proof. Let γ0 ∈ (γ∗, +∞) and let ε > 0 be arbitrary. By the ε − δ-lower
semicontinuity of L, there exists 0 < δ < γ0 − γ∗ such that

L(γ0) ⊂ L(γ) + Bε(0) on (γ0 − δ, γ0 + δ).

Hence, it holds for |p| = 1,

f∗(γ0, p) = sup(
〈
p, x

〉
, f(x) ≤ γ0)

= sup(
〈
p, x

〉
, x ∈ L(γ0))

≤ sup(
〈
p, x

〉
, x ∈ L(γ) + Bε(0))

= sup(
〈
p, x

〉
, x = y + z, y ∈ L(γ), z ∈ Bε(0))

≤ sup(
〈
p, y

〉
, y ∈ L(γ)) + ε|p|

f∗(γ0, p) ≤ f∗(γ, p) + ε, ∀γ ∈ (γ0 − δ, γ0 + δ).

The last inequality implies that (f∗(γ, p))|p|=1 is equilower semicontinuous at
γ0.

The second statement is obvious. �

4.2. The Formula for Quasiconvex Data

We consider the Cauchy problem for some first order nonlinear PDEs, where the
Hamiltonians depend on t, u and Dxu, namely

∂u(t, x)
∂t

+ H(t, u(t, x), Dxu(t, x)) = 0, (t, x) ∈ U = (0, T ) × R
n, (49)

u(0, x) = g(x), x ∈ R
n. (50)

The following conditions will be imposed upon the Hamiltonian and the
initial data.
(B1) The initial function g ∈ C(Rn) is quasiconvex, has L-l.s.c. property, and
satisfies the growth condition (48):

g(x) → +∞ as |x| → +∞
(B2) The Hamiltonian H : [0, T ]× R × R

n → R is continuous and
(i) H(t, γ, Λp) = ΛH(t, γ, p) for all (t, γ, p) ∈ [0, T ]× R × R

n, Λ ≥ 0;
(ii) H(t, γ, p) is nondecreasing in γ ∈ R for each (t, p) ∈ [0, T ]× R

n.
(B3) The Hamiltonian H satisfies one of the two following conditions:

(i) For every fixed t0 ∈ (0, T ), there exists a function h : [0, T ] × R →
R, h(t, γ) is positive for almost every t ∈ (0, T ), h(., γ) is integrable for any γ,
such that

H(t, γ, p) = h(t, γ)H(t0, γ, p), ∀(t, γ, p) ∈ [0, T ]× R × R
n.

(ii) If 0 ≤ ai ≤ 1, |pi| = 1, i = 1, ..., m and
∑m

i=1 ai = 1, then

H(t, γ,

m∑
i=1

aipi) ≥
m∑

i=1

aiH(t, γ, pi),

for all (t, γ) ∈ [0, T ]× R.
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The expected viscosity solution is given by

u(t, x) := inf
{

γ ∈ R : sup
p∈Rn

(〈
p, x

〉 − g∗(γ, p) −
∫ t

0

H(τ, γ, p)dτ
)
≤ 0

}
,

(t, x) ∈ U.

(51)

Remark 3. Observe that the continuity of g and the growth condition (48) yield
that γ∗ := inf {g(x) : x ∈ R

n} is finite.

Remark 4. In view of Lemma 4.5, it is easy to see that u(t, x) ≥ γ∗ for all
(t, x) ∈ [0, T ]× R

n.

By virtue of Prop. 2.1 and Cor. 2.6 in [9] and the assumption (B2), the
function

p �→ 〈
p, x

〉 − g∗(γ, p) −
∫ t

0

H(τ, γ, p)dτ

is positively homogeneous of degree 1. Hence, we may restrict the class of p’s
over which the supremum is taken to the closed ball B̄(0; 1) = {p ∈ R

n : |p| ≤ 1},
or to the spherical surface S(0; 1) = {p ∈ R

n : |p| = 1}. That is,

u(t, x) = inf
{
γ ∈ R : sup

|p|≤1

(〈
p, x

〉 − g∗(γ, p) −
∫ t

0

H(τ, γ, p)dτ
)
≤ 0

}

= inf
{
γ ∈ R : sup

|p|=1

(〈
p, x

〉 − g∗(γ, p) −
∫ t

0

H(τ, γ, p)dτ
)
≤ 0

}
.

