A Cauchy Like Problem in Plane Elasticity: Regularization by Quasi-reversibility with Error Estimates*

Dang Dinh Ang ${ }^{1}$, Dang Duc Trong ${ }^{1}$, and M. Yamamoto ${ }^{2}$
${ }^{1}$ Dept. of Math. and Infor., Vietnam National University of Ho Chi Minh City, 227 Nguyen Van Cu Str., 5 Dist., Ho Chi Minh City, Vietnam
${ }^{2}$ Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba Meguro-ku, Tokyo 153, Japan

Received May 15, 2003

Abstract

We consider the problem of finding the displacement field in an elastic body from displacements and stresses on a part of boundary of the elastic body. This is an ill-posed problem. We use the method of quasi-reversibility to regularize the problem. An estimate of the error is given.

1. Introduction

Let Ω be a plane elastic body and let Γ_{0} be an open subset of $\partial \Omega$. In the present paper, we consider the problem of finding the displacement field on Ω. In fact, let u, v be the displacements in the $x-$ and y-directions respectively and let the stress field $\sigma_{x}, \sigma_{y}, \tau_{x y}$ satisfy the following system of equations

$$
\begin{align*}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+X=0 \tag{1.1}\\
& \frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{x y}}{\partial x}+Y=0 \tag{1.2}
\end{align*}
$$

where X, Y, the given body forces (in the x-, y-directions respectively), are assumed to be in $H^{1}(\Omega)$.

[^0]Assuming plane stress, we have the following relations

$$
\begin{align*}
\tau_{x y} & =G\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) \equiv G \gamma_{x y} \tag{1.3}\\
\sigma_{x}-\nu \sigma_{y} & =E \frac{\partial u}{\partial x}, \quad \sigma_{y}-\nu \sigma_{x}=E \frac{\partial v}{\partial y} \tag{1.4}
\end{align*}
$$

where E, G, ν can be calculated from the Lamé coefficients λ, μ as follows (cf. [10])

$$
\begin{equation*}
G=\frac{\mu}{2}, \quad \nu=\frac{\lambda}{\lambda+\mu}, \quad E=\frac{\mu(2 \lambda+\mu)}{\lambda+\mu} . \tag{1.5}
\end{equation*}
$$

Let the displacements and the surface stresses be given on the portion Γ_{0} of $\partial \Omega$, i.e.,

$$
\begin{equation*}
\left.(u, v)\right|_{\Gamma_{0}}=\left(f_{0}, g_{0}\right) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{align*}
& \ell \sigma_{x}+m \tau_{x y}=\bar{X} \quad \text { on } \quad \Gamma_{0} \tag{1.7}\\
& m \sigma_{y}+\ell \tau_{x y}=\bar{Y} \quad \text { on } \quad \Gamma_{0} \tag{1.8}
\end{align*}
$$

where (ℓ, m) is the exterior unit normal to $\partial \Omega$. Here $\left(f_{0}, g_{0}\right),(\bar{X}, \bar{Y})$ are the surface displacements and surface stresses respectively.

Proceeding as in [1], we get after some rearrangements the system

$$
\begin{equation*}
\Delta U=-R(U)+\chi \tag{1.9}
\end{equation*}
$$

where $U=(u, v, e), e=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}, R=\left(R_{1}, R_{2}, R_{3}\right), \chi=\left(\chi_{1}, \chi_{2}, \chi_{3}\right)$ with

$$
\begin{align*}
R_{1}(U) & =\frac{1+\nu}{1-\nu} \frac{\partial e}{\partial x}+\frac{2}{G} \frac{\partial G}{\partial x} \frac{\partial u}{\partial x}+\frac{1}{G} \frac{\partial G}{\partial y} \gamma_{x y}+\frac{e}{G} \frac{\partial}{\partial x}\left(\frac{2 G \nu}{1-\nu}\right) \tag{1.10}\\
R_{2}(U) & =\frac{1+\nu}{1-\nu} \frac{\partial e}{\partial y}+\frac{2}{G} \frac{\partial G}{\partial y} \frac{\partial v}{\partial y}+\frac{1}{G} \frac{\partial G}{\partial x} \gamma_{x y}+\frac{e}{G} \frac{\partial}{\partial y}\left(\frac{2 G \nu}{1-\nu}\right) \tag{1.11}\\
R_{3}(U) & =\frac{1-\nu}{G}\left\{\frac{\partial e}{\partial x} \frac{\partial}{\partial x}\left(\frac{G(1+\nu)}{1-\nu}\right)+\frac{\partial e}{\partial y} \frac{\partial}{\partial y}\left(\frac{G(1+\nu)}{1-\nu}\right)\right. \\
& -\frac{\partial G}{\partial x} R_{1}(U)-\frac{\partial G}{\partial y} R_{2}(U)+\frac{\partial^{2} G}{\partial x^{2}} \frac{\partial u}{\partial x} \\
& \left.+\frac{\partial^{2} G}{\partial y^{2}} \frac{\partial u}{\partial y}+\frac{\partial^{2} G}{\partial x \partial y} \gamma_{x y}+e \Delta\left(\frac{G \nu}{1-\nu}\right)\right\} \tag{1.12}
\end{align*}
$$

and

$$
\begin{align*}
& \chi_{1}=-X / G, \quad \chi_{2}=-Y / G \tag{1.13}\\
& \chi_{3}=-\frac{1-\nu}{G}\left(\frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}\right)-\frac{1-\nu}{G^{2}}\left(X \frac{\partial G}{\partial x}+Y \frac{\partial G}{\partial y}\right) . \tag{1.14}
\end{align*}
$$

From now on, we shall consider the portion Γ_{0} as a subset of the segment $\{(x, 0): 0<x<\pi\}$. In this case $(\ell, m)=(0,-1)$. Hence (1.7), (1.8) can be rewritten as

$$
\begin{equation*}
\tau_{x y}=-\bar{X}, \quad \sigma_{y}=-\bar{Y} \tag{1.15}
\end{equation*}
$$

