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ON THE STABILITY OF SOME NON-LINEAR
DIFFERENTIAL EQUATIONS

VU TUAN

Abstract. In this paper the e-stability ([7], [8]) of the trivial solution of non-
linear differential equations depending on a small parameter ¢: :ii_f = f(¢, z)
+R(t, z), f(t, 0) = O, where f(, z), R(t, z) are Kamke functions ([9]) is

proved.

Consider nonlinear differential equations of the form
dr

d_t = f(t, .’l:) + R(t, .’E),

f(t,0)=0,

where R(t, z) describes the permanent perturbations. The functions
f(t, ), R(t, z) are defined and continuous in the set

(1)

Q={(t z):|z|| <H; t>0}, (0< H < o0),

and satisfy conditions of the uniqueness of solutions of the Cauchy
problem in .

Differential equations with perturbations are considered by many
mathematicians (see [1], p.232-263). Results of I. G. Malkin ([3]), S.I.
Gorsin ([4], [5], [6]), G. N. Doubosin ([2]) are fundamental for this prob-
lem. Lyapunov function method is principal and very effective in study-
ing the stability of equations of the form (1).

In this paper, we study the stability of the differential equations
(with permanent perturbations) depending on a small parameter e:

&= f(t, z) + e R(t, z), (2)

where f, R satisfy the conditions of the existence and uniqueness of
solution of the Cauchy problem in the set G = Rt x B;,, where

RY*={teR:t>0}; By={z€R": ||z| < k}.
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Definition 1 ([7,8]). The system (2) is called e-stable iff for every
a > 0 there exists v = y(a) > 0 and ¢; = €g(a) > 0 such that the
solution of the systems (2) satisfies the condition z(t, €) € B, for all
t > to whenever z(to, €) € By and € € (0, &o).

We will consider, in connection with (2), the equation
v=f(t,y); f(t,0)=0. (3)

We assume that there exists a Lypuanov function v(¢, y), satisfying
in the set G the following inequalities

a(lyll) <v(t v) <b(llyl),
dv Jv (4)
a9, a. t’ <0 ’
5t T oy (¢, y) <
where ab are functions of the K-class (i.e. the class of continuous,
strictly increasing functions A(r) in R and A(0) = 0. Then the solution
y = 0 of the system (2) is uniformly stable in the sense of Lypuanov.

Denote
z:RT x2L - R™, (t,a)— z(t, a)

(2L is an open set in R", and a = (a1, ..., ax) € 2L, and call M the
family of all functions z.

Definition 2 ([8]). The family M is called approximate with respect
to the solution y(t, to, To) of the system (3) with exact degree X as
||zo|| — 0 iff for any tc € R and any z¢ € By, (h > 0) there is a vector
ao € 2L such that for z = z (¢, ap) the following conditions hold

1. z(to, o) = o}
2. There exists T > 0 such that for all t; € R the inequality
ly(t, to, zo) — 2(¢, ao)l} < X([|ol) V

hold for all t € [to, to + T, where N depends only on T'.

Denote such a function by z (¢, to, 20)

Definition 3 ([9]). Function

F:Rt xBs; - R",
where Bs = {z € R" : ||z|| < 6} is called a Kamke function if there
exists a scalar continuous, positive function

w:RTx[0,6] >R"; w(t, 0 =0



On the stability of some non-linear differential equations 383

such that
1) For each (t, z;), (t,z3) € R* x By,
[F(t, 21) = F(2, z2)| S w (2, |21 — z2f))

2) The unique solution u = u(t) of the differential equation

v = w(t, u)
on any interval (to, to + €] satisfying

t
u(t) — 0 and #—»Oast—rto+0
— o

isu(t) =0..

Remark. Functions of the form
w(t, u) = g(t) h(u), (5)
where g(t) > 0 is continuous on any to < t < a and
+o00
g(t)dt < o0,

+
tO

h(u) is continuous if u > 0, h(0) =0, h(u) >0 as v > 0 and
+o00

0[ hi(:i—):+°°

are Kamke function. If =

we say that function g(t) satisfies condition (E).
We consider now e-stability of the system (2). Denoting

S, 3= % (t, ) R(t, z),

we have the following theorem:

Theorem 1. Assume that in the set G the following conditions are
satisfied:

1) There ezists a differential function satisfying the inequality (4).
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2) f(¢, z), R(t, z), p(t, =) are Kamke functions of the form (5) cor-
responding to functions g; (t) hi(u), g2(t) ha(u), g3(t) ha(u) respective-
ly, where functions g1(t), g2(t), gs(t) satisfy the condition (E) with
Li(T), Ly(T), L3(T) and ha(u) ts bounded.

