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Abstract. We consider the problem of finding the displacement field in an elastic body
from displacements and stresses on a part of boundary of the elastic body. This is an
ill-posed problem. We use the method of quasi-reversibility to regularize the problem.
An estimate of the error is given.

1. Introduction

Let € be a plane elastic body and let 'y be an open subset of 0€2. In the present
paper, we consider the problem of finding the displacement field on 2. In fact,
let u, v be the displacements in the x— and y—directions respectively and let the
stress field o, oy, T4y satisfy the following system of equations

00y OTay

X = 1.1
7 T 99 + 0, (1.1)
0oy OTyy

Yy — 1.2
By e + 0, (1.2)

where X, Y, the given body forces (in the z-, y-directions respectively), are
assumed to be in H(Q).

*This work was supported by the Council for Natural Sciences of Vietnam
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Assuming plane stress, we have the following relations

Ou Ov
Ty — a ) = xY > 1.
Tay G(aerax) Gy (1.3)
Oz — VO :E%, Oy — VOg :Eg—z, (1.4)
where F, G, v can be calculated from the Lamé coefficients A, u as follows (cf. [10])
2

Gt o A poHAtn) (1.5)

2 A p A+

Let the displacements and the surface stresses be given on the portion I'y of
09, i.e.,

(u, v)[ry = (fo,90) (1.6)

and
log +mTyy = X on Ty, (1.7)
moy, + 1y =Y on Ty, (1.8)

where (¢,m) is the exterior unit normal to dQ. Here (fo,g0), (X,Y) are the
surface displacements and surface stresses respectively.
Proceeding as in [1], we get after some rearrangements the system

AU = —R(U) + v, (1.9)
where U = (u,v,e), e = 3¢ + g—;, R = (R1, Rz, R3), x = (X1, X2, X3) With
1+vde 20G0ou 109G e 0 /2Gv
B =55, Garas t Gay ™t Gow(T-w) w10,
1+vode 20Gov 10G e 0 /2Gv
Ry(U) = ~—t ot Yyt A ;
2(U) 171/8y+G8y8y+G8x7y+G8y(1—1/) (1.11)

r) =5 G () gy ()
— aa—fR1(U) - %RQ(U) + ?:TC;%
2 2
A el a1
and
x1= —X/G, x2=-Y/G, (1.13)
Xs = — 18”(%—5+2—§) - 152”()(‘2—5“%—5). (1.14)

From now on, we shall consider the portion I'y as a subset of the segment
{(2,0) : 0 < < w}. In this case (¢,m) = (0,—1). Hence (1.7), (1.8) can be
rewritten as
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Toy = -X, oy =—Y. (1.15)

By direct computation, one has

Ulre = (fo, 90, Bo(F0)), (1.16)
O In, = BURY) = (Ba(Fu), Ba(F). BalFo), .17)

where Fy = (fo, g0, X,Y) and

Bo(Fo) = (1 - V)% - (1;75)5/ (1.18)
Bl(Fo):—Y/G—%, BQ(Fo):—(l—l/)Y/G—V%, (119)
8290 10 2Gv 6f0
Bl = =005 Gy (1) o

(1—u)u%%(1—1/)2£(26'1/>7 (1-»)Y oG
G Oy Ox 4v2G? Oy\1—v G? Oy
_1—1/3(X) (1-vXoG (1-vY

2 Oz \G 2G? Oz 2G

(1.20)

From (1.9), (1.16), (1.17), it follows that our problem is a Cauchy-type problem
and it is ill-posed. In Lattés—Lions’ book [5], Chap. 4, the Cauchy problem
for an elliptic equation is regularized by the method of quasi-reversibility. How-
ever, (1.1), (1.2), (1.6)-(1.8) were not considered in [5]. In practice, measured
values (f,g,X,Y) of the exact boundary data (fo,go,X,Y) are given only at
a finite set of points. It should be noted that exact solutions of (1.3)-(1.6),
with (fo, g0, X,Y) replaced by (f,g, X,Y), usually do not exist. In fact, the set
of boundary data (f,g, X, 17) for which our system has no solution is dense in
(L?(Dg))*. If (1.2) - (1.6) have a solution in (H%(Q2))? (which is a natural solution
space) then (u,v)|r, € (H*?(T))?. Thus if f,g are step functions then (1.3)-
(1.6) have no solution in (H2(£2))2. In the present paper, we take the given data
(f,9, X, f/) as L?-functions and we shall regularize both the boundary data and
the solution of our system. Explicit estimates will be derived.

