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Abstract. We consider the problem of finding the displacement field in an elastic body

from displacements and stresses on a part of boundary of the elastic body. This is an

ill-posed problem. We use the method of quasi-reversibility to regularize the problem.

An estimate of the error is given.

1. Introduction

Let Ω be a plane elastic body and let Γ0 be an open subset of ∂Ω. In the present
paper, we consider the problem of finding the displacement field on Ω. In fact,
let u, v be the displacements in the x− and y−directions respectively and let the
stress field σx, σy, τxy satisfy the following system of equations

∂σx

∂x
+
∂τxy

∂y
+X = 0, (1.1)

∂σy

∂y
+
∂τxy

∂x
+ Y = 0, (1.2)

where X, Y , the given body forces (in the x-, y-directions respectively), are
assumed to be in H1(Ω).
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Assuming plane stress, we have the following relations

τxy = G
(∂u
∂y

+
∂v

∂x

)
≡ Gγxy, (1.3)

σx − νσy = E
∂u

∂x
, σy − νσx = E

∂v

∂y
, (1.4)

whereE,G, ν can be calculated from the Lamé coefficients λ, μ as follows (cf. [10])

G =
μ

2
, ν =

λ

λ+ μ
, E =

μ(2λ+ μ)
λ+ μ

. (1.5)

Let the displacements and the surface stresses be given on the portion Γ0 of
∂Ω, i.e.,

(u, v)|Γ0 = (f0, g0) (1.6)

and

�σx +mτxy = X on Γ0, (1.7)
mσy + �τxy = Y on Γ0, (1.8)

where (�,m) is the exterior unit normal to ∂Ω. Here (f0, g0), (X,Y ) are the
surface displacements and surface stresses respectively.

Proceeding as in [1], we get after some rearrangements the system

ΔU = −R(U) + χ, (1.9)

where U = (u, v, e), e = ∂u
∂x + ∂v

∂y , R = (R1, R2, R3), χ = (χ1, χ2, χ3) with

R1(U) =
1 + ν

1 − ν

∂e

∂x
+

2
G

∂G

∂x

∂u

∂x
+

1
G

∂G

∂y
γxy +

e

G

∂

∂x

( 2Gν
1 − ν

)
,

(1.10)

R2(U) =
1 + ν

1 − ν

∂e

∂y
+

2
G

∂G

∂y

∂v

∂y
+

1
G

∂G

∂x
γxy +

e

G

∂

∂y

( 2Gν
1 − ν

)
,

(1.11)

R3(U) =
1 − ν

G

{ ∂e
∂x

∂

∂x

(
G(1 + ν)

1 − ν

)
+
∂e

∂y

∂

∂y

(G(1 + ν)
1 − ν

)

− ∂G

∂x
R1(U) − ∂G

∂y
R2(U) +

∂2G

∂x2

∂u

∂x

+
∂2G

∂y2

∂u

∂y
+

∂2G

∂x∂y
γxy + eΔ

( Gν

1 − ν

)}
, (1.12)

and

χ1 = −X/G, χ2 = −Y/G, (1.13)

χ3 = − 1 − ν

G

(∂X
∂x

+
∂Y

∂y

)
− 1 − ν

G2

(
X
∂G

∂x
+ Y

∂G

∂y

)
. (1.14)

From now on, we shall consider the portion Γ0 as a subset of the segment
{(x, 0) : 0 < x < π}. In this case (�,m) = (0,−1). Hence (1.7), (1.8) can be
rewritten as
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τxy = −X, σy = −Y . (1.15)

By direct computation, one has

U |Γ0 = (f0, g0, B0(F0)), (1.16)
∂U

∂y
|Γ0 = B(F0) ≡ (B1(F0), B2(F0), B3(F0)), (1.17)

where F0 = (f0, g0, X, Y ) and

B0(F0) = (1 − ν)
∂f0
∂x

− (1 − ν)Y
2G

, (1.18)

B1(F0) = −X/G− ∂g0
∂x

, B2(F0) = −(1 − ν)Y /G− ν
∂f0
∂x

, (1.19)

B3(F0) = −(1 − ν)
∂2g0
∂x2

− 1
G

∂

∂y

( 2Gν
1 − ν

)∂f0
∂x

+
(1 − ν)ν

G

∂G

∂y

∂f0
∂x

(1 − ν)2

4ν2G2

∂

∂y

( 2Gν
1 − ν

)
Y +

(1 − ν2)Y
G2

∂G

∂y

− 1 − ν

2
∂

∂x

(X
G

)
+

(1 − ν)X
2G2

∂G

∂x
− (1 − ν)Y

2G
. (1.20)