3) For every n > O there exists T = T(n) > 0 such that for for all
bek,

to+T

1

E / o(t; 2(t, to, 20)) dt < —8(]|zol]) < O
to

whenever ||zo|| > n and o > 0.

4) The family M s approrimate with respect to the solution y(t; to, zo)

of the system (3) with ezact degree x as ||zo|| — 0. Moreover, 0 <

0 h T
i‘f,no 3?((:5:)1)) <IN

Then the system (2) is e-stable.

Proof. By the second assumption there exists a unique solution of the
Cauchy problem for the equation (2) (see [9]). Let be given a > 0 and
a; € (0, ). Denoting w = a(a1) < b(ay) wehaven = b~ !(a(e)) < g
and

B, CQi={z€ Bp:v(t, z) Lw} C B,,,
I': = {z € By, : v(t, z) = w} is the bounded of ;.

Let us consider a trajectory z(t) starting from the neighbourhood
B, (i.e. wv(to, z(to)) € B,). we will prove that the trajectory z(t)
remains in B, if € = £(a) > 0 is sufficiently small. Indeed assume that
there exists a moment 7 > 0 such that z(7) € I';, that is v(r, z(r)) = w
and the trajectory leaves the set {3y as ¢ > 7. Then we have

’l')(t, z)I(Z) =y f)(ta z)i(3) ap ESO(t, 2:(t)) < ESO(t, .'E) :

Hence

oty 2(0) <w e [ lolts, altn)) = pler, u(t)] it

t
+e [ et u0) dn

where y(t) = y(¢; 7, z(7))
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We have

el (1)) = eltn, y(tr))Jdta

S/ lo(ts, z(t1)) — o(t1, y(t: ))||dts
< / ga(t1) ha(ll2(t2) — y(t2) ) dts (6)

Moreover, the following equality holds

&(t) — 9(t) = f(t, =(8)) - F(t, y(t)) — e R(t, =(2)).

Therefore,
Jo(®) - vl < [ o(t2) ma(la(ts) - y(er) )
’ T+T
e / g2(t) ha(lz(t2) ) dts

for every t € [r, r + T}.
Since hz(u) < ¢ and f:+T g2(t1)dty = Lo(T), it follows that

ll2(t) — y(@)]| < ecaLs(T) +/T g(t1) ha(llz(t1) — y(t1)[]) dta

By the Bihari lemma ([1]), one has
+T
o) - vl <o {G@ + [ gt)dnn},

where G(u) = [ -2 ey s o= eczLa(T).
Therefore
I5(t) — (@)l < {Gla) + Ly(T)} — k (const)
By substituting this in (6) we have

¢
e(t1, z(t1)) — o(t1, y(tl))]dtIH <eczLz +0,ase—0
,

On the other hand, we have
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™+T .
[ teten viea) - e, =(ea)lees
i 7+T
< / lo(tr, u(tr)) = lt, 2(t1))|dt:
TT+T
< / gs(t1) ha (ly(t1) — 2(t2))dts (6)

where z(t) = z(¢, z(7))-
This leads to the inequality

t T+T
E/‘P(tl, y(t1))dt; <e€ / o(t1, 2(t1))dt,

o
74T

ok / gs(tr)ha(lly(t:) — 2(t1))

T

< e( - Té(jl=()ll) + NLa(T)hs(x(ll(r) V) <O,

the last inequality being immediate form the condition 4) Theorem 1.

Thus, for a and ¢ sufficiently small v(t + T, z(t + T)) < w is true,
i.e. z(t) return into the set after a moment less than T, since all the
above estimates hold uniformly w.r.t. 7. The theorem is proved.

Remark. If the function is differentiable with respect to z the following
theorem is true.

Theorem 2. Let o(t, z) be differentiable with respect to z and [lps(t, z)|| <
P(ll=ll) (€ K).

Assume all conditions of Theorem 1 are satisfied, moreover the
function x mentioned in condition 4) satisfies the inequality

lim ————Ma) x(2)

lim =5 =0

Then the system (2) is e-stable.
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