2. Notations and Main Result

Consider  satisfying Q C Q = [0, 7] x [0,T], To = {(2,0) : 0 < ap <z < fBp <
7w}, 1 =00\ To.
We assume that there exists a simply connected domain Q* satisfying
(P1) The boundary 9Q* is C1T* (0 < a < 1) and
Q" >QUDy, I'h =90\ Ty C 90",

(P2) For each 2 € 90* we can find an open ball w such that 2 € dw and w C Q*.
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For each 6 > 0, put
Qs = {(z,y) € Q: dist ((z,y),R*\ Q*) > 6},

where dist (wy,ws) (w1,ws C R?) is the distance between w; and ws.
Let ps be a nonegative C2-function satisfying

1, for (z,y) € Qs,
p5(may) = =
0, for (z,y)e€Q\ Q0.
Put
ov
3 IV (123, ¢ —
,paage( Q)7 €=y,

ov
piAV € (L), VI, = Gl =0}

Vs ={V: Ve (L)

where AV = AV 4+ R(V) and R(V) is defined in (1.9)-(1.12).

Let Uy = (uo, vo, €0) be a solution of (1.9), (1.16), (1.17) corresponding to the
(possibly unknown) data Fy = (fo, 9o, X,Y) defined on I'g. Let F = (f,9,X,Y)
be a “measured” data of Fy. Assume that

If - fOH?ﬂ(ro) +lg - 90||2L2(F0) +[IX - X||2L2(F0) + Y - YH%Q(I‘O) <€ (2.0)

We shall consider a regularized solution U, satisfying

Lo : .,
EA (P3AU) — div(psVU.) + 06U, = gA (p2x), (2.2)
UelFO = (fe;ge7 BO(Fe))7 (23)

oU.
a = B FE ) 24
Ay |F0 ( ) ( )

where x, B, By are in (1.9), (1.13), (1.14), (1.17)- (1.20). Here 1 > 0 (to be de-
fined later) is a function of € such that ¢; — 0 as € — 0, and Fe = (fe, ge, X, Ye)
is defined in terms of (f, g, X,Y) in Sec. 3.

Following is the main result of this paper
Theorem 1. Let €,6 be in (0,1), let Q satisfy P1), P2). Suppose that
(a) X,Y € HY(Q), G,v € C*(Q), G(z) > 0 for all v € Q.
(b) (fo.00:X.Y) € (HY2(T0)? x (HY2(T0)?, (f,9.X.¥) € (L*T0))", and

(2.1) holds.
(c) System (1.1), (1.2), (1.6)-(1.8) has a solution (ug,vo) in (H>(£2))2.

Then, from (f,g,X,Y), we can construct (fc,ge, Xc,Y ) in (H>?(To))? x
(H3/2(Ty))? and two functions € (€), W, such that lim. oe1(e) = 0 and that
W, € (H?*(Q))? satisfies

Ue - WE € ‘/;57
where U, is the unique solution of (2.2)-(2.4).
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Moreover, there exist positive constants g, k,C, 0y independent from e, and
a function n(e) satisfying lime o n(e) =0 such that

B 1\ 32
U~ Vollarmnepp < o)+ 03 (o) ()Mo, (25)

where 0 < 6 < &g, 0 < O < 6y and

Mo =1+ 1/(fo, 90) |l /2 (roy + 10X, Y) | gr3/2(r) -
If, in addition,

(fo, 90, X, Y) € (HY25(Tg))? x (H3/25(Ty))?
for an s € (0,1/2), then

—3/2
1
Ue = Uoll(r2(5))2 < C My (2997967 (In = + e/, 26
(L2(Qks)) p
where

My =1+ Ul 2052 + (fos g0l msr2ts () + X, V) [ arss2s -

Remark. If
1\ —1
(1n—) < 0 < min{dp, e_k,Hal},
€
then (2.6) gives
, 1\ —1/2
1Ue = Uoll(z2(0,,))2 < CM1(1I1 E) ;
where ¢’ = §1n %. Thus, in this case, we get an estimate independent from §.