From (1.9), (1.16), (1.17), it follows that our problem is a Cauchy-type problem
and it is ill-posed. In Lattès–Lions’ book [5], Chap. 4, the Cauchy problem
for an elliptic equation is regularized by the method of quasi-reversibility. How-
ever, (1.1), (1.2), (1.6) - (1.8) were not considered in [5]. In practice, measured
values (f, g, X̃, Ỹ ) of the exact boundary data (f0, g0, X, Y ) are given only at
a finite set of points. It should be noted that exact solutions of (1.3) - (1.6),
with (f0, g0, X, Y ) replaced by (f, g, X̃, Ỹ ), usually do not exist. In fact, the set
of boundary data (f, g, X̃, Ỹ ) for which our system has no solution is dense in
(L2(Γ0))4. If (1.2) - (1.6) have a solution in (H2(Ω))2 (which is a natural solution
space) then (u, v)|Γ0 ∈ (H3/2(Γ0))2. Thus if f, g are step functions then (1.3) -
(1.6) have no solution in (H2(Ω))2. In the present paper, we take the given data
(f, g, X̃, Ỹ ) as L2-functions and we shall regularize both the boundary data and
the solution of our system. Explicit estimates will be derived.

2. Notations and Main Result

Consider Ω satisfying Ω ⊂ Q = [0, π] × [0, T ], Γ0 = {(x, 0) : 0 < α0 < x < β0 <
π}, Γ1 = ∂Ω \ Γ0.

We assume that there exists a simply connected domain Ω∗ satisfying
(P1) The boundary ∂Ω∗ is C1+α (0 < α < 1) and

Ω∗ ⊃ Ω ∪ Γ0, Γ1 = ∂Ω \ Γ0 ⊂ ∂Ω∗.

(P2) For each x ∈ ∂Ω∗ we can find an open ball ω such that x ∈ ∂ω and ω ⊂ Ω∗.
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For each δ > 0, put

Ωδ =
{
(x, y) ∈ Ω : dist ((x, y),R2 \ Ω∗) > δ

}
,

where dist (ω1, ω2) (ω1, ω2 ⊂ R
2) is the distance between ω1 and ω2.

Let ρδ be a nonegative C2-function satisfying

ρδ(x, y) =
{

1, for (x, y) ∈ Ωδ,

0, for (x, y) ∈ Ω \ Ωδ/2.

Put

Vδ =
{
V : V ∈ (L2(Ω))3, ρδ

∂V

∂ξ
∈ (L2(Ω))3, ξ = x, y,

ρδAV ∈ (L2(Ω))3, V |Γ0 =
∂V

∂y
|Γ0 = 0}

where AV = ΔV +R(V ) and R(V ) is defined in (1.9) - (1.12).
Let U0 = (u0, v0, e0) be a solution of (1.9), (1.16), (1.17) corresponding to the

(possibly unknown) data F0 = (f0, g0, X, Y ) defined on Γ0. Let F = (f, g, X̃, Ỹ )
be a “measured” data of F0. Assume that

‖f − f0‖2
L2(Γ0)

+ ‖g − g0‖2
L2(Γ0)

+ ‖X − X̃‖2
L2(Γ0)

+ ‖Y − Ỹ ‖2
L2(Γ0) < ε2. (2.1)

We shall consider a regularized solution Uε satisfying

1
ε21
A∗(ρ2

δAUε) − div(ρδ∇Uε) + δUε =
1
ε21
A∗(ρ2

δχ), (2.2)

Uε|Γ0 = (fε, gε, B0(Fε)), (2.3)
∂Uε

∂y
|Γ0 = B(Fε), (2.4)

where χ,B,B0 are in (1.9), (1.13), (1.14), (1.17) - (1.20). Here ε1 > 0 (to be de-
fined later) is a function of ε such that ε1 → 0 as ε→ 0, and Fε = (fε, gε, Xε, Y ε)
is defined in terms of (f, g, X̃, Ỹ ) in Sec. 3.