(52)

The facts for γ ≥ γ∗, g∗(γ, .) is finite, convex and so conditions, and g∗(γ, p) →
+∞ as γ → +∞ guarantee that u(t, x) is not equal to +∞ and so well-defined.
Let us affirm the continuity of u(t, x) as in the following lemma.
Lemma 4.6. Let (B2) hold, and let g ∈ C(Rn) be quasiconvex and satisfy (48).
Then, the function u(t, x) defined by (51) is continuous and satisfies

u(0, x0) = lim
(t,x)→(0,x0)

u(t, x) = g∗#(x0) = g(x0).

Proof. From Prop. 2.1 and Cor. 2.6 in [9], g∗(γ, p) is upper semicontinuous in
γ ∈ R, and nondecreasing. Hence, it follows from Theorem 6, App. C 1 in [42],
that the function

γ �→ sup
|p|=1

(〈
p, x

〉 − g∗(γ, p) −
∫ t

0

H(τ, γ, p)dτ
)

is nonincreasing and lower semicontinuous, and so continuous from the right.
Using the representation (52), we will show that, for any γ0 ∈ R

Eu,γ0 =
{
(t, x) ∈ [0, T ]× R

n : u(t, x) ≤ γ0

}
=

{
(t, x) : inf

{
γ ∈ R : sup

|p|=1

(〈
p, x

〉 − g∗(γ, p) −
t∫

0

H(τ, γ, p)dτ
)
≤ 0

}
≤ γ0

}
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= A :=
{

(t, x) : sup
|p|=1

(〈
p, x

〉 − g∗(γ0, p) −
t∫

0

H(τ, γ0, p)dτ
)
≤ 0

}
. (53)

Evidently, A ⊂ Eu,γ0 . The opposite inclusion can be obtained as follows. For
(t, x) ∈ Eu,γ0 , if

sup
|p|=1

(〈
p, x

〉 − g∗(γ0 + ε0, p) −
t∫

0

H(τ, γ0 + ε0, p)dτ
)

> 0,

for some ε0 > 0, then, for all γ < γ0 + ε0,

sup
|p|=1

(〈
p, x

〉 − g∗(γ, p) −
∫ t

0

H(τ, γ, p)dτ
)

> 0.

That is,
u(t, x) ≥ γ0 + ε0,

a contradiction. Hence, for all ε > 0, we have

sup
|p|=1

(〈
p, x

〉 − g∗(γ0 + ε, p) −
t∫

0

H(τ, γ0 + ε, p)dτ
)
≤ 0.

By the continuity from the right of the function on the left-hand side mentioned
above, letting ε → 0+, we obtain

sup
|p|=1

(〈
p, x

〉 − g∗(γ0, p) −
t∫

0

H(τ, γ0, p)dτ
)
≤ 0,

i.e., (t, x) ∈ A, and thus Eu,γ0 ⊂ A. Hence, (53) holds.
If γ0 < γ∗, then Eu,γ0 = ∅, a closed set. Otherwise, by virtue of Theorem 6,

App C1 in [42] and Berge’s Maximum Theorem in [13, p.123], the function

v(t, x) := sup
|p|=1

(〈
p, x

〉 − g∗(γ0, p) −
∫ t

0

H(τ, γ0, p)dτ
)
, (t, x) ∈ [0, T ]× R

n

is continuous, since γ0 ≥ γ∗. Hence, from (53), the level set Eu,γ0 is closed. So,
u is lower semicontinuous as well.

We have left to prove u is upper semicontinuous. Denote

∂Eg,γ = {x ∈ R
n : g(x) = γ},

which is the boundary of the level set Eg,γ . Since g(x) → +∞ as |x| → ∞ and
g is continuous, the level sets Eg,γ and the boundaries ∂Eg,γ are compact sets
in R

n for all γ ∈ [γ∗, +∞), and Eg,γ = ∅ if γ < γ∗.
To every fixed (t0, x0) ∈ [0, T ] × R

n, we put γ0 = u(t0, x0). Pay attention
to Remark 4 that γ0 ≥ γ∗, so the level sets Eg,γ �= ∅ for all γ ≥ γ0. For δ > 0,
since Eg,γ0 , ∂Eg,γ0 are compact sets, we have
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d := d
(
Eg,γ0 , ∂Eg,γ0+δ

)
= inf

x∈Eg,γ0 y∈∂Eg,γ0+δ

|x − y|

= min
x∈Eg,γ0 y∈∂Eg,γ0+δ

|x − y|.