The proof of the theorem is divided into four steps. In Step 1 (Sec. 3), we
shall construct (fe,ge, Xe,Ye) € (H??(0,7))% x (H??(0,7))? approximating
(fo, 90, X,Y) in the norm of (H%/?(T))? x (H3/?(I'y))2. In Step 2 (Sec. 4), we
shall construct W, € (H%(Q))? from (fe, ge, X, Y ) such that (W|r,, 0W./dy|r,)
approximates (Up|r,, 0Up/dy|r,) in a sense to be specified later. In Step 3
(Sec. 5), we shall find a U, in the form U, = Z. + W, where Z, satisfies

1 1
A*(p2AZ.)—div(p2VZee) + 62, = 6—2A*(p§(X*WE)) + div(p2VWee) — W,
1

4
subject to the homogeneous condition

0Z,

ZE|F0 = a—y

Ir, = 0.

Finally, in Step 4 (Sec. 6), an error estimate will be given. In the remainder of
the paper, all of proofs of Lemmas will be omitted.
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Before going to Step 1 of the proof we set a notation. Letting H be a Hilbert
space and letting uy,us, ..., u;, be in H, we put

m
g, ey )7 = D Nl
i=1

3. Step 1 of the Proof

Let F' = (fag;X;Y) S (L2(FO))47 FO = (angOaYﬂ?) € (H5/2+S(F0))2 X
(H3/?%5(I'9))? (0 < s < 1/2) satisfying

H(ffangfgoaXfya}P}*?)”L%FO) <€ (31)

From F = (f,g,)z, 11), we construct (fe, ge, X, Y) in (H3(0,7))* approximat-
ing FO = (fO;gO7Xa Y)
We divide Step 1 into two parts. In Part i) we construct an operator P which

extends a function ¢ € HP(I'g), 0 < p < 3, to a function P(¢) in HP(0,7). In
part ii) we shall construct functions f, g, X, Ye.

(i) Construction of the operator P.

Using the reflexive method (see, e.g., [3], page 10) we can construct P(¢) €
HP(0,7) for every ¢ € HP(T'y), such that supp ¢ C [o/, 3] C (0,7), and that
there exists a C' independent from ¢ and p € [0,3) such that

[P ()17 0.7) < Clldllmr(an,8) for all ¢ € H(ao, Bo). (3.2)
(ii) Construction of F. = (fe, ge, Xe,Ye)
For ¢ € L?(0,7), one has the Fourier expansion

o= Z an(¢) sinnx
n=0

with .
an(p) = %/ ¢(z) sin nzdz.
0

For § > 0 we put

Ts¢p = Z 1a:(§24 sinnz, (3.3)
n=0

and
fe=Tys(Pf), ge=T(Pg), X-T (PX), Yc =T (PY).

Now, we have the following lemma

Lemma 1.
(a) If ¢ € H*?+5(Ty), k = 1,3,5, for some 0 < s < 1/2 then there are Cy,Cy
independent from ¢, s such that

Z”k+25|an(P¢)|2 < C1l|@ll grrzts (o) (3.4)

n=0
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and for every 0 < 6 < 1, 1 € L*(Ty),

IT5P — Polleraseqry) < Co 308 an(TsPy — an (PO (35)

n=0

(b) If (f,9,X,Y) € (L*(T0))* and (fo,90,X,Y) € (H%/*(T))? x (H*/*(Ty))>
satisfy (3.1) then there is a constant C > 0 independent from (f,g,X,Y),e
such that

1(fe =P fo, ge = Pgo)ll5rs /2 (pgy + (Xe = PX, Ye = PY)|[53/21) < C1’(e), (3.6)
where
n(e) = e+ € (100, 90) s ) + 1CE T3 )
+ 3 (an(Pfo) + lan(Pgo)?)

n>[e=1/9]41
+ Y (janPX)P + lan(PY)P). (3.7)
n>le~1/9]+1
(c) Let (fo,90,X,Y) € (H?2%5(T'g))? x (H3/*T5(p))?, 0 < s < 1/2. If (3.1)
holds then there is a constant C independent from (fo, g0, X,Y) such that
LHS of (3.5)+ LHS of (3.6) < Cni(e),

where
i (€) = €21+ [ (for 90) 1 Frs/240 0y + 1Y) 357240 1)
and LHS denotes the left hand side.