Following is the main result of this paper

Theorem 1. Let ε, δ be in (0, 1), let Ω satisfy P1), P2). Suppose that
(a) X,Y ∈ H1(Ω), G, ν ∈ C2(Ω), G(x) > 0 for all x ∈ Ω.
(b) (f0, g0, X, Y ) ∈ (H5/2(Γ0))2 × (H3/2(Γ0))2, (f, g, X̃, Ỹ ) ∈ (L2(Γ0))4, and

(2.1) holds.
(c) System (1.1), (1.2), (1.6) - (1.8) has a solution (u0, v0) in (H3(Ω))2.

Then, from (f, g, X̃, Ỹ ), we can construct (fε, gε, Xε, Y ε) in (H5/2(Γ0))2 ×
(H3/2(Γ0))2 and two functions ε1(ε),Wε such that limε→0 ε1(ε) = 0 and that
Wε ∈ (H2(Q))3 satisfies

Uε −Wε ∈ Vδ,

where Uε is the unique solution of (2.2) - (2.4).
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Moreover, there exist positive constants δ0, k, C, θ0 independent from ε, δ and
a function η(ε) satisfying limε↓0 η(ε) = 0 such that

‖Uε − U0‖(L2(Ωkδ))3 ≤ Cη(ε) + Cδ−1

(
ln

1
η(ε)

)−3/2

(η(ε))θδM0, (2.5)

where 0 < δ < δ0, 0 < θ < θ0 and

M0 = 1 + ‖(f0, g0)‖H5/2(Γ0) + ‖(X,Y )‖H3/2(Γ0).

If, in addition,

(f0, g0, X, Y ) ∈ (H5/2+s(Γ0))2 × (H3/2+s(Γ0))2

for an s ∈ (0, 1/2), then

‖Uε − U0‖(L2(Ωkδ))3 ≤ CM1

(
εsθδ/9δ−1

(
ln

1
ε

)−3/2

+ εs/9
)
, (2.6)

where

M1 = 1 + ‖U0‖(H2(Ωkδ))3 + ‖(f0, g0)‖H5/2+s(Γ0) + ‖(X,Y )‖H3/2+s(Γ0).

Remark. If (
ln

1
ε

)−1

≤ δ < min{δ0, e−k, θ−1
0 },

then (2.6) gives

‖Uε − U0‖(L2(Ωkδ′ ))3 ≤ C′M1

(
ln

1
ε

)−1/2

,

where δ′ = δ ln 1
δ . Thus, in this case, we get an estimate independent from δ.

The proof of the theorem is divided into four steps. In Step 1 (Sec. 3), we
shall construct (fε, gε, Xε, Y ε) ∈ (H5/2(0, π))2 × (H3/2(0, π))2 approximating
(f0, g0, X, Y ) in the norm of (H5/2(Γ0))2 × (H3/2(Γ0))2. In Step 2 (Sec. 4), we
shall constructWε ∈ (H2(Q))3 from (fε, gε, Xε, Y ε) such that (Wε|Γ0 , ∂Wε/∂y|Γ0)
approximates (U0|Γ0 , ∂U0/∂y|Γ0) in a sense to be specified later. In Step 3
(Sec. 5), we shall find a Uε in the form Uε = Zε +Wε, where Zε satisfies

1
ε21
A∗(ρ2

δAZε) – div(ρ2
δ∇Zεε) + δZε =

1
ε21
A∗(ρ2

δ(χ –Wε)) + div(ρ2
δ∇Wεε) – δWε

subject to the homogeneous condition

Zε|Γ0 =
∂Zε

∂y
|Γ0 = 0.

Finally, in Step 4 (Sec. 6), an error estimate will be given. In the remainder of
the paper, all of proofs of Lemmas will be omitted.
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Before going to Step 1 of the proof we set a notation. Letting H be a Hilbert
space and letting u1, u2, ..., um be in H , we put

‖(u1, ..., um)‖2
H =

m∑
i=1

‖ui‖2
H .

3. Step 1 of the Proof

Let F = (f, g, X̃, Ỹ ) ∈ (L2(Γ0))4, F0 = (f0, g0, X, Y ) ∈ (H5/2+s(Γ0))2 ×
(H3/2+s(Γ0))2 (0 ≤ s < 1/2) satisfying

‖(f − f0, g − g0, X̃ −X, Ỹ − Y )‖L2(Γ0) < ε. (3.1)

From F = (f, g, X̃, Ỹ ), we construct (fε, gε, Xε, Y ε) in (H3(0, π))4 approximat-
ing F0 = (f0, g0, X, Y ).