If d = 0, then, there exists ξ ∈ Eg,γ0 ∩∂Eg,γ0+δ, i.e., g(ξ) ≤ γ0 and g(ξ) = γ0 +δ,
a contradiction. Hence, d > 0. We will show that

Eg,γ0 + B(0, d) ⊂ Eg,γ0+δ. (54)

Actually, if x ∈ Eg,γ0 + B(0, d), then x = y + z, where y ∈ Eg,γ0 and |z| < d.
The facts g(y + tz) → +∞ as t → +∞, g(y) ≤ γ0, and g is continuous imply
that there exists t′ > 0 such that

g(y + t′z) = γ0 + δ.

This means
y + t′z ∈ ∂Eg,γ0+δ.

Set x′ := y + t′z to get t′d > t′|z| = d(y, x′) ≥ d, and so t′ > 1. Therefore, we
have

x = y + z ∈ (y, y + t′z) ⊂ Eg,γ0+δ,

where (y, y + t′z) denotes the open line segment from y to y + t′z, since Eg,γ0+δ

is a convex set. Hence, (54) is verified.
Since Eg,γ0 is a compact set, the supremum in the definition of g∗(γ0, p) is

attained, i.e., for every p ∈ S(0; 1), there exists q ∈ R
n such that

g∗(γ0, p) = sup (
〈
p, x

〉
: x ∈ Eg,γ0)

= max (
〈
p, x

〉
: x ∈ Eg,γ0)

=
〈
p, q

〉
, q ∈ Eg,γ0 .

So, from (54) we have

g∗(γ0 + δ, p) = sup (
〈
p, x

〉
: x ∈ Eg,γ0+δ)

≥ sup (
〈
p, x

〉
: x ∈ Eg,γ0 + B(0, d))

≥ sup (
〈
p, q

〉
+

〈
p, z

〉
: |z| < d)

≥ g∗(γ0, p) + d, ∀p ∈ S(0; 1).

Hence, by the continuity of the function v mentioned above there exists a neigh-
borhood V of (t0, x0), V ⊂ [0, T ]× R

n such that for all (t, x) ∈ V ,

0 ≥ sup
|p|=1

(〈
p, x0

〉 − g∗(γ0, p) −
t0∫

0

H(τ, γ0, p)dτ
)

≥ sup
|p|=1

(〈
p, x

〉 − g∗(γ0, p) −
t∫

0

H(τ, γ0, p)dτ
)
− d

≥ sup
|p|=1

(〈
p, x

〉 − g∗(γ0 + δ, p) −
∫ t

0

H(τ, γ0, p)dτ
)
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≥ sup
|p|=1

(〈
p, x

〉 − g∗(γ0 + δ, p) −
∫ t

0

H(τ, γ0 + δ, p)dτ
)
. (55)

Now, it follows from (55) that

u(t, x) ≤ γ0 + δ = u(t0, x0) + δ, ∀(t, x) ∈ V.

This means that u(t, x) is upper semicontinuous at (t0, x0). Since (t0, x0) is
arbitrarily chosen, u(t, x) is upper semicontinuous on [0, T ]× R

n.
Finally, by Prop. 2.1 and Cor. 2.6 in [9],

u(0, x) = (g∗(γ, p))#(x) = g∗#(x) = g(x). �

We are now in a position to state the main result of this section.

Theorem 4.7. Let (B1) - (B3) hold. Then, the function u(t, x) defined by (51)
is a viscosity solution of Problem (49) − (50).

Proof. It remains to prove that u(t, x) in (51) satisfies the two inequalities. To
do this, we need some lemmas. Assume that the point (t0, x0) ∈ U is arbitrarily
chosen, we set γ0 = u(t0, x0). From (53) we have

Eu,γ0 =
{

(t, x) ∈ [0, T ]× R
n : u(t, x) ≤ γ0

}

=
{

(t, x) : sup
|p|=1

(〈
p, x

〉 − g∗(γ0, p) −
t∫

0

H(τ, γ0, p)dτ
)
≤ 0

}

=
⋂

|p|=1

{
(t, x) :

〈
p, x

〉 − g∗(γ0, p) −
t∫

0

H(τ, γ0, p)dτ ≤ 0
}
.

Now we extend continuously the Hamiltonian H to the whole n+1-dimensional
space as follows

H(t, γ0, p) = H(0, γ0, p) if t < 0;
H(t, γ0, p) = H(T, γ0, p) if t > T.

