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Short Communication

MEROMORPHIC FUNCTIONS AND THE
TOPOLOGICAL LINEAR INVARIANTS DN AND 0

TRAN HUU NAM

1. Main results. Let £ and F be locally convex spaces and D an
open subset of E. A holomorphic function f defined on a dense open
subset Dy of D with values in F is called meromorphic on D if for every
z € D there exists a neighbourhood U of z in D and two holomorphic
functions A : U — F and o : U — C such that

h .
flUnDo = ;|UnDo with o #0.

For each meromorphic function f, we put
P(f) = {z € D : f is not holomorphic at z}.

P(f) is called the set of poles of f. By [5] either P(f) = 0, or if
P(f) # 0 then P(f) is an analytic subset of codimension 1 in D.

Given f : F — F a meromorphic function. We say that f is
of uniform type if there exists a continuous semi-norm p on E and a
meromorphic function g : E, — F such that

f=gouw,,

where E, denotes the Banach space associated to p and wy: E—E,
is the canonical map.

The uniformity of holomorphic functions between locally convex
spaces is defined similarly. In 1982, Colombeau - Mujica [2] established
the uniformity of Frechet-valued helomorphic functions defined on dual
spaces of Frechet - Montel spaces. Late Meise- Vogt {6] have obtained
an important result on the connection between the uniformity of scalar
holomorphic functions defined on Frechet nuclear spaces and linear
topological invariants on these spaces.
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The linear topological invariants which we use in this note have
been introduced and investigated by Vogt [10], [11].

For the uniforntity of meromorphic functions, recently in [3] it has
been shown that the equality

M(E*, F*) = My (E*, F¥), (1)

where M(E*, F*) denotes the set of meromorphic functions from E*
to F* and M,(E*, F*) the set of meromorphic functions of uniform
type from E* to F*, is carried out if E is a Schwartz - Frechet space
with an absolutely Schauder basis, E € (DN) and F is a Frechet space,
F e ().

Using the method of [3] and by improving estimating inequali-
ties, in the first part of this note we prove that (1) holds if E is a
Schwartz - Frechet space with an absolutely Schauder basis, E € (DN)
and F € (f1). Note that we always have the implication @) — ().
However, there exist spaces F € (1) but F ¢ (ﬁ) Next we investigate
the problem on extending meromorphic functions in the mean of Silva
through a hypersurface on dual of a reflexive Frechet space.

For the formulation of the main result of this note, first we recall
some definitions of linear topological invariants.

Let E be a Frechet space having an increasing fundamental system
of semi-norms {|| . ||x}. For each subset B of E, we define

Il : £ = [0, +00)

by lully = sup {|u(z)| : z € B},

where E* denotes the topological dual of E. Instead of || H{,q we write
I 3> where

U,={z€E:|zlj; <1}.

We say that E has the linear topological invariants

(DN) 3pVg3kV¥d>03C >0 : || [* < kil Ily,
(Q) Vp3gVk3d>0,C>o0: |l I <c| Ikl 1

Now we formulate the main results of the note.
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Theorem 1. Let E, F be Frechet spaces. If E is a Schwartz space
having an absolutely Schauder basis and E € (DN), F € (1), then

Mo (E*, F*) = M(E*, F*).

Theorem 2. Let F be a reflexive Frechet space. Then F has a contin-
uous norm if and only if every holomorphic function f on D\ H, where
D is an open set in F* and H ts a hypersurface in D, which can be
extended meromorphically in the mean of Silva to H, s meromorphic
on D.

2. Proof of main results. In order to prove Theorem 1 we need the
following lemma which is proved by a suitable improvement of the case
(DN, Q) in [3].

Lemma 1. Let E be a Schwartz- Frechet space having an absolutely
Schauder basis and the linear topological invariant (W) and F be a
Frechet space with the linear totological invariant (V). Then every F* -
valued holomorphic function on an open set D in E* s locally bounded.

Since this lemma, by an argument analogous to that used for the
proof of the Lemma 2.2 in {3], we have

Lemma 2. Let f : D — F* be a meromorphic function, where D
ts an open subset of a DFS-space E* with E € (W) and E has an
absolutely Schauder basis and F 1s a Frechet space having the linear
topological tnvariant (). Then there exists a continuous semi-norm
p on E* and a meromorphic function g : D, — F* where D, is a

neighbourhood of w,(D) in F, such that

f:gowp.

t

Now Theorem 1 can be proved as follows.

Proof of Theorem 1. Given f : E* — F* a meromorphic function, where
E and F are as in Theorem 1. By Lemma 2 there exist a continuous
semi-norm p on E* and meromorphic function g : D, — F*, where D,
is a neighbourhood of E*/kerp =n E} such that f = g o w,. Consider
the domain of existence Dj* of g over E;.

Since E} is a separable Banach space, by [8] D is pseudoconvex.
Hence, the function (z) = —logd(z, 8 D7) is plurisubharmonic on D}*.
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By [9] there exist a continuous semi norm p; > p on E* and a
plurisubharmonic function ¢ on E; such that pw, = Yw,, . It suffices
to show that Imw,,, C Dg* where w,,, : E; — E; is the canonical
map.

In the converse case we can find z € E} such that w,, o(2) € oDT.
Take a sequence {z,} C E*/kerp; which converges to z. Then

+oo = lim p(w,, ,(2.)) = lim 9(z,) < oco.
17— 00 n—oo
It is impossible. Hence Imw,,, C Dg* and gw,, = f where § : D* —
F* is naturally meromorphic extension of g.
Theorem 1 is proved.

In the remaining of this note we shall prove Theorem 2.

Proof of Theorem 2. Assume that F has a continuous norm p. Then
it is easy to see that F is dense in F*. We prove that f is extended
meromorphically on D.

Take zo € R(H), the regular locus of H. We can assume zg = 0.
There exists a neighbourhood of z; of the form

W =UXx Ae, e€ F* suchthat HNnW =U x 0.

Since f is holomorphic on U X Ae, we can consider the Laurent expan-
sion of f at 2o = (0, 0):

+00
flz, )= Y ai(2) X, ¥(z,)) €U x Ae,
J=—o00
where a;(z) = % / fi;\_’i_f) dX are holomorphic on U.

[A=1
By the hypothesis, f can be extended meromorphically in the mean
of Silva to H, and it follows that f | pnp+ 15 meromorphic. Hence, we
P

can find no € Z such that a;(z) = 0 for Vj < no, 2 € UN F;. Since
a;(2) are holomorphic on U, U N F; is dense in U and a;(2) = 0 for
Vi < ng, z€ UNF,;, we have a;(z) = 0 for Vj < ng, z € U. Hence

fz, ) = ) aj(z2) ¥, ¥(z, ) €U x Ae.
J2no

It means that f is meromorphic at zo € R(H). Thus, f is meromor-
phic on D \ S(H), where S(H) denotes the singular locus of H. Since
codim S(H) > 2 it follows that f is extended meromorphically to D.



Meromorphic functions and the topological linear invariants DN and Q 453

Conversely, assume that F' does not have a continuous norm. By
Bessaga- Pelczynski [1] F contains a subspace, which is isomorphic to
the space of all number sequences w. Then we can define a holomorphic
function f: F* \ (0 x w*) — C by

n

.
f(z,2150005 20) = E z—;
Jj=1

Obviously, for each n > 1 f is meromorphic on F};, where

F = limProjF,, .

However f is not meromorphic on F*. Theorem 2 is proved.
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