We divide Step 1 into two parts. In Part i) we construct an operator P which
extends a function φ ∈ Hp(Γ0), 0 ≤ p < 3, to a function P (φ) in Hp(0, π). In
part ii) we shall construct functions fε, gε, Xε, Y ε.
(i) Construction of the operator P.

Using the reflexive method (see, e.g., [3], page 10) we can construct P (φ) ∈
Hp(0, π) for every φ ∈ Hp(Γ0), such that supp φ ⊂ [α′, β′] ⊂ (0, π), and that
there exists a C independent from φ and p ∈ [0, 3) such that

‖P (φ)‖Hp(0,π) ≤ C‖φ‖Hp(α0,β0) for all φ ∈ Hp(α0, β0). (3.2)

(ii) Construction of Fε = (fε, gε, Xε, Y ε)
For φ ∈ L2(0, π), one has the Fourier expansion

φ =
∞∑

n=0

an(φ) sinnx

with

an(φ) =
2
π

∫ π

0

φ(x) sinnxdx.

For δ > 0 we put

Tδφ =
∞∑

n=0

an(φ)
1 + δn4

sinnx, (3.3)

and
fε = T√ε(Pf), gε = T√ε(Pg), X=T√ε(PX̃), Yε = T√ε(P Ỹ ).

Now, we have the following lemma

Lemma 1.
(a) If φ ∈ Hk/2+s(Γ0), k = 1, 3, 5, for some 0 ≤ s < 1/2 then there are C1, C2

independent from φ, s such that
∞∑

n=0

nk+2s|an(Pφ)|2 ≤ C1‖φ‖Hk/2+s(Γ0) (3.4)
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and for every 0 < δ < 1, ψ ∈ L2(Γ0),

‖TδPψ − Pφ‖Hk/2+s(Γ0) ≤ C2

∞∑
n=0

nk+2s|an(TδPψ − an(Pφ)|2. (3.5)

(b) If (f, g, X̃, Ỹ ) ∈ (L2(Γ0))4 and (f0, g0, X, Y ) ∈ (H5/2(Γ0))2 × (H3/2(Γ0))2

satisfy (3.1) then there is a constant C > 0 independent from (f, g, X̃, Ỹ ),ε
such that

‖(fε −Pf0, gε −Pg0)‖2
H5/2(Γ0)

+‖(Xε −PX, Yε −PY )‖2
H3/2(Γ0)

≤ Cη2(ε), (3.6)

where

η(ε) = ε+ ε1/9
(
‖(f0, g0)‖2

H5/2(Γ0) + ‖(X,Y )‖2
H3/2(Γ0)

)

+
∑

n≥[ε−1/9]+1

(|an(Pf0)|2 + |an(Pg0)|2)

+
∑

n≥[ε−1/9]+1

(|an(PX)|2 + |an(PY )|2). (3.7)

(c) Let (f0, g0, X, Y ) ∈ (H5/2+s(Γ0))2 × (H3/2+s(Γ0))2, 0 < s < 1/2. If (3.1)
holds then there is a constant C independent from (f0, g0, X, Y ) such that

LHS of (3.5) + LHS of (3.6) ≤ Cη2
1(ε),

where
η2
1(ε) = ε2s/9(1 + ‖(f0, g0)‖2

H5/2+s(Γ0)
+ ‖(X,Y )‖2

H3/2+s(Γ0)
)

and LHS denotes the left hand side.

4. Step 2 of the Proof

We shall construct a function Wε ∈ (H2(Q))3 such that (Wε|Γ0 , ∂Wε/∂y|Γ0)
approximates (U0|Γ0 , ∂U0/∂y|Γ0) in (H5/2(Γ0))3 × (H5/2(Γ0))3.

Define Φ : L2(0, π) × L2(0, π) → H2(Q) as follows

Φ(φ0, ψ0) =
∞∑

n=0

e−ny sinx
(
(1 + sinny)an(φ0) +

an(ψ0)
n

sinny
)
, (4.1)

where, we recall

an(φ) =
2
π

∫ π

0

φ(x) sinnxdx.

We have

Lemma 2. The operator Φ has the following properties
(a) Φ(φ0, ψ0) ∈ C2(Q), for all (φ0, ψ0) ∈ (L2(0, π))2. Moreover, if
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∞∑
n=0

(n3|an(φ0)|2 + n|an(ψ0)|2) <∞,

then Φ(φ0, ψ0) ∈ H2(Q) and

Φ(φ0, ψ0)|(0,π)×{0} = φ0,
∂Φ(φ0, ψ0)

∂y
|(0,π)×{0} = ψ0

and there is a constant C independent from φ0, ψ0 such that

‖Φ(φ0, ψ0)‖2
H2(Q) ≤ C

∞∑
n−0

(n3|an(φ0)|2 + n|an(ψ0)|2).