We therefore consider the set γ defined by constraints of the form

G(t, x; p) :=
〈
p, x

〉−g∗(γ0, p)−
∫ t

0

H(τ, γ0, p)dτ ≤ 0, p ∈ S(0; 1), (t, x) ∈ R×R
n.

Since (t0, x0) is an interior point of U , there exists a neighborhood V ′ of (t0, x0),
V ′ ⊂ U . Hence,

Eu,γ0 ∩ V ′ = γ ∩ V ′.

This means that Eu,γ and γ have the same tangent cone and so share the same
outer normal cone at (t0, x0). It is clear to check that the function G(t, x; p) of
(t, x) and their gradients D(t,x)G(t, x; p) are continuous in (t, x), (t, x) ∈ R×R

n
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and p ∈ S(0; 1). Let S0 be the set of active indices at (t0, x0) ∈ U , that is,
the set of indices p ∈ S(0; 1) such that G(t0, x0; p) = 0 (see Appendix in [76]).
Further, we need some results concerning the set S0.

Lemma 4.8. S0 �= ∅, whenever γ∗ �= γ0.

Proof. Evidently, γ0 = u(t0, x0) ≥ γ∗. Hence, γ0 > γ∗. Assume, for the sake of
contradiction, that for some ε0 > 0

sup
|p|=1

(〈
p, x0

〉 − g∗(γ0, p) −
∫ t0

0

H(τ, γ0, p)dτ
)

< −ε0 < 0. (56)

Since H is continuous, H is uniformly continuous on the compact set [0, T ] ×
[γ0 − 1, γ0 + 1] × S(0; 1). Therefore the function

F (γ, p) :=
∫ t0

0

H(τ, γ, p)dτ

is uniformly continuous on [γ0 − 1, γ0 + 1] × S(0; 1) and so the family

(F (γ, p))|p|=1

is equicontinuous in γ ∈ [γ0 − 1, γ0 + 1]. Thus, in view of Lemma 4.5, the family

(T (γ, p))|p|=1, T (γ, p) :=
〈
p, x0

〉 − g∗(γ, p) −
t0∫

0

H(τ, γ, p)dτ

is equiupper semicontinuous in γ ∈ [γ0−δ′, γ0+δ′] for some 0 < δ′ < min{1, γ0−
γ∗}. It therefore follows from (56) that there exists 0 < δ < δ′ such that〈

p, x0

〉 − g∗(γ, p) −
∫ t0

0

H(τ, γ, p)dτ

≤〈
p, x0

〉 − g∗(γ0, p) −
∫ t0

0

H(τ, γ0, p)dτ + ε0/2

< − ε0/2 < 0, ∀p ∈ S(0, 1), ∀γ : γ0 − δ < γ < γ0 + δ.

That is,

sup
|p|=1

(〈
p, x0

〉 − g∗(γ, p) −
t0∫

0

H(τ, γ, p)dτ
)

≤ − ε0/2 < 0, ∀γ : γ0 − δ < γ < γ0 + δ.

In particular,

sup
|p|=1

(〈
p, x0

〉 − g∗
(
γ0 − δ

2
, p

)
−

t0∫
0

H
(
τ, γ0 − δ

2
, p

)
dτ

)
≤ 0,

where δ > 0. This contradicts the definition of u(t0, x0) = γ0. The proof is
complete. �

Lemma 4.9. (t0, x0) is a regular point of γ.
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Proof. If S0 = ∅ then

sup
|p|=1

(〈
p, x0

〉 − g∗(γ0, p) −
∫ t0

0

H(τ, γ0, p)dτ
)

< 0.

As seen the continuity of the function v in the proof of Lemma 4.5, there exists
a neighborhood V of (t0, x0) such that

sup
|p|=1

(〈
p, x

〉 − g∗(γ0, p) −
∫ t

0

H(τ, γ0, p)dτ
)

< 0,

whenever (t, x) ∈ V . Hence,
u(t, x) ≤ γ0, ∀(t, x) ∈ V.

Consequently, V ⊂ Eu,γ0 . Therefore, (t0, x0) is an interior point of Eu,γ0 as well
as γ. This leads to the conclusion.