4. Step 2 of the Proof
We shall construct a function W, € (H?(Q))? such that (We|r,, OW./0y|r,)
approximates (Up|r,, 0Uo/dy|r,) in (H?/?(To))? x (H5/?(T)).

Define ® : L2(0,7) x L%(0,7) — H?(Q) as follows

Gn, (¢0)

®(go,v0) = Y e~ sina((1+sinny)an (o) +

n=0

sin ny), (4.1)
where, we recall o 7
an(p) = —/ ¢(z) sin nzdz.
™ Jo
We have

Lemma 2. The operator ® has the following properties
(a) ®(¢o,%0) € C?(Q), for all (¢o,0) € (L*(0,7))%. Moreover, if
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o

> (0%lan(¢0)* + nlan (o)) < oo,

n=0
then ®(¢o,v0) € H*(Q) and

D% (.
(0, %0)|(0,7)x 10} = P05 %kom)x{o} =10

and there is a constant C independent from ¢g, Vo such that

12 (b0, o) 32y < C D (nlan(@0)|” + nlan(vo)[?).

n—>0

(b) If F = (f,g,f(,f/), Fo = (fo,90,X,Y) are as in Lemma 1 (b), then

We = (q)(feaPBI(Fe))acI)(QE;PBQ(Fe));q)(PBO(Fe);PBB(Fe)))
is in (H*(Q))3. Moreover, one has
[We = Wolltrz(qye < Cnle),

where n(e) as in Lemma 1 (b) and

Wo = (®(fo, PB1(Fy)), (g0, PB2(Fy)), ®(PBo(Fo), PB3(Fp))).

(¢) Under the assumptions of Lemma 1(c), we have
[We — WO”%H?(Q))?* < Cm(e)

where ny(€) is as in Lemma 1(c).

5. Step 3 of the Proof: Construction of Regularized Solution by QR
Method and Preliminary Error Estimates

5.1. Construction of regularized solution
On Vj, we consider the norm
IV Ilvs = [[(V, ps AV, ps D1V, ps Do V)| (L2(c2))3 -

It can be shown (cf. [5]) that V5 with this norm is a Hilbert space. Accordingly
we have

Lemma 3. Let § > 0, ¢ > 0. Let W, be as in Lemmas 1 and 2 and let
X,Y € HY Q). Put e; =n(e). Then the system

L. ‘ .,
EA (p3AU,) — div(p3VU,) + 60U, = gA (p3F) (5.1)
U€|F0 = (f€ag€7 BO(Fe))7 (52)

oU.
Ir, = B(Fe) (5.3)

y
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has a unique solution U, satisfying U —W, € Vs, where W¢ is defined in Lemma
2.

5.2. Error estimates: preliminary results.
We claim that
lpsA(Ze = Z)IIE2(yys < Cn(e)(X + Ul (ar20)s) (5.4)

1Ze = Z| 2@y + 105V (Ze = 2) T2 (ayys < CO 1A+ [Uoll(mz@ys),  (5.5)

where Z = Uy — Wy, with Wy defined in Lemma 2(b).
In fact, since Z,, Z € Vy, one has for every W € Vj

1
(ps(F' — AWe), ps AW)

2
€1

- <p5VW€7p5VW> - 5<W€7 W>

Te(Ze, W) =

1
1e(Z, W) =5 {(ps(F — AWo), ps AW).
1

Taking the difference of the foregoing equalities, letting W = Z. — Z and esti-
mating, we get

lps A(Ze = Z) {12yt €illpsV(Ze = Z)|[Ea iy + 0€ill Ze = ZIIEL2 (o)
S C€%||U0||(H2(Q))3 + CHWE - WO“%L?(Q))?"
Since €3 = n(e) , it follows from Lemma 2(b) that
lps A(Ze = Z)\F 2o+ 12 ()lpsV (Ze = Z) 120y + 007 (€)1 Ze = ZIIEaayy
< O (&) (1 + Vol = (y2)-

Hence (5.4), (5.5) hold.