By direct computation, one has

$$
\begin{align*}
\left.U\right|_{\Gamma_{0}} & =\left(f_{0}, g_{0}, B_{0}\left(F_{0}\right)\right) \tag{1.16}\\
\left.\frac{\partial U}{\partial y}\right|_{\Gamma_{0}} & =B\left(F_{0}\right) \equiv\left(B_{1}\left(F_{0}\right), B_{2}\left(F_{0}\right), B_{3}\left(F_{0}\right)\right) \tag{1.17}
\end{align*}
$$

where $F_{0}=\left(f_{0}, g_{0}, \bar{X}, \bar{Y}\right)$ and

$$
\begin{align*}
B_{0}\left(F_{0}\right)= & (1-\nu) \frac{\partial f_{0}}{\partial x}-\frac{(1-\nu) \bar{Y}}{2 G} \tag{1.18}\\
B_{1}\left(F_{0}\right)= & -\bar{X} / G-\frac{\partial g_{0}}{\partial x}, \quad B_{2}\left(F_{0}\right)=-(1-\nu) \bar{Y} / G-\nu \frac{\partial f_{0}}{\partial x} \tag{1.19}\\
B_{3}\left(F_{0}\right)= & -(1-\nu) \frac{\partial^{2} g_{0}}{\partial x^{2}}-\frac{1}{G} \frac{\partial}{\partial y}\left(\frac{2 G \nu}{1-\nu}\right) \frac{\partial f_{0}}{\partial x} \\
& +\frac{(1-\nu) \nu}{G} \frac{\partial G}{\partial y} \frac{\partial f_{0}}{\partial x} \frac{(1-\nu)^{2}}{4 \nu^{2} G^{2}} \frac{\partial}{\partial y}\left(\frac{2 G \nu}{1-\nu}\right) \bar{Y}+\frac{\left(1-\nu^{2}\right) \bar{Y}}{G^{2}} \frac{\partial G}{\partial y} \\
& -\frac{1-\nu}{2} \frac{\partial}{\partial x}\left(\frac{\bar{X}}{G}\right)+\frac{(1-\nu) \bar{X}}{2 G^{2}} \frac{\partial G}{\partial x}-\frac{(1-\nu) Y}{2 G} \tag{1.20}
\end{align*}
$$

From (1.9), (1.16), (1.17), it follows that our problem is a Cauchy-type problem and it is ill-posed. In Lattès-Lions' book [5], Chap. 4, the Cauchy problem for an elliptic equation is regularized by the method of quasi-reversibility. However, (1.1), (1.2), (1.6)-(1.8) were not considered in [5]. In practice, measured values $(f, g, \tilde{X}, \tilde{Y})$ of the exact boundary data $\left(f_{0}, g_{0}, \bar{X}, \bar{Y}\right)$ are given only at a finite set of points. It should be noted that exact solutions of (1.3)-(1.6), with $\left(f_{0}, g_{0}, \bar{X}, \bar{Y}\right)$ replaced by $(f, g, \tilde{X}, \tilde{Y})$, usually do not exist. In fact, the set of boundary data $(f, g, \tilde{X}, \tilde{Y})$ for which our system has no solution is dense in $\left(L^{2}\left(\Gamma_{0}\right)\right)^{4}$. If (1.2) - (1.6) have a solution in $\left(H^{2}(\Omega)\right)^{2}$ (which is a natural solution space) then $\left.(u, v)\right|_{\Gamma_{0}} \in\left(H^{3 / 2}\left(\Gamma_{0}\right)\right)^{2}$. Thus if f, g are step functions then (1.3)(1.6) have no solution in $\left(H^{2}(\Omega)\right)^{2}$. In the present paper, we take the given data $(f, g, \tilde{X}, \tilde{Y})$ as L^{2}-functions and we shall regularize both the boundary data and the solution of our system. Explicit estimates will be derived.

2. Notations and Main Result

Consider Ω satisfying $\Omega \subset Q=[0, \pi] \times[0, T], \Gamma_{0}=\left\{(x, 0): 0<\alpha_{0}<x<\beta_{0}<\right.$ $\pi\}, \Gamma_{1}=\partial \Omega \backslash \Gamma_{0}$.

We assume that there exists a simply connected domain Ω^{*} satisfying
(P1) The boundary $\partial \Omega^{*}$ is $C^{1+\alpha}(0<\alpha<1)$ and

$$
\Omega^{*} \supset \Omega \cup \Gamma_{0}, \Gamma_{1}=\partial \Omega \backslash \Gamma_{0} \subset \partial \Omega^{*}
$$

(P2) For each $x \in \partial \Omega^{*}$ we can find an open ball ω such that $x \in \partial \omega$ and $\omega \subset \Omega^{*}$.

For each $\delta>0$, put

$$
\Omega_{\delta}=\left\{(x, y) \in \Omega: \operatorname{dist}\left((x, y), \mathbb{R}^{2} \backslash \Omega^{*}\right)>\delta\right\}
$$

where dist $\left(\omega_{1}, \omega_{2}\right)\left(\omega_{1}, \omega_{2} \subset \mathbb{R}^{2}\right)$ is the distance between ω_{1} and ω_{2}.
Let ρ_{δ} be a nonegative C^{2}-function satisfying

$$
\rho_{\delta}(x, y)= \begin{cases}1, & \text { for } \\ 0, & (x, y) \in \Omega_{\delta} \\ \text { for } & (x, y) \in \Omega \backslash \bar{\Omega}_{\delta / 2}\end{cases}
$$

Put

$$
\begin{aligned}
V_{\delta}= & \left\{V: V \in\left(L^{2}(\Omega)\right)^{3}, \rho_{\delta} \frac{\partial V}{\partial \xi} \in\left(L^{2}(\Omega)\right)^{3}, \xi=x, y,\right. \\
& \left.\rho_{\delta} A V \in\left(L^{2}(\Omega)\right)^{3},\left.V\right|_{\Gamma_{0}}=\left.\frac{\partial V}{\partial y}\right|_{\Gamma_{0}}=0\right\}
\end{aligned}
$$

where $A V=\Delta V+R(V)$ and $R(V)$ is defined in (1.9)- (1.12).
Let $U_{0}=\left(u_{0}, v_{0}, e_{0}\right)$ be a solution of (1.9), (1.16), (1.17) corresponding to the (possibly unknown) data $F_{0}=\left(f_{0}, g_{0}, \bar{X}, \bar{Y}\right)$ defined on Γ_{0}. Let $F=(f, g, \tilde{X}, \tilde{Y})$ be a "measured" data of F_{0}. Assume that

$$
\begin{equation*}
\left\|f-f_{0}\right\|_{L^{2}\left(\Gamma_{0}\right)}^{2}+\left\|g-g_{0}\right\|_{L^{2}\left(\Gamma_{0}\right)}^{2}+\|\bar{X}-\tilde{X}\|_{L^{2}\left(\Gamma_{0}\right)}^{2}+\|\bar{Y}-\tilde{Y}\|_{L^{2}\left(\Gamma_{0}\right)}^{2}<\epsilon^{2} \tag{2.1}
\end{equation*}
$$