Otherwise, we have DG(t0, x0; p) = (−H(t0, γ0, p), p) �= 0 for all |p| = 1.
This means that for the vector h = (H(t0, γ0, p0),−p0), for some p0 ∈ S0, it
holds 〈

(−H(t0, γ0, p0), p0), h
〉 ≤ −|p0|2 = −1 < 0,

i.e., (t0, x0) is a normal point of γ. In view of Theorem 11.2 in [20], (t0, x0)
therefore is a regular point of γ. �

From Lemma 4.8, the outer normal cone of γ and so of Eu,γ0 at (t0, x0) is
given by

N(t0,x0)(Eu,γ0) =
{ m∑

i=1

ΛiDG(t0, x0; pi) : Λi ≥ 0, pi ∈ S0, 1 ≤ i ≤ m ≤ n + 1
}
.

�
Lemma 4.10. Let

S∗ = {p ∈ R
n : G(t0, x0; p) = sup

|q|=1

G(t0, x0; q)}

denote the set where the sup is achieved. Then S0 ⊂ S∗, and if (αi)i is any set
of m numbers with αi ≥ 0 and

∑m
i=1αi = 1, we have

m∑
i=1

αiH(t0, γ0, pi) ≤ H
(
t0, γ0,

m∑
i=1

αipi

)
. (57)

Proof. Obviously, (57) holds if H satisfies the condition (B3 (ii)). Assume (B3
(i)), let

p′ =
m∑

i=1

αipi.

Then

|p′| ≤
m∑

i=1

αi|pi| =
m∑

i=1

αi = 1.
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Since each pi achieves the supremum, we have for 1 ≤ i ≤ m,

0 =
〈
pi, x0

〉 − g∗(γ0, pi) −
∫ t0

0

H(τ, γ0, pi)dτ

≥ 〈
p′, x0

〉 − g∗(γ0, p
′) −

∫ t0

0

H(τ, γ0, p
′)dτ.

Multiplying by αi and summing on i, we obtain

〈
p′, x0

〉 − m∑
i=1

αig
∗(γ0, pi) −

∫ t0

0

m∑
i=1

αiH(τ, γ0, pi)dτ

≥ 〈
p′, x0

〉 − g∗(γ0, p
′) −

∫ t0

0

H(τ, γ0, p
′)dτ.

Cancel the first line terms and use Jensen’s inequality on g∗(γ0, p), since this
function is convex in p, to get

−
∫ t0

0

m∑
i=1

αiH(τ, γ0, pi)dτ ≥ −
∫ t0

0

H(τ, γ0, p
′)dτ = −

∫ t0

0

H(τ, γ0,
m∑

i=1

αipi)dτ.

Therefore, by (B3(i)) we have

−
∫ t0

0

m∑
i=1

αih(τ, γ0)H(t0, γ0, pi)dτ ≥ −
∫ t0

0

h(τ, γ0)H(t0, γ0, p
′)dτ.

Equivalently,

−
( m∑

i=1

αiH(t0, γ0, pi)
)∫ t0

0

h(τ, γ0)dτ

≥ − H(t0, γ0, p
′)

∫ t0

0

h(τ, γ0)dτ

= − H(t0, γ0,
m∑

i=1

αipi)
∫ t0

0

h(τ, γ0)dτ.

Dividing out by
∫ t0
0

h(τ, γ0)dτ > 0, we obtain (57). The lemma is completely
proved. �

We now continue to finish the proof of Theorem 4.7. In order to show that u
is a supersolution, let ϕ be a real smooth function on U , so that u − ϕ achieves
a zero minimum at the point (t0, x0) ∈ U . We will prove that

∂ϕ(t0, x0)
∂t

+ H(t0, u(t0, x0), Dxϕ(t0, x0)) ≥ 0. (58)

Since u− ϕ has a zero minimum at (t0, x0), there exists a neighbourhood V ′′ of
(t0, x0) such that

Eu,γ0 ∩ V ′′ ⊂ Eϕ,γ0 ∩ V ′′
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and so

N(t0,x0)(Eϕ,γ0) = N(t0,x0)(Eϕ,γ0 ∩ V ′′) ⊂ N(t0,x0)(Eu,γ0 ∩ V ′′) = N(t0,x0)(Eu,γ0).

By virtue of [20, Lem. 7.1, Ch. 4], we have for the smooth function ϕ

N(t0,x0)(Eϕ,γ0) = {ΛDϕ(t0, x0), Λ ≥ 0}.
Consequently,

Dϕ(t0, x0) ∈ N(t0,x0)(Eu,γ0).