(b) If F = (f, g, X̃, Ỹ ), F0 = (f0, g0, X, Y ) are as in Lemma 1 (b), then

Wε = (Φ(fε, PB1(Fε)),Φ(gε, PB2(Fε)),Φ(PB0(Fε), PB3(Fε)))

is in (H2(Q))3. Moreover, one has

‖Wε −W0‖2
(H2(Q))3 ≤ Cη(ε),

where η(ε) as in Lemma 1 (b) and

W0 = (Φ(f0, PB1(F0)),Φ(g0, PB2(F0)),Φ(PB0(F0), PB3(F0))).

(c) Under the assumptions of Lemma 1(c), we have

‖Wε −W0‖2
(H2(Q))3 ≤ Cη1(ε)

where η1(ε) is as in Lemma 1(c).

5. Step 3 of the Proof: Construction of Regularized Solution by QR
Method and Preliminary Error Estimates

5.1. Construction of regularized solution
On Vδ, we consider the norm

‖V ‖Vδ
= ‖(V, ρδAV, ρδD1V, ρδD2V )‖(L2(Ω))3 .

It can be shown (cf. [5]) that Vδ with this norm is a Hilbert space. Accordingly
we have

Lemma 3. Let δ > 0, ε > 0. Let Wε be as in Lemmas 1 and 2 and let
X,Y ∈ H1(Ω). Put ε1 = η(ε). Then the system

1
ε21
A∗(ρ2

δAUε) − div(ρ2
δ∇Uε) + δUε =

1
ε21
A∗(ρ2

δF ) (5.1)

Uε|Γ0 = (fε, gε, B0(Fε)), (5.2)
∂Uε

∂y
|Γ0 = B(Fε) (5.3)
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has a unique solution Uε satisfying Uε−Wε ∈ Vδ, where Wε is defined in Lemma
2.

5.2. Error estimates: preliminary results.
We claim that

‖ρδA(Zε − Z)‖2
(L2(Ω))3 ≤ Cη(ε)(1 + ‖U0‖(H2(Ω))3), (5.4)

‖Zε − Z‖2
(L2(Ω))3 + ‖ρδ∇(Zε − Z)‖2

(L2(Ω))3 ≤ Cδ−1(1 + ‖U0‖(H2(Ω))3), (5.5)

where Z = U0 −W0, with W0 defined in Lemma 2(b).
In fact, since Zε, Z ∈ Vδ, one has for every W ∈ Vδ

πε(Zε,W ) =
1
ε21
〈ρδ(F −AWε), ρδAW 〉

− 〈ρδ∇Wε, ρδ∇W 〉 − δ〈Wε,W 〉
πε(Z,W ) =

1
ε21
〈ρδ(F −AW0), ρδAW 〉.

Taking the difference of the foregoing equalities, letting W = Zε − Z and esti-
mating, we get

‖ρδA(Zε − Z)‖2
(L2(Ω))3+ ε21‖ρδ∇(Zε − Z)‖2

(L2(Ω))3 + δε21‖Zε − Z‖2
(L2(Ω))3

≤ Cε21‖U0‖(H2(Ω))3 + C‖Wε −W0‖2
(L2(Ω))3 .

Since ε1 = η(ε) , it follows from Lemma 2(b) that

‖ρδA(Zε − Z)‖2
(L2(Ω))3+ η2(ε)‖ρδ∇(Zε − Z)‖2

(L2(Ω))3 + δη2(ε)‖Zε − Z‖2
(L2(Ω))3

≤ Cη2(ε)(1 + ‖U0‖(H2(Ω))3).

Hence (5.4), (5.5) hold.

6. Step 4 of the Proof: a Carleman Type Estimate

6.1. We first consider a simple case. One has

Lemma 4. Let Ω be a simply connected domain satisfying (P1), (P2) as dis-
cussed. Then there exist a conformal mapping Λ : Ω → Λ(Ω) and constants
δ0, C1, C2 > 0 such that

Λ(Ω) ⊂ {(z, t) : 1/2 ≤ t ≤ 1},
Λ(Γ1) ⊂ {(z, 1) : z ∈ R},
Λ(Ωδ) ⊂ {(z, t) : t ≤ 1 − C2δ} (6.1)
Λ(Ωδ) ⊃ {(z, t) ∈ Λ(Ω) : t ≤ 1 − C1δ}, (6.2)
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for all 0 < δ < δ0.