We shall consider a regularized solution U_{ϵ} satisfying

$$
\begin{gather*}
\frac{1}{\epsilon_{1}^{2}} A^{*}\left(\rho_{\delta}^{2} A U_{\epsilon}\right)-\operatorname{div}\left(\rho_{\delta} \nabla U_{\epsilon}\right)+\delta U_{\epsilon}=\frac{1}{\epsilon_{1}^{2}} A^{*}\left(\rho_{\delta}^{2} \chi\right) \tag{2.2}\\
\left.U_{\epsilon}\right|_{\Gamma_{0}}=\left(f_{\epsilon}, g_{\epsilon}, B_{0}\left(F_{\epsilon}\right)\right) \tag{2.3}\\
\left.\frac{\partial U_{\epsilon}}{\partial y}\right|_{\Gamma_{0}}=B\left(F_{\epsilon}\right) \tag{2.4}
\end{gather*}
$$

where χ, B, B_{0} are in (1.9), (1.13), (1.14), (1.17)-(1.20). Here $\epsilon_{1}>0$ (to be defined later) is a function of ϵ such that $\epsilon_{1} \rightarrow 0$ as $\epsilon \rightarrow 0$, and $F_{\epsilon}=\left(f_{\epsilon}, g_{\epsilon}, \bar{X}_{\epsilon}, \bar{Y}_{\epsilon}\right)$ is defined in terms of $(f, g, \tilde{X}, \tilde{Y})$ in Sec. 3.

Following is the main result of this paper
Theorem 1. Let ϵ, δ be in (0,1), let Ω satisfy P1), P2). Suppose that
(a) $X, Y \in H^{1}(\Omega), G, \nu \in C^{2}(\bar{\Omega}), G(x)>0$ for all $x \in \bar{\Omega}$.
(b) $\left(f_{0}, g_{0}, \bar{X}, \bar{Y}\right) \in\left(H^{5 / 2}\left(\Gamma_{0}\right)\right)^{2} \times\left(H^{3 / 2}\left(\Gamma_{0}\right)\right)^{2},(f, g, \tilde{X}, \tilde{Y}) \in\left(L^{2}\left(\Gamma_{0}\right)\right)^{4}$, and (2.1) holds.
(c) System (1.1), (1.2), (1.6)-(1.8) has a solution $\left(u_{0}, v_{0}\right)$ in $\left(H^{3}(\Omega)\right)^{2}$.

Then, from $(f, g, \tilde{X}, \tilde{Y})$, we can construct $\left(f_{\epsilon}, g_{\epsilon}, \bar{X}_{\epsilon}, \bar{Y}_{\epsilon}\right)$ in $\left(H^{5 / 2}\left(\Gamma_{0}\right)\right)^{2} \times$ $\left(H^{3 / 2}\left(\Gamma_{0}\right)\right)^{2}$ and two functions $\epsilon_{1}(\epsilon), W_{\epsilon}$ such that $\lim _{\epsilon \rightarrow 0} \epsilon_{1}(\epsilon)=0$ and that $W_{\epsilon} \in\left(H^{2}(Q)\right)^{3}$ satisfies

$$
U_{\epsilon}-W_{\epsilon} \in V_{\delta}
$$

where U_{ϵ} is the unique solution of (2.2)-(2.4).

Moreover, there exist positive constants $\delta_{0}, k, C, \theta_{0}$ independent from ϵ, δ and a function $\eta(\epsilon)$ satisfying $\lim _{\epsilon \downarrow 0} \eta(\epsilon)=0$ such that

$$
\begin{equation*}
\left\|U_{\epsilon}-U_{0}\right\|_{\left(L^{2}\left(\Omega_{k \delta}\right)\right)^{3}} \leq C \eta(\epsilon)+C \delta^{-1}\left(\ln \frac{1}{\eta(\epsilon)}\right)^{-3 / 2}(\eta(\epsilon))^{\theta \delta} M_{0} \tag{2.5}
\end{equation*}
$$

where $0<\delta<\delta_{0}, 0<\theta<\theta_{0}$ and

$$
M_{0}=1+\left\|\left(f_{0}, g_{0}\right)\right\|_{H^{5 / 2}\left(\Gamma_{0}\right)}+\|(\bar{X}, \bar{Y})\|_{H^{3 / 2}\left(\Gamma_{0}\right)}
$$

If, in addition,

$$
\left(f_{0}, g_{0}, \bar{X}, \bar{Y}\right) \in\left(H^{5 / 2+s}\left(\Gamma_{0}\right)\right)^{2} \times\left(H^{3 / 2+s}\left(\Gamma_{0}\right)\right)^{2}
$$

for an $s \in(0,1 / 2)$, then

$$
\begin{equation*}
\left\|U_{\epsilon}-U_{0}\right\|_{\left(L^{2}\left(\Omega_{k \delta}\right)\right)^{3}} \leq C M_{1}\left(\epsilon^{s \theta \delta / 9} \delta^{-1}\left(\ln \frac{1}{\epsilon}\right)^{-3 / 2}+\epsilon^{s / 9}\right) \tag{2.6}
\end{equation*}
$$

where

$$
M_{1}=1+\left\|U_{0}\right\|_{\left(H^{2}\left(\Omega_{k \delta}\right)\right)^{3}}+\left\|\left(f_{0}, g_{0}\right)\right\|_{H^{5 / 2+s}\left(\Gamma_{0}\right)}+\|(\bar{X}, \bar{Y})\|_{H^{3 / 2+s}\left(\Gamma_{0}\right)}
$$

Remark. If

$$
\left(\ln \frac{1}{\epsilon}\right)^{-1} \leq \delta<\min \left\{\delta_{0}, e^{-k}, \theta_{0}^{-1}\right\}
$$

then (2.6) gives

$$
\left\|U_{\epsilon}-U_{0}\right\|_{\left(L^{2}\left(\Omega_{k \delta^{\prime}}\right)\right)^{3}} \leq C^{\prime} M_{1}\left(\ln \frac{1}{\epsilon}\right)^{-1 / 2}
$$

where $\delta^{\prime}=\delta \ln \frac{1}{\delta}$. Thus, in this case, we get an estimate independent from δ.
The proof of the theorem is divided into four steps. In Step 1 (Sec. 3), we shall construct $\left(f_{\epsilon}, g_{\epsilon}, \bar{X}_{\epsilon}, \bar{Y}_{\epsilon}\right) \in\left(H^{5 / 2}(0, \pi)\right)^{2} \times\left(H^{3 / 2}(0, \pi)\right)^{2}$ approximating $\left(f_{0}, g_{0}, \bar{X}, \bar{Y}\right)$ in the norm of $\left(H^{5 / 2}\left(\Gamma_{0}\right)\right)^{2} \times\left(H^{3 / 2}\left(\Gamma_{0}\right)\right)^{2}$. In Step 2 (Sec. 4), we shall construct $W_{\epsilon} \in\left(H^{2}(Q)\right)^{3}$ from $\left(f_{\epsilon}, g_{\epsilon}, \bar{X}_{\epsilon}, \bar{Y}_{\epsilon}\right)$ such that $\left(\left.W_{\epsilon}\right|_{\Gamma_{0}}, \partial W_{\epsilon} /\left.\partial y\right|_{\Gamma_{0}}\right)$ approximates $\left(\left.U_{0}\right|_{\Gamma_{0}}, \partial U_{0} /\left.\partial y\right|_{\Gamma_{0}}\right)$ in a sense to be specified later. In Step 3 (Sec. 5), we shall find a U_{ϵ} in the form $U_{\epsilon}=Z_{\epsilon}+W_{\epsilon}$, where Z_{ϵ} satisfies

$$
\frac{1}{\epsilon_{1}^{2}} A^{*}\left(\rho_{\delta}^{2} A Z_{\epsilon}\right)-\operatorname{div}\left(\rho_{\delta}^{2} \nabla Z_{\epsilon} \epsilon\right)+\delta Z_{\epsilon}=\frac{1}{\epsilon_{1}^{2}} A^{*}\left(\rho_{\delta}^{2}\left(\chi-W_{\epsilon}\right)\right)+\operatorname{div}\left(\rho_{\delta}^{2} \nabla W_{\epsilon} \epsilon\right)-\delta W_{\epsilon}
$$

subject to the homogeneous condition

$$
\left.Z_{\epsilon}\right|_{\Gamma_{0}}=\left.\frac{\partial Z_{\epsilon}}{\partial y}\right|_{\Gamma_{0}}=0
$$

Finally, in Step 4 (Sec. 6), an error estimate will be given. In the remainder of the paper, all of proofs of Lemmas will be omitted.

Before going to Step 1 of the proof we set a notation. Letting H be a Hilbert space and letting $u_{1}, u_{2}, \ldots, u_{m}$ be in H, we put

$$
\left\|\left(u_{1}, \ldots, u_{m}\right)\right\|_{H}^{2}=\sum_{i=1}^{m}\left\|u_{i}\right\|_{H}^{2}
$$

3. Step 1 of the Proof

Let $F=(f, g, \tilde{X}, \tilde{Y}) \in\left(L^{2}\left(\Gamma_{0}\right)\right)^{4}, F_{0}=\left(f_{0}, g_{0}, \bar{X}, \bar{Y}\right) \in\left(H^{5 / 2+s}\left(\Gamma_{0}\right)\right)^{2} \times$ $\left(H^{3 / 2+s}\left(\Gamma_{0}\right)\right)^{2}(0 \leq s<1 / 2)$ satisfying

$$
\begin{equation*}
\left\|\left(f-f_{0}, g-g_{0}, \tilde{X}-\bar{X}, \tilde{Y}-\bar{Y}\right)\right\|_{L^{2}\left(\Gamma_{0}\right)}<\epsilon \tag{3.1}
\end{equation*}
$$

From $F=(f, g, \bar{X}, \tilde{Y})$, we construct $\left(f_{\epsilon}, g_{\epsilon}, \bar{X}_{\epsilon}, \bar{Y}_{\epsilon}\right)$ in $\left(H^{3}(0, \pi)\right)^{4}$ approximating $F_{0}=\left(f_{0}, g_{0}, \bar{X}, \bar{Y}\right)$.

We divide Step 1 into two parts. In Part i) we construct an operator P which extends a function $\phi \in H^{p}\left(\Gamma_{0}\right), 0 \leq p<3$, to a function $P(\phi)$ in $H^{p}(0, \pi)$. In part ii) we shall construct functions $f_{\epsilon}, g_{\epsilon}, \bar{X}_{\epsilon}, \bar{Y}_{\epsilon}$.
(i) Construction of the operator P.

Using the reflexive method (see, e.g., [3], page 10) we can construct $P(\phi) \in$ $H^{p}(0, \pi)$ for every $\phi \in H^{p}\left(\Gamma_{0}\right)$, such that $\operatorname{supp} \phi \subset\left[\alpha^{\prime}, \beta^{\prime}\right] \subset(0, \pi)$, and that there exists a C independent from ϕ and $p \in[0,3)$ such that

$$
\begin{equation*}
\|P(\phi)\|_{H^{p}(0, \pi)} \leq C\|\phi\|_{H^{p}\left(\alpha_{0}, \beta_{0}\right)} \quad \text { for all } \phi \in H^{p}\left(\alpha_{0}, \beta_{0}\right) \tag{3.2}
\end{equation*}
$$

(ii) Construction of $F_{\epsilon}=\left(f_{\epsilon}, g_{\epsilon}, \bar{X}_{\epsilon}, \bar{Y}_{\epsilon}\right)$

For $\phi \in L^{2}(0, \pi)$, one has the Fourier expansion

$$
\phi=\sum_{n=0}^{\infty} a_{n}(\phi) \sin n x
$$

with

$$
a_{n}(\phi)=\frac{2}{\pi} \int_{0}^{\pi} \phi(x) \sin n x d x
$$

For $\delta>0$ we put

$$
\begin{equation*}
T_{\delta} \phi=\sum_{n=0}^{\infty} \frac{a_{n}(\phi)}{1+\delta n^{4}} \sin n x \tag{3.3}
\end{equation*}
$$

and

$$
f_{\epsilon}=T_{\sqrt{\epsilon}}(P f), g_{\epsilon}=T_{\sqrt{\epsilon}}(P g), \bar{X}_{=} T_{\sqrt{\epsilon}}(P \tilde{X}), \quad Y_{\epsilon}=T_{\sqrt{\epsilon}}(P \tilde{Y})
$$

Now, we have the following lemma

Lemma 1.

(a) If $\phi \in H^{k / 2+s}\left(\Gamma_{0}\right), k=1,3,5$, for some $0 \leq s<1 / 2$ then there are C_{1}, C_{2} independent from ϕ, s such that

$$
\begin{equation*}
\sum_{n=0}^{\infty} n^{k+2 s}\left|a_{n}(P \phi)\right|^{2} \leq C_{1}\|\phi\|_{H^{k / 2+s}\left(\Gamma_{0}\right)} \tag{3.4}
\end{equation*}
$$

and for every $0<\delta<1, \psi \in L^{2}\left(\Gamma_{0}\right)$,

$$
\begin{equation*}
\left\|T_{\delta} P \psi-P \phi\right\|_{H^{k / 2+s}\left(\Gamma_{0}\right)} \leq C_{2} \sum_{n=0}^{\infty} n^{k+2 s} \mid a_{n}\left(T_{\delta} P \psi-\left.a_{n}(P \phi)\right|^{2}\right. \tag{3.5}
\end{equation*}
$$

(b) If $(f, g, \tilde{X}, \tilde{Y}) \in\left(L^{2}\left(\Gamma_{0}\right)\right)^{4}$ and $\left(f_{0}, g_{0}, \bar{X}, \bar{Y}\right) \in\left(H^{5 / 2}\left(\Gamma_{0}\right)\right)^{2} \times\left(H^{3 / 2}\left(\Gamma_{0}\right)\right)^{2}$ satisfy (3.1) then there is a constant $C>0$ independent from $(f, g, \tilde{X}, \tilde{Y}), \epsilon$ such that
$\left\|\left(f_{\epsilon}-P f_{0}, g_{\epsilon}-P g_{0}\right)\right\|_{H^{5 / 2}\left(\Gamma_{0}\right)}^{2}+\left\|\left(X_{\epsilon}-P \bar{X}, Y_{\epsilon}-P \bar{Y}\right)\right\|_{H^{3 / 2}\left(\Gamma_{0}\right)}^{2} \leq C \eta^{2}(\epsilon)$,
where

$$
\begin{align*}
\eta(\epsilon)= & \epsilon+\epsilon^{1 / 9}\left(\left\|\left(f_{0}, g_{0}\right)\right\|_{H^{5 / 2}\left(\Gamma_{0}\right)}^{2}+\|(\bar{X}, \bar{Y})\|_{H^{3 / 2}\left(\Gamma_{0}\right)}^{2}\right) \\
& +\sum_{n \geq\left[\epsilon^{-1 / 9}\right]+1}\left(\left|a_{n}\left(P f_{0}\right)\right|^{2}+\left|a_{n}\left(P g_{0}\right)\right|^{2}\right) \\
& +\sum_{n \geq\left[\epsilon^{-1 / 9}\right]+1}\left(\left|a_{n}(P \bar{X})\right|^{2}+\left|a_{n}(P \bar{Y})\right|^{2}\right) . \tag{3.7}
\end{align*}
$$

(c) Let $\left(f_{0}, g_{0}, \bar{X}, \bar{Y}\right) \in\left(H^{5 / 2+s}\left(\Gamma_{0}\right)\right)^{2} \times\left(H^{3 / 2+s}\left(\Gamma_{0}\right)\right)^{2}, 0<s<1 / 2$. If (3.1) holds then there is a constant C independent from $\left(f_{0}, g_{0}, \bar{X}, \bar{Y}\right)$ such that

$$
L H S \text { of }(3.5)+L H S \text { of }(3.6) \leq C \eta_{1}^{2}(\epsilon),
$$

where

$$
\eta_{1}^{2}(\epsilon)=\epsilon^{2 s / 9}\left(1+\left\|\left(f_{0}, g_{0}\right)\right\|_{H^{5 / 2+s}\left(\Gamma_{0}\right)}^{2}+\|(\bar{X}, \bar{Y})\|_{H^{3 / 2+s}\left(\Gamma_{0}\right)}^{2}\right)
$$

and LHS denotes the left hand side.

4. Step 2 of the Proof

We shall construct a function $W_{\epsilon} \in\left(H^{2}(Q)\right)^{3}$ such that $\left(\left.W_{\epsilon}\right|_{\Gamma_{0}}, \partial W_{\epsilon} /\left.\partial y\right|_{\Gamma_{0}}\right)$ approximates $\left(\left.U_{0}\right|_{\Gamma_{0}}, \partial U_{0} /\left.\partial y\right|_{\Gamma_{0}}\right)$ in $\left(H^{5 / 2}\left(\Gamma_{0}\right)\right)^{3} \times\left(H^{5 / 2}\left(\Gamma_{0}\right)\right)^{3}$.

Define $\Phi: L^{2}(0, \pi) \times L^{2}(0, \pi) \rightarrow H^{2}(Q)$ as follows

$$
\begin{equation*}
\Phi\left(\phi_{0}, \psi_{0}\right)=\sum_{n=0}^{\infty} e^{-n y} \sin x\left((1+\sin n y) a_{n}\left(\phi_{0}\right)+\frac{a_{n}\left(\psi_{0}\right)}{n} \sin n y\right) \tag{4.1}
\end{equation*}
$$

where, we recall

$$
a_{n}(\phi)=\frac{2}{\pi} \int_{0}^{\pi} \phi(x) \sin n x d x .
$$

We have

Lemma 2. The operator Φ has the following properties
(a) $\Phi\left(\phi_{0}, \psi_{0}\right) \in C^{2}(Q), \quad$ for all $\left(\phi_{0}, \psi_{0}\right) \in\left(L^{2}(0, \pi)\right)^{2}$. Moreover, if

$$
\sum_{n=0}^{\infty}\left(n^{3}\left|a_{n}\left(\phi_{0}\right)\right|^{2}+n\left|a_{n}\left(\psi_{0}\right)\right|^{2}\right)<\infty
$$

then $\Phi\left(\phi_{0}, \psi_{0}\right) \in H^{2}(Q)$ and

$$
\left.\Phi\left(\phi_{0}, \psi_{0}\right)\right|_{(0, \pi) \times\{0\}}=\phi_{0},\left.\frac{\partial \Phi\left(\phi_{0}, \psi_{0}\right)}{\partial y}\right|_{(0, \pi) \times\{0\}}=\psi_{0}
$$

and there is a constant C independent from ϕ_{0}, ψ_{0} such that

$$
\left\|\Phi\left(\phi_{0}, \psi_{0}\right)\right\|_{H^{2}(Q)}^{2} \leq C \sum_{n-0}^{\infty}\left(n^{3}\left|a_{n}\left(\phi_{0}\right)\right|^{2}+n\left|a_{n}\left(\psi_{0}\right)\right|^{2}\right)
$$

(b) If $F=(f, g, \tilde{X}, \tilde{Y}), F_{0}=\left(f_{0}, g_{0}, \bar{X}, \bar{Y}\right)$ are as in Lemma 1 (b), then

$$
W_{\epsilon}=\left(\Phi\left(f_{\epsilon}, P B_{1}\left(F_{\epsilon}\right)\right), \Phi\left(g_{\epsilon}, P B_{2}\left(F_{\epsilon}\right)\right), \Phi\left(P B_{0}\left(F_{\epsilon}\right), P B_{3}\left(F_{\epsilon}\right)\right)\right)
$$

is in $\left(H^{2}(Q)\right)^{3}$. Moreover, one has

$$
\left\|W_{\epsilon}-W_{0}\right\|_{\left(H^{2}(Q)\right)^{3}}^{2} \leq C \eta(\epsilon)
$$

where $\eta(\epsilon)$ as in Lemma 1 (b) and

$$
W_{0}=\left(\Phi\left(f_{0}, P B_{1}\left(F_{0}\right)\right), \Phi\left(g_{0}, P B_{2}\left(F_{0}\right)\right), \Phi\left(P B_{0}\left(F_{0}\right), P B_{3}\left(F_{0}\right)\right)\right)
$$

(c) Under the assumptions of Lemma 1(c), we have

$$
\left\|W_{\epsilon}-W_{0}\right\|_{\left(H^{2}(Q)\right)^{3}}^{2} \leq C \eta_{1}(\epsilon)
$$

where $\eta_{1}(\epsilon)$ is as in Lemma 1 (c).
5. Step 3 of the Proof: Construction of Regularized Solution by QR Method and Preliminary Error Estimates
5.1. Construction of regularized solution

On V_{δ}, we consider the norm

$$
\|V\|_{V_{\delta}}=\left\|\left(V, \rho_{\delta} A V, \rho_{\delta} D_{1} V, \rho_{\delta} D_{2} V\right)\right\|_{\left(L^{2}(\Omega)\right)^{3}}
$$

It can be shown (cf. [5]) that V_{δ} with this norm is a Hilbert space. Accordingly we have

Lemma 3. Let $\delta>0, \epsilon>0$. Let W_{ϵ} be as in Lemmas 1 and 2 and let $X, Y \in H^{1}(\Omega)$. Put $\epsilon_{1}=\eta(\epsilon)$. Then the system

$$
\begin{gather*}
\frac{1}{\epsilon_{1}^{2}} A^{*}\left(\rho_{\delta}^{2} A U_{\epsilon}\right)-\operatorname{div}\left(\rho_{\delta}^{2} \nabla U_{\epsilon}\right)+\delta U_{\epsilon}=\frac{1}{\epsilon_{1}^{2}} A^{*}\left(\rho_{\delta}^{2} F\right) \tag{5.1}\\
\left.U_{\epsilon}\right|_{\Gamma_{0}}=\left(f_{\epsilon}, g_{\epsilon}, B_{0}\left(F_{\epsilon}\right)\right) \tag{5.2}\\
\left.\frac{\partial U_{\epsilon}}{\partial y}\right|_{\Gamma_{0}}=B\left(F_{\epsilon}\right) \tag{5.3}
\end{gather*}
$$

has a unique solution U_{ϵ} satisfying $U_{\epsilon}-W_{\epsilon} \in V_{\delta}$, where W_{ϵ} is defined in Lemma 2.
5.2. Error estimates: preliminary results.

We claim that

$$
\begin{equation*}
\left\|\rho_{\delta} A\left(Z_{\epsilon}-Z\right)\right\|_{\left(L^{2}(\Omega)\right)^{3}}^{2} \leq C \eta(\epsilon)\left(1+\left\|U_{0}\right\|_{\left(H^{2}(\Omega)\right)^{3}}\right), \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
\left\|Z_{\epsilon}-Z\right\|_{\left(L^{2}(\Omega)\right)^{3}}^{2}+\left\|\rho_{\delta} \nabla\left(Z_{\epsilon}-Z\right)\right\|_{\left(L^{2}(\Omega)\right)^{3}}^{2} \leq C \delta^{-1}\left(1+\left\|U_{0}\right\|_{\left(H^{2}(\Omega)\right)^{3}}\right), \tag{5.5}
\end{equation*}
$$

where $Z=U_{0}-W_{0}$, with W_{0} defined in Lemma 2(b).
In fact, since $Z_{\epsilon}, Z \in V_{\delta}$, one has for every $W \in V_{\delta}$

$$
\begin{aligned}
\pi_{\epsilon}\left(Z_{\epsilon}, W\right)= & \frac{1}{\epsilon_{1}^{2}}\left\langle\rho_{\delta}\left(F-A W_{\epsilon}\right), \rho_{\delta} A W\right\rangle \\
& -\left\langle\rho_{\delta} \nabla W_{\epsilon}, \rho_{\delta} \nabla W\right\rangle-\delta\left\langle W_{\epsilon}, W\right\rangle \\
\pi_{\epsilon}(Z, W)= & \frac{1}{\epsilon_{1}^{2}}\left\langle\rho_{\delta}\left(F-A W_{0}\right), \rho_{\delta} A W\right\rangle
\end{aligned}
$$

Taking the difference of the foregoing equalities, letting $W=Z_{\epsilon}-Z$ and estimating, we get

$$
\begin{aligned}
\left\|\rho_{\delta} A\left(Z_{\epsilon}-Z\right)\right\|_{\left(L^{2}(\Omega)\right)^{3}}^{2} & +\epsilon_{1}^{2}\left\|\rho_{\delta} \nabla\left(Z_{\epsilon}-Z\right)\right\|_{\left(L^{2}(\Omega)\right)^{3}}^{2}+\delta \epsilon_{1}^{2}\left\|Z_{\epsilon}-Z\right\|_{\left(L^{2}(\Omega)\right)^{3}}^{2} \\
& \leq C \epsilon_{1}^{2}\left\|U_{0}\right\|_{\left(H^{2}(\Omega)\right)^{3}}+C\left\|W_{\epsilon}-W_{0}\right\|_{\left(L^{2}(\Omega)\right)^{3}}^{2} .
\end{aligned}
$$

Since $\epsilon_{1}=\eta(\epsilon)$, it follows from Lemma 2(b) that

$$
\begin{aligned}
\left\|\rho_{\delta} A\left(Z_{\epsilon}-Z\right)\right\|_{\left(L^{2}(\Omega)\right)^{3}}^{2} & +\eta^{2}(\epsilon)\left\|\rho_{\delta} \nabla\left(Z_{\epsilon}-Z\right)\right\|_{\left(L^{2}(\Omega)\right)^{3}}^{2}+\delta \eta^{2}(\epsilon)\left\|Z_{\epsilon}-Z\right\|_{\left(L^{2}(\Omega)\right)^{3}}^{2} \\
\leq & C \eta^{2}(\epsilon)\left(1+\left\|U_{0}\right\|_{\left(H^{2}(\Omega)\right)^{3}}\right) .
\end{aligned}
$$

Hence (5.4), (5.5) hold.

6. Step 4 of the Proof: a Carleman Type Estimate

6.1. We first consider a simple case. One has

Lemma 4. Let Ω be a simply connected domain satisfying (P1), (P2) as discussed. Then there exist a conformal mapping $\Lambda: \bar{\Omega} \rightarrow \Lambda(\bar{\Omega})$ and constants $\delta_{0}, C_{1}, C_{2}>0$ such that

$$
\begin{align*}
\Lambda(\bar{\Omega}) & \subset\{(z, t): 1 / 2 \leq t \leq 1\} \\
\Lambda\left(\Gamma_{1}\right) & \subset\{(z, 1): z \in \mathbb{R}\} \\
\Lambda\left(\bar{\Omega}_{\delta}\right) & \subset\left\{(z, t): t \leq 1-C_{2} \delta\right\} \tag{6.1}\\
\Lambda\left(\bar{\Omega}_{\delta}\right) & \supset\left\{(z, t) \in \Lambda(\bar{\Omega}): t \leq 1-C_{1} \delta\right\} \tag{6.2}
\end{align*}
$$

for all $0<\delta<\delta_{0}$.
We now turn to the derivation of an inequality of the Carleman type. Consider an elliptic operator

$$
L V=\mu \Delta V+H(V, \nabla V)
$$

where $V=V(z, t) \in\left(H^{2}(\Lambda(\Omega))\right)^{3}, \mu \in C(\overline{\Lambda(\Omega)})$ and H depends linearly on $(V, \nabla V)$. From Lemma 4, one has

$$
D \equiv \Lambda(\Omega) \subset(a, b) \times(1 / 2,1), \quad a<b
$$

We have
Lemma 5. Let $V \in\left(H^{2}(D)\right)^{3}$ and let

$$
\left.V\right|_{\partial D}=0,\left.\nabla V\right|_{\partial D}=0
$$

Then there exist C, λ_{0} independent from V such that

$$
\begin{aligned}
& \lambda^{3} \int_{D}|V|^{2} e^{2 \lambda t^{-m}} d z d t+\lambda \int_{D}|\nabla V|^{2} e^{2 \lambda t^{-m}} d z d t \\
\leq & C \int_{D}|L V|^{2} e^{2 \lambda t^{-m}} d z d t, \quad \text { for all } \lambda \geq \lambda_{0}
\end{aligned}
$$

where $|W|^{2}=w_{1}^{2}+w_{2}^{2}+w_{3}^{2}$ for $W=\left(w_{1}, w_{2}, w_{3}\right)$.
6.2. Error estimates

Put

$$
V=\left(Z_{\epsilon}-Z\right) \circ \Lambda^{-1}, Z_{\epsilon}=U_{\epsilon}-W_{\epsilon}, Z=U_{0}-W_{0}
$$

where Λ is as in Lemma 4. We have

$$
\begin{equation*}
\left.V\right|_{\Lambda\left(\Gamma_{0}\right)}=0,\left.\nabla V\right|_{\Lambda\left(\Gamma_{0}\right)}=0 \tag{6.3}
\end{equation*}
$$

Let $\xi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$ satisfy

$$
\begin{align*}
\xi(z, t) & = \begin{cases}1, & \text { for all } \quad(z, t) \in D, 0<t<1-2 C_{1} \delta, \\
0, & \text { for all } \quad(z, t) \in D, t>1-C_{1} \delta,\end{cases} \tag{6.4}\\
|\nabla \xi(z, t)| & \leq C \delta^{-1}, \quad \text { for all } \quad(z, t) \in D,
\end{align*}
$$

where C_{1} is as in Lemma 4.
From (6.3), (6.4), it follows that the function ξV satisfies the conditions of Lemma 5. Put

$$
L V=A(V \circ \Lambda)
$$

Since $A V=\Delta V+R(V)$ and since Λ is a conformal mapping, $L V$ has the form as in Lemma 5. Hence, Lemma 5 gives after some rearrangements

$$
\begin{align*}
\lambda^{3} e^{2 \lambda\left(1-2 C_{1} \delta\right)^{-m}}\|V\|_{\left(L^{2}\left(D_{1 \delta}\right)\right)^{3}}^{2} & \leq \frac{C}{\delta}\|V\|_{\left(H^{1}\left(D_{2 \delta}\right)\right)^{3}}^{2} e^{2 \lambda\left(1-C_{1} \delta\right)^{-m}} \\
& +C e^{2 \lambda .2^{m}}\|L V\|_{\left(L^{2}\left(D_{3 \delta}\right)\right)^{3}}^{2}, \tag{6.5}
\end{align*}
$$

where

$$
\begin{aligned}
D_{1 \delta} & =D \cap\left\{1 / 2<t<1-2 C_{1} \delta\right\}, \\
D_{2 \delta} & =D \cap\left\{1-2 C_{1} \delta<t<1-C_{1} \delta\right\}, \\
D_{3 \delta} & =D \cap\left\{1 / 2<t<1-C_{1} \delta\right\} .
\end{aligned}
$$

From Lemma 4 and from (6.5), we get in view of the fact $V=\left(Z_{\epsilon}-Z\right) \circ \Lambda^{-1}$ that

$$
\begin{align*}
\left\|Z_{\epsilon}-Z\right\|_{\left(L^{2}\left(\Omega_{k \delta}\right)\right)^{3}}^{2} & \leq \lambda^{-3} \frac{C}{\delta} e^{2 \lambda\left(\left(1-C_{1} \delta\right)^{-m}-\left(1-2 C_{1} \delta\right)^{-m}\right)}\left\|Z_{\epsilon}-Z\right\|_{\left(H^{1}\left(\Omega_{\delta}\right)\right)^{3}}^{2} \\
& +C \lambda^{-3} e^{2 \lambda\left(2^{m}-\left(1-2 C_{1} \delta\right)^{-m}\right)}\left\|A\left(Z_{\epsilon}-Z\right)\right\|_{\left(L^{2}\left(\Omega_{\delta}\right)\right)^{3}}^{2} . \tag{6.6}
\end{align*}
$$

Now, we choose a λ such that

$$
e^{2 \lambda\left(\left(1-C_{1} \delta\right)^{-m}-2^{m+1}\right)}=\eta^{2}(\epsilon),
$$

or equivalently that

$$
\lambda=\left(2^{m+1}-\left(1-C_{1} \delta\right)^{-m}\right) \ln \frac{1}{\eta(\epsilon)} .
$$

Using the latter equality, we can find a δ_{0} such that

$$
\left\|Z_{\epsilon}-Z\right\|_{\left(L^{2}\left(\Omega_{k \delta}\right)\right)^{3}}^{2} \leq 2 C \lambda^{-3} \delta^{-2} e^{-\lambda m C_{1} \delta}\left(1+\left\|U_{0}\right\|_{\left(H^{2}(\Omega)\right)^{3}}\right)
$$

for $0<\delta<\delta_{0}$.
Hence, if we put $\theta=m C_{1} /\left(2^{m+1}-1\right)$ then we get after some computations that

$$
\begin{equation*}
\left\|Z_{\epsilon}-Z\right\|_{\left(L^{2}\left(\Omega_{k \delta}\right)\right)^{3}}^{2} \leq 2 C \lambda^{-3} \delta^{-2}(\eta(\epsilon))^{\theta \delta}\left(1+\left\|U_{0}\right\|_{\left(H^{2}(\Omega)\right)^{3}}\right) . \tag{6.7}
\end{equation*}
$$

Now, we have

$$
U_{\epsilon}-U_{0}=\left(Z_{\epsilon}-Z\right)+\left(W_{\epsilon}-W_{0}\right)
$$

Hence (6.7) and Lemma 2(b) give

$$
\left\|U_{\epsilon}-U_{0}\right\|_{\left.\left(L^{2} \Omega_{k \delta}\right)\right)^{3}}^{2} \leq C\left(\lambda^{-3} \delta^{-2}(\eta(\epsilon))^{\theta \delta}\left(1+\left\|U_{0}\right\|_{\left(H^{2}(\Omega)\right)^{3}}\right)+\eta^{2}(\epsilon)\right),
$$

i.e., (2.5) holds. From (2.5) and Lemma 2(c) we get (2.6). This completes the proof of our theorem.

References

1. D. D. Ang, M. Ikehata, D. D. Trong, and M. Yamamoto, Unique continuation for a stationary isotropic Lamé system with variable coefficients, Partial Diff. Eqs. 23 (1998) 371-385.
2. H. Brezis, Analyse Fonctionelle, Théorie et Application, Masson, 1987.
3. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall Inc., Englewood, N.J., 1964.
4. A. Friedman, Partial Differential Equations, Holt, Rinehart, and Winston Inc., 1969.
5. R. Lattès and J. L. Lions, Méthode de Quasi-Réversibilité et Applications, Dunond, Paris, 1967.
6. R. N. Pederson, On the Unique Continuation Theorem for Certain Second and Fourth Order Elliptic Equations, Comm. on Pure and Appl. Math. XI (1958) 67-80.
7. W. Rudin, Real and Complex Analysis, Mc Graw Hill, 1987.
8. S. Agmon, Unicité et Convexité dans des Problèmes Différentiels, Les Presses de l'Univ. de Montréal, 1966.
9. M. S. Kilbanov and F. Santosa, A Computational Quasi-Reversibility Method for Cauchy Problems for Laplace's Equation, SIAM J. Appl. Math. 51 (1991) 16531675.
10. S. P. Timosenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 1970.
11. W. Warschawski, On Differentiability at the Boundary in Conformal Mapping, Proc. Amer. Math. Soc. 12 (1961) 614-620.

[^0]: *This work was supported by the Council for Natural Sciences of Vietnam