Thus, Dϕ(t0, x0) can be expressed in the terms of N(t0,x0)(Eu,γ0),

Dϕ(t0, x0) =
(∂ϕ(t0, x0)

∂t
, Dxϕ(t0, x0)

)
=

m∑
i=1

Λi(−H(t0, γ0, pi), pi), (59)

where pi ∈ S0, Λi ≥ 0, 1 ≤ i ≤ m. Now, we set αi = Λi/Λ′, where

Λ′ =
m∑

i=1

Λi.

Assume Λ′ > 0, then

1 ≥ αi ≥ 0,
m∑

i=1

αi = 1.

By the homogeneity of degree 1 of H(t, γ, .), from (59) we get(∂ϕ(t0, x0)
∂t

, Dxϕ(t0, x0)
)

=
m∑

i=1

αi(−H(t0, γ0, Λ′pi), Λ′pi).

Hence, Dxϕ(t0, x0) =
∑m

i=1Λ
′αipi. Applying Lemma 4.10, we have

∂ϕ(t0, x0)
∂t

= −
m∑

i=1

αiH(t0, γ0, Λ′pi)

≥ −H(t0, γ0,
m∑

i=1

Λ′αipi) = −H(t0, γ0, Dxϕ(t0, x0)).

After rearranging the terms, we obtain (58).
If Λ′ = 0, then Dϕ(t0, x0) = 0. Since H(t, γ, .) is positively homogeneous,

H(t, γ, 0) = 0 for all (t, γ) ∈ [0, T ]× R. Hence,

∂ϕ(t0, x0)
∂t

+ H(t0, u(t0, x0), Dxϕ(t0, x0)) = 0 + H(t0, γ0, 0) = 0.

Lastly, we remain to prove u is a subsolution. Let u−ϕ achieve a zero maximum
at the point (t0, x0) with a smooth function ϕ. We will show that

∂ϕ(t0, x0)
∂t

+ H(t0, u(t0, x0), Dxϕ(t0, x0)) ≤ 0. (60)

Since u−ϕ has a zero maximum at (t0, x0), by an argument similar to the above,
we have
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N(t0,x0)(Eu,γ0) ⊂ N(t0,x0)(Eϕ,γ0).

If u(t0, x0) = γ∗, then (t0, x0) is a global minimum point of u. Hence,

ϕ(t0, x0) = u(t0, x0) ≤ u(t, x) ≤ ϕ(t, x), ∀(t, x) ∈ W,

for some neighborhood W of (t0, x0), i.e., (t0, x0) is also a local minimum point
of the smooth function ϕ and so Dϕ(t0, x0) = 0. As seen above, in this case, we
get already the equality in (60).

Otherwise, in view of Lemma 4.9, the outer normal cone

N(t0,x0)(Eu,γ0) �= {0}.
On the other hand, the fact ϕ is a smooth function means that the outer normal
cone consists of at most one ray. This implies that

N(t0,x0)(Eu,γ0) = N(t0,x0)(Eϕ,γ0)

and Dϕ(t0, x0) �= 0. Hence, we obtain the expression of Dϕ:

Dϕ(t0, x0) =
(∂ϕ(t0, x0)

∂t
, Dxϕ(t0, x0)

)
= Λ0(−H(t0, γ0, p), p) = (−H(t0, γ0, Λ0p), Λ0p),

for some Λ0 > 0. Then,
∂ϕ(t0, x0)

∂t
= −H(t0, γ0, Λ0p) = −H(t0, γ0, Dxϕ(t0, x0)).

We therefore obtain (60). The proof of Theorem 4.7 is complete. �

As a consequence of Corollary 4.4 and Theorem 4.7, we have

Corollary 4.11. Let g ∈ C(Rn) be strictly quasiconvex, and let g satisfy (48).
Let (B1) - (B2) hold. Then the formula (51) determines a viscosity solution of
(49) - (50).

Corollary 4.12. Let the finite function g be convex and satisfy (48). Let (B1) -
(B2) hold. Then the formula (51) defines a viscosity solution of (49) − (50).

Example 7. Consider the following Cauchy problem:

∂u(t, x)
∂t

− (1 + t)−u(t,x)|Dxu(t, x)| = 0, (t, x) ∈ (0, T ) × R, (61)

u(0, x) = |x|, x ∈ R. (62)

The formula (51) then gives us a viscosity solution of Problem (61) - (62) as
follows, for (t, x) ∈ (0, T ) × R,

u(t, x) = γ0,

where γ0 ≥ 0 is the unique solution of γ − ∫ t

0
(1 + τ)−γdτ − |x| = 0.
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