6. Step 4 of the Proof: a Carleman Type Estimate
6.1. We first consider a simple case. One has

Lemma 4. Let Q be a simply connected domain satisfying (P1), (P2) as dis-

cussed. Then there exist a conformal mapping A : Q@ — A(Q) and constants
09, C1,Co > 0 such that

AQ) C{(zt): 1/2<t <1},

A(Ty) c {(2,1): z€ R},
AQs) C {(z,1): t <1—Cu0)} (6.1)
AQs) D {(z,t) € A(Q): t<1—C16}, (6.2)
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for all 0 < § < .

We now turn to the derivation of an inequality of the Carleman type. Con-
sider an elliptic operator

LV = uAV + H(V,VV),
where V = V(z,t) € (H*(A(Q)))3, u € C(A(Q)) and H depends linearly on
(V,VV). From Lemma 4, one has
D =AQ) C (a,b) x (1/2,1), a<b.

We have
Lemma 5. Let V € (H?(D))? and let

Vlep =0, VV]ap = 0.
Then there exist C, Ay independent from V such that

23 / [V [2e?M " dzdt 4+ A / |VV[2eM " dzdt
D D
< c/ |LV|2e®M " dzdt,  for all A > o,
D
where [W|? = w} + w3 + w3 for W = (w1, wa, w3).

6.2. Error estimates

Put
V=(Z.—~2)oN, Z.=U.-W,, Z=Us— W,

where A is as in Lemma 4. We have

Vlawe) =0, VV]xry) = 0. (6.3)
Let £ € C2°(R?) satisfy
£(t) = { 1, forall (z,t) € D,0<t<1—2C0,
’ 0, forall (z,t)€ D,t>1— (40, (6.4)

|VE(z,t) < O™, forall (z,t) €D,
where (7 is as in Lemma 4.

From (6.3), (6.4), it follows that the function £V satisfies the conditions of
Lemma 5. Put

LV = A(VoA)

Since AV = AV + R(V) and since A is a conformal mapping, LV has the form
as in Lemma 5. Hence, Lemma 5 gives after some rearrangements

A3 2A(1—2C18) ™ 2A(1=C18)~™

C
VItzaoune < 5 IVIG: (0us)yee
+ O LV[F L2y (6.5)
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where
Dqs = Dﬁ{1/2 <t<1 72015},

DggZDﬂ{1—201(5<t<1—Cl5},
D35:Dﬁ{1/2<t<1—016}.

From Lemma 4 and from (6.5), we get in view of the fact V = (Z. — Z) o A7!
that

.C o e—m g —m
12 = 21 La(qupye < AT e OmOTEUTEONTNZe — 2B e

+ AR 02D A(Z, - Z) |20

Now, we choose a A such that
MA=C10)"=2") _a )

or equivalently that

_ m+1 o —m n—.
A= (2 (1—C16)™™)1 s

Using the latter equality, we can find a §y such that
1Ze = ZIIT L2 (0s s < 2CA26 27 (14 ||Uo|l (2 0y

for 0 < § < dg.

Hence, if we put § = mC; /(2™ — 1) then we get after some computations
that

1Ze = ZIITr20syys < 2CA2672(0(€))” (1 + Ul (122 (2))3)- (6.7)
Now, we have
Ue— Uy = (Ze — Z) + (W — Wo).
Hence (6.7) and Lemma 2(b) give

1Ue = UollF20050ys < CAT2672(n(e) (1 + |Uoll (a2 ())2) + 77 (€)),

i.e., (2.5) holds. From (2.5) and Lemma 2(c) we get (2.6). This completes the
proof of our theorem. n
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