We now turn to the derivation of an inequality of the Carleman type. Con-
sider an elliptic operator

LV = μΔV +H(V,∇V ),

where V = V (z, t) ∈ (H2(Λ(Ω)))3, μ ∈ C(Λ(Ω)) and H depends linearly on
(V,∇V ). From Lemma 4, one has

D ≡ Λ(Ω) ⊂ (a, b) × (1/2, 1), a < b.

We have

Lemma 5. Let V ∈ (H2(D))3 and let

V |∂D = 0, ∇V |∂D = 0.

Then there exist C, λ0 independent from V such that

λ3

∫
D

|V |2e2λt−m

dzdt+ λ

∫
D

|∇V |2e2λt−m

dzdt

≤ C

∫
D

|LV |2e2λt−m

dzdt, for all λ ≥ λ0,

where |W |2 = w2
1 + w2

2 + w2
3 for W = (w1, w2, w3).

6.2. Error estimates
Put

V = (Zε − Z) ◦ Λ−1, Zε = Uε −Wε, Z = U0 −W0,

where Λ is as in Lemma 4. We have

V |Λ(Γ0) = 0, ∇V |Λ(Γ0) = 0. (6.3)

Let ξ ∈ C∞
c (R2) satisfy

ξ(z, t) =
{

1, for all (z, t) ∈ D, 0 < t < 1 − 2C1δ,

0, for all (z, t) ∈ D, t > 1 − C1δ,

|∇ξ(z, t)| ≤ Cδ−1, for all (z, t) ∈ D,

(6.4)

where C1 is as in Lemma 4.
From (6.3), (6.4), it follows that the function ξV satisfies the conditions of

Lemma 5. Put

LV = A(V ◦ Λ)

Since AV = ΔV +R(V ) and since Λ is a conformal mapping, LV has the form
as in Lemma 5. Hence, Lemma 5 gives after some rearrangements

λ3e2λ(1−2C1δ)−m‖V ‖2
(L2(D1δ))3 ≤ C

δ
‖V ‖2

(H1(D2δ))3e
2λ(1−C1δ)−m

+ Ce2λ.2m‖LV ‖2
(L2(D3δ))3 , (6.5)
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where
D1δ = D ∩ {1/2 < t < 1 − 2C1δ},
D2δ = D ∩ {1 − 2C1δ < t < 1 − C1δ},
D3δ = D ∩ {1/2 < t < 1 − C1δ}.

From Lemma 4 and from (6.5), we get in view of the fact V = (Zε − Z) ◦ Λ−1

that

‖Zε − Z‖2
(L2(Ωkδ))3 ≤ λ−3C

δ
e2λ((1−C1δ)−m−(1−2C1δ)−m)‖Zε − Z‖2

(H1(Ωδ))3

+ Cλ−3e2λ(2m−(1−2C1δ)−m)‖A(Zε − Z)‖2
(L2(Ωδ))3 .

(6.6)

Now, we choose a λ such that

e2λ((1−C1δ)−m−2m+1) = η2(ε),

or equivalently that

λ = (2m+1 − (1 − C1δ)−m) ln
1
η(ε)

.

Using the latter equality, we can find a δ0 such that

‖Zε − Z‖2
(L2(Ωkδ))3 ≤ 2Cλ−3δ−2e−λmC1δ(1 + ‖U0‖(H2(Ω))3),

for 0 < δ < δ0.
Hence, if we put θ = mC1/(2m+1 − 1) then we get after some computations

that

‖Zε − Z‖2
(L2(Ωkδ))3 ≤ 2Cλ−3δ−2(η(ε))θδ(1 + ‖U0‖(H2(Ω))3). (6.7)

Now, we have

Uε − U0 = (Zε − Z) + (Wε −W0).

Hence (6.7) and Lemma 2(b) give

‖Uε − U0‖2
(L2Ωkδ))3 ≤ C(λ−3δ−2(η(ε))θδ(1 + ‖U0‖(H2(Ω))3) + η2(ε)),

i.e., (2.5) holds. From (2.5) and Lemma 2(c) we get (2.6). This completes the
proof of our theorem